	Diagrammatics I	Diagrammatics II	

Many-body perturbation theory: I. Introduction to diagrammatics

Ilya Tokatly

European Theoretical Spectroscopy Facility (ETSF) University of the Basque Country - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao - Spain ilya.tokatly@ehu.es

TDDFT school - Benasque 2022

Iniversidad

del País Vasco Unibertsitatea

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Outline					

- - Green's function: Definition and Physics
 - 2 Green's function: Some Mathematical Properties
 - 3 Basics of MBPT: Introduction to Feynman diagrams
 - More on diagrammatics: GW, Hedin, etc...
 - 5 GW in practice

6 Literature

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Outline					

Green's function: Definition and Physics

- 2 Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- 4 More on diagrammatics: GW, Hedin, etc...

6 GW in practice

6 Literature

Quantum many-body problem

Main object: System of many (N) interacting electrons

$$\begin{split} \hat{H} &= \hat{T} + \hat{V}_{ext} + \hat{W} = \int d\mathbf{x} \; \hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) \right) \hat{\psi}(\mathbf{x}) \\ &+ \frac{1}{2} \int d\mathbf{x} d\mathbf{x}' \; \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \hat{\psi}(\mathbf{x}') \hat{\psi}(\mathbf{x}) \end{split}$$

• $\mathbf{x} = (\mathbf{r}, \sigma)$: space-spin coordinate

• $\hat{\psi}^{\dagger}(\mathbf{x}),\,\hat{\psi}(\mathbf{x})$: electron creation and annihilation operators

Quantum many-body problem

Main object: System of many (N) interacting electrons

$$\begin{split} \hat{H} &= \hat{T} + \hat{V}_{ext} + \hat{W} = \int d\mathbf{x} \; \hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) \right) \hat{\psi}(\mathbf{x}) \\ &+ \frac{1}{2} \int d\mathbf{x} d\mathbf{x}' \; \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \hat{\psi}(\mathbf{x}') \hat{\psi}(\mathbf{x}) \end{split}$$

• $\mathbf{x} = (\mathbf{r}, \sigma)$: space-spin coordinate

• $\hat{\psi}^{\dagger}(\mathbf{x}), \, \hat{\psi}(\mathbf{x})$: electron creation and annihilation operators

Quantum many-body problem

Main object: System of many (N) interacting electrons

$$\begin{split} \hat{H} &= \hat{T} + \hat{V}_{ext} + \hat{W} = \int d\mathbf{x} \; \hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) \right) \hat{\psi}(\mathbf{x}) \\ &+ \frac{1}{2} \int d\mathbf{x} d\mathbf{x}' \; \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \hat{\psi}(\mathbf{x}') \hat{\psi}(\mathbf{x}) \end{split}$$

• $\mathbf{x} = (\mathbf{r}, \sigma)$: space-spin coordinate

• $\hat{\psi}^{\dagger}(\mathbf{x}), \, \hat{\psi}(\mathbf{x})$: electron creation and annihilation operators

 $\hat{H}|\Psi_n^N\rangle = E_n^N|\Psi_n^N\rangle,$

 $|\Psi_0^N
angle$ is the ground state (GS) wave function

Equilibrium (GS at T = 0) MBPT is aimed at studying ground state properties and some simple/typical weakly exited states

GF: Definition a	nd physics			Diagrammatics I	Diagrammatics II		
000000		000000	0	00000000000	000000	000000000	
-		 			^		

Time-ordered 1-particle Green function at zero temperature

$$G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] | \Psi_0^N \rangle$$

- $|\Psi_0^N\rangle$: *N*-particle ground state of \hat{H} : $\hat{H}|\Psi_0^N\rangle = E_0^N|\Psi_0^N\rangle$
- $\hat{\psi}_H(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}(\mathbf{x})e^{-i\hat{H}t}$ and $\hat{\psi}_H^{\dagger}(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}^{\dagger}(\mathbf{x})e^{-i\hat{H}t}$: electron field operators in Heisenberg picture
- \hat{T} : time-ordering operator

$$\hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] = \begin{cases} \hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t'), & t > t' \\ -\hat{\psi}_H^{\dagger}(\mathbf{x}',t')\hat{\psi}_H(\mathbf{x},t), & t < t' \end{cases}$$

Time-ordered 1-particle Green function at zero temperature

$$G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] | \Psi_0^N \rangle$$

- $|\Psi_0^N\rangle$: *N*-particle ground state of \hat{H} : $\hat{H}|\Psi_0^N\rangle = E_0^N|\Psi_0^N\rangle$
- $\hat{\psi}_H(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}(\mathbf{x})e^{-i\hat{H}t}$ and $\hat{\psi}_H^{\dagger}(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}^{\dagger}(\mathbf{x})e^{-i\hat{H}t}$: electron field operators in Heisenberg picture

Î: time-ordering operator

$$\hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] = \begin{cases} \hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t'), & t > t' \\ -\hat{\psi}_H^{\dagger}(\mathbf{x}',t')\hat{\psi}_H(\mathbf{x},t), & t < t' \end{cases}$$

Time-ordered 1-particle Green function at zero temperature

$$G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] | \Psi_0^N \rangle$$

- $|\Psi_0^N\rangle$: *N*-particle ground state of \hat{H} : $\hat{H}|\Psi_0^N\rangle = E_0^N|\Psi_0^N\rangle$
- $\hat{\psi}_H(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}(\mathbf{x})e^{-i\hat{H}t}$ and $\hat{\psi}_H^{\dagger}(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}^{\dagger}(\mathbf{x})e^{-i\hat{H}t}$: electron field operators in Heisenberg picture
- \hat{T} : time-ordering operator

$$\hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] = \begin{cases} \hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t'), & t > t' \\ -\hat{\psi}_H^{\dagger}(\mathbf{x}',t')\hat{\psi}_H(\mathbf{x},t), & t < t' \end{cases}$$

Time-ordered 1-particle Green function at zero temperature

$$G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] | \Psi_0^N \rangle$$

- $|\Psi_0^N\rangle$: *N*-particle ground state of \hat{H} : $\hat{H}|\Psi_0^N\rangle = E_0^N|\Psi_0^N\rangle$
- $\hat{\psi}_H(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}(\mathbf{x})e^{-i\hat{H}t}$ and $\hat{\psi}_H^{\dagger}(\mathbf{x},t) = e^{i\hat{H}t}\hat{\psi}^{\dagger}(\mathbf{x})e^{-i\hat{H}t}$: electron field operators in Heisenberg picture
- \hat{T} : time-ordering operator

$$\hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t')] = \begin{cases} \hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H^{\dagger}(\mathbf{x}',t'), & t > t' \\ -\hat{\psi}_H^{\dagger}(\mathbf{x}',t')\hat{\psi}_H(\mathbf{x},t), & t < t' \end{cases}$$

$$G(\mathbf{x}, t; \mathbf{x}', t') = -\theta(t - t')i\langle \Psi_0^N | \hat{\psi}_H(\mathbf{x}, t) \hat{\psi}_H^{\dagger}(\mathbf{x}', t') | \Psi_0^N \rangle$$
$$+\theta(t' - t)i\langle \Psi_0^N | \hat{\psi}_H^{\dagger}(\mathbf{x}', t') \hat{\psi}_H(\mathbf{x}, t) | \Psi_0^N \rangle$$

Physical meaning of Green function: Propagator

 $iG(t,t') = \theta(t-t') \langle \hat{\psi}_H(\mathbf{x},t) \hat{\psi}_H^{\dagger}(\mathbf{x}',t') \rangle - \theta(t'-t) \langle \hat{\psi}_H^{\dagger}(\mathbf{x}',t') \hat{\psi}_H(\mathbf{x},t) \rangle$

[Taken from "Quantum Theory of Many-Body Systems" by A. M. Zagoskin, Springer 1998] t > t':

Propagation of a particle added to the system

t < t'

Propagation of a hole after one particle is removed

Spectral information contained in Green function

Time evolution/propagation in QM is described by $e^{-i\hat{H}t} \Longrightarrow$

$$G(t) \sim e^{-i\epsilon_l t} e^{-\gamma_l t} \xrightarrow{\text{Fourier}} G(\omega) \sim \frac{1}{\omega - \epsilon_l + i\gamma_l}$$

Poles of $G(\omega)$ should correspond to the energies of particle/hole excitations propagating through the system.

On experimental side $G(\omega)$ is expected to be related to the spectra of direct/inverse photoemission (experimental electron removal/addition)

Green function is directly related to the 1-particle density matrix

$$\rho(\mathbf{x}, \mathbf{x}') = \langle \Psi_0 | \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}') | \Psi_0 \rangle = -i \lim_{t' \to t+0} G(\mathbf{x}, t; \mathbf{x}', t') \equiv -i G(\mathbf{x}, t; \mathbf{x}', t^+)$$

In general from 1-particle Green function we can extract:

- ground-state expectation values of any single-particle operator $\hat{O} = \int d\mathbf{x} d\mathbf{x}' \ \hat{\psi}^{\dagger}(\mathbf{x}) \hat{o}(\mathbf{x}, \mathbf{x}') \hat{\psi}(\mathbf{x}')$ e.g., the ground state density $n(\mathbf{r}) = -i \sum_{\sigma} G(\mathbf{r}\sigma, t; \mathbf{r}\sigma, t^+)$
- ground-state energy of the system

Galitski-Migdal formula

$$E_0^N = -\frac{i}{2} \int d\mathbf{x} \lim_{t' \to t^+} \lim_{\mathbf{r}' \to \mathbf{r}} \left(i \frac{\partial}{\partial t} - \frac{\nabla^2}{2} \right) G(\mathbf{r}\sigma, t; \mathbf{r}'\sigma, t')$$

• spectrum of system: direct/inverse photoemission

F: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	
	000000			

Outline

- Green's function: Definition and Physics
- 2 Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- 4 More on diagrammatics: GW, Hedin, etc...
- 5 GW in practice
- 6 Literature

GF: Definition and physics GF: Math properties Diagrammatics I Diagrammatics II GW Literature

Green function of noninteracting system I

For noninteracting system $\hat{H} = \sum_{j=0}^{N} \hat{h}(\mathbf{r}_j) = \sum_{j=0}^{N} \left[-\frac{\nabla_j^2}{2} + v_{ext}(\mathbf{r}_j) \right]$

Particles occupy single-particle states $\varphi_l(\mathbf{r})$ with energies ε_l up to E_F

$$\hat{h}(\mathbf{r})\varphi_l(\mathbf{r}) = \varepsilon_l \varphi_l(\mathbf{r})$$

Examples:

- Homogeneous system [$v_{ext}(\mathbf{r}) = 0$]: plane wave states $l = \mathbf{k}$ $\varphi_l(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i\mathbf{k}\mathbf{r}}$
- Periodic system [$v_{ext}(\mathbf{r} + \mathbf{R}) = v_{ext}(\mathbf{r})$]: Bloch states $l = n, \mathbf{k}$ $\varphi_l(\mathbf{r}) = \frac{1}{\sqrt{V}} u_{\mathbf{k}n}(\mathbf{r}) e^{i\mathbf{k}\mathbf{r}}$

For noninteracting system $\hat{H} = \sum_{j=0}^{N} \hat{h}(\mathbf{r}_j) = \sum_{j=0}^{N} \left[-\frac{\nabla_j^2}{2} + v_{ext}(\mathbf{r}_j) \right]$

Particles occupy single-particle states $\varphi_l(\mathbf{r})$ with energies ε_l up to E_F

$$\hat{h}(\mathbf{r})\varphi_l(\mathbf{r}) = \varepsilon_l\varphi_l(\mathbf{r})$$

Examples:

- Homogeneous system [$v_{ext}(\mathbf{r}) = 0$]: plane wave states $l = \mathbf{k}$ $\varphi_l(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i\mathbf{k}\mathbf{r}}$
- Periodic system $[v_{ext}(\mathbf{r} + \mathbf{R}) = v_{ext}(\mathbf{r})]$: Bloch states $l = n, \mathbf{k}$ $\varphi_l(\mathbf{r}) = \frac{1}{\sqrt{V}} u_{\mathbf{k}n}(\mathbf{r}) e^{i\mathbf{k}\mathbf{r}}$

Time dependence of field operators is very simple (no interactions!):

$$\hat{\psi}_H(\mathbf{r},t) = \sum_l e^{-i\varepsilon_l t} \varphi_l(\mathbf{r}) \hat{a}_l, \quad \hat{\psi}_H^{\dagger}(\mathbf{r},t) = \sum_l e^{i\varepsilon_l t} \varphi_l^*(\mathbf{r}) \hat{a}_l^{\dagger}$$

 $\{\hat{a}_l^{\dagger}, \hat{a}_{l'}\} = \delta_{l.l'}$

Green function of noninteracting system II

$$iG_{0}(\mathbf{r},t;\mathbf{r}',t') = \langle 0|\hat{T}[\hat{\psi}_{H}(\mathbf{r},t)\hat{\psi}_{H}^{\dagger}(\mathbf{r}',t')]|0\rangle$$
$$= \sum_{l} \left[\theta(t-t')\langle 0|\hat{a}_{l}\hat{a}_{l}^{\dagger}|0\rangle - \theta(t'-t)\langle 0|\hat{a}_{l}^{\dagger}\hat{a}_{l}|0\rangle\right]\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}$$

$$iG_{0}(\mathbf{r},t;\mathbf{r}',t') = \langle 0|\hat{T}[\hat{\psi}_{H}(\mathbf{r},t)\hat{\psi}_{H}^{\dagger}(\mathbf{r}',t')]|0\rangle$$

$$= \sum_{l} \left[\theta(t-t')\langle 0|\hat{a}_{l}\hat{a}_{l}^{\dagger}|0\rangle - \theta(t'-t)\langle 0|\hat{a}_{l}^{\dagger}\hat{a}_{l}|0\rangle\right]\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}$$

$$= \theta(t-t')\underbrace{\sum_{l} \varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}}_{l} - \theta(t'-t)\underbrace{\sum_{l} \varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}}_{l} - \theta(t'-t)\underbrace{\sum_{l} \varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}}_{l}$$

propagation of extra particle

propagation of extra hole

$$iG_{0}(\mathbf{r},t;\mathbf{r}',t') = \langle 0|\hat{T}[\hat{\psi}_{H}(\mathbf{r},t)\hat{\psi}_{H}^{\dagger}(\mathbf{r}',t')]|0\rangle$$

$$= \sum_{l} \left[\theta(t-t')\langle 0|\hat{a}_{l}\hat{a}_{l}^{\dagger}|0\rangle - \theta(t'-t)\langle 0|\hat{a}_{l}^{\dagger}\hat{a}_{l}|0\rangle\right]\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}$$

$$= \theta(t-t')\underbrace{\sum_{l}^{\mathrm{unocc}}\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}}_{\mathrm{propagation of extra particle}} -\theta(t'-t)\underbrace{\sum_{l}^{\mathrm{occ}}\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')e^{-i\varepsilon_{l}(t-t')}}_{\mathrm{propagation of extra hole}}$$
Using the completeness relation $\sum_{l}\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}')$ we find

$$\left[i\partial_t - \hat{h}(\mathbf{r})\right]G_0(\mathbf{r}, t; \mathbf{r}', t') = \delta(t - t')\delta(\mathbf{r} - \mathbf{r}')$$

For noninteracting system $G_0(\mathbf{r}, t; \mathbf{r}', t')$ is the usual "mathematical" Green's function of the Schrödinger operator $\hat{L} = i\partial_t - \hat{h}(\mathbf{r})$

Fourier transform: $G(\mathbf{x}, \mathbf{x}', \omega) = \int_{-\infty}^{\infty} d(t - t') G(\mathbf{x}, \mathbf{x}', t - t') e^{i\omega(t - t')}$

Spectral representation of noninteracting Green function

$$G_{0}(\mathbf{r}, \mathbf{r}', \omega) = \underbrace{\sum_{l}^{\text{unocc}} \frac{\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')}{\omega - \varepsilon_{l} + i\eta}}_{\text{electron part}} + \underbrace{\sum_{l}^{\text{occ}} \frac{\varphi_{l}(\mathbf{r})\varphi_{l}^{*}(\mathbf{r}')}{\omega - \varepsilon_{l} - i\eta}}_{\text{hole part}}$$

Spectral functions (spectral densities) of particle and hole excitations:

$$A_{e}(\mathbf{r}, \mathbf{r}', \omega) = \sum_{l}^{\text{unocc}} \varphi_{l}(\mathbf{r}) \varphi_{l}^{*}(\mathbf{r}') \delta(\omega - \varepsilon_{l} + \mu)$$
$$A_{h}(\mathbf{r}, \mathbf{r}', \omega) = \sum_{l}^{\text{occ}} \varphi_{l}(\mathbf{r}) \varphi_{l}^{*}(\mathbf{r}') \delta(\omega + \varepsilon_{l} - \mu)$$

$$G_0(\mathbf{r}, \mathbf{r}', \omega) = \int_0^\infty d\omega' \left[\frac{A_e(\mathbf{r}, \mathbf{r}', \omega')}{\omega - \mu - \omega' + i\eta} + \frac{A_h(\mathbf{r}, \mathbf{r}', \omega')}{\omega - \mu + \omega' - i\eta} \right]$$

Green function of interacting many-particle system

use completeness relation $1 = \sum_{N \pm 1, k} |\Psi_k^{N \pm 1} \rangle \langle \Psi_k^{N \pm 1}| \longrightarrow$

$$iG(\mathbf{x}, t; \mathbf{x}', t') = \langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{r}, t)\hat{\psi}_H^{\dagger}(\mathbf{r}', t')] | \Psi_0^N \rangle$$

= $\theta(t - t') \sum_k g_k(\mathbf{x}) g_k^*(\mathbf{x}') e^{-i(E_k^{N+1} - E_0^N)(t - t')}$
 $-\theta(t' - t) \sum_k f_k^*(\mathbf{x}') f_k(\mathbf{x}) e^{-i(E_0^N - E_k^{N-1})(t - t')}$

with quasiparticle amplitudes

$$\begin{split} f_k(\mathbf{x}) &= \langle \Psi_k^{N-1} | \hat{\psi}(\mathbf{x}) | \Psi_0^N \rangle, \quad f_k^*(\mathbf{x}) &= \langle \Psi_0^N | \hat{\psi}^{\dagger}(\mathbf{x}) | \Psi_k^{N-1} \rangle \\ g_k(\mathbf{x}) &= \langle \Psi_0^N | \hat{\psi}(\mathbf{x}) | \Psi_k^{N+1} \rangle, \quad g_k^*(\mathbf{x}) &= \langle \Psi_k^{N+1} | \hat{\psi}^{\dagger}(\mathbf{x}) | \Psi_0^N \rangle \end{split}$$

GF: Definition and physics GF: Math properties Diagrammatics I Diagrammatics II GW Literature

Green function of interacting many-particle system

use completeness relation
$$1=\sum_{N\pm 1,k}|\Psi_k^{N\pm 1}
angle\langle\Psi_k^{N\pm 1}|\longrightarrow$$

$$iG(\mathbf{x}, t; \mathbf{x}', t') = \langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{r}, t)\hat{\psi}_H^{\dagger}(\mathbf{r}', t')] | \Psi_0^N \rangle$$

= $\theta(t - t') \sum_k g_k(\mathbf{x}) g_k^*(\mathbf{x}') e^{-i(E_k^{N+1} - E_0^N)(t - t')}$
 $-\theta(t' - t) \sum_k f_k^*(\mathbf{x}') f_k(\mathbf{x}) e^{-i(E_0^N - E_k^{N-1})(t - t')}$

with quasiparticle amplitudes

$$f_{k}(\mathbf{x}) = \langle \Psi_{k}^{N-1} | \hat{\psi}(\mathbf{x}) | \Psi_{0}^{N} \rangle, \quad f_{k}^{*}(\mathbf{x}) = \langle \Psi_{0}^{N} | \hat{\psi}^{\dagger}(\mathbf{x}) | \Psi_{k}^{N-1} \rangle$$
$$g_{k}(\mathbf{x}) = \langle \Psi_{0}^{N} | \hat{\psi}(\mathbf{x}) | \Psi_{k}^{N+1} \rangle, \quad g_{k}^{*}(\mathbf{x}) = \langle \Psi_{k}^{N+1} | \hat{\psi}^{\dagger}(\mathbf{x}) | \Psi_{0}^{N} \rangle$$

In the noninteracting limit $g_k(\mathbf{x})$ and $f_k(\mathbf{x})$ reduce to the orbitals $\varphi_k(\mathbf{x})$

$$g_k(\mathbf{x}) = \varphi_k^{\text{unocc}}(\mathbf{x}), \qquad f_k(\mathbf{x}) = \varphi_k^{\text{occ}}(\mathbf{x})$$

000000	0000000	0000000000	000000	000000000	00

Lehmann representation of Green function

$$G(\mathbf{x}, \mathbf{x}'; t - t') \xrightarrow{\text{Fourier}} G(\mathbf{x}, \mathbf{x}'; \omega)$$

Spectral (Lehmann) representation $G(\mathbf{x}, \mathbf{x}'; \omega) = \sum_{k}^{\text{part}} \frac{g_k(\mathbf{x})g_k^*(\mathbf{x}')}{\omega - (E_k^{N+1} - E_0^N) + i\eta} + \sum_{k}^{\text{hole}} \frac{f_k(\mathbf{x})f_k^*(\mathbf{x}')}{\omega - (E_0^N - E_k^{N-1}) - i\eta}$

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Lehmann re	presentatic	on of Gree	n function		

$$G(\mathbf{x}, \mathbf{x}'; t - t') \xrightarrow{\text{Fourier}} G(\mathbf{x}, \mathbf{x}'; \omega)$$

Spectral (Lehmann) representation

$$G(\mathbf{x}, \mathbf{x}'; \omega) = \sum_{k}^{\text{part}} \frac{g_k(\mathbf{x})g_k^*(\mathbf{x}')}{\omega - (E_k^{N+1} - E_0^N) + i\eta} + \sum_{k}^{\text{hole}} \frac{f_k(\mathbf{x})f_k^*(\mathbf{x}')}{\omega - (E_0^N - E_k^{N-1}) - i\eta}$$

Rewrite energy differences in the denominators:

$$E_k^{N+1} - E_0^N = (E_k^{N+1} - E_0^{N+1}) - (E_0^N - E_0^{N+1}) = \varepsilon_k^{N+1} - \mathcal{A},$$

$$E_0^N - E_k^{N-1} = -(E_k^{N-1} - E_0^{N-1}) - (E_0^{N-1} - E_0^N) = -\varepsilon_k^{N-1} - \mathcal{I}$$

Here \mathcal{A} – electron affinity, and \mathcal{I} – ionization potential

"Thermodynamic" fundamental energy gap: $E_g = I - A$ Chemical potential at $T \rightarrow 0$: $\mu = -\frac{1}{2}(I + A)$ GF: Definition and physics GF: Math properties Diagrammatics I Diagrammatics II GW Literature

Analytic structure of Green function

Spectral functions of particle and hole excitations:

$$A_e(\mathbf{r}, \mathbf{r}', \omega) = \sum_{k}^{\text{part}} g_k(\mathbf{r}) g_k^*(\mathbf{r}') \delta\left(\omega - \varepsilon_k^{N+1} - \frac{1}{2} E_g\right)$$
$$A_h(\mathbf{r}, \mathbf{r}', \omega) = \sum_{k}^{\text{hole}} f_k(\mathbf{r}) f_k^*(\mathbf{r}') \delta\left(\omega - \varepsilon_k^{N-1} - \frac{1}{2} E_g\right)$$

$$G(\mathbf{r}, \mathbf{r}', \omega) = \int_0^\infty d\omega' \left[\frac{A_e(\mathbf{r}, \mathbf{r}', \omega')}{\omega - \mu - \omega' + i\eta} + \frac{A_h(\mathbf{r}, \mathbf{r}', \omega')}{\omega - \mu + \omega' - i\eta} \right]$$

In extended systems poles merge into branch cut

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	
		0000000000		
· · · · ·				

Outline

- Green's function: Definition and Physics
- 2 Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- 4 More on diagrammatics: GW, Hedin, etc...
- 5 GW in practice

6 Literature

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Perturbation	theory for	Green fun	ictions		

Green function $G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H(\mathbf{x}',t')^{\dagger}] | \Psi_0^N \rangle$ is a very complicated object, it involves many-body ground state $| \Psi_0^N \rangle$

 \longrightarrow perturbation theory to calculate Green function:

1. split Hamitonian in two parts

$$\hat{H} = \hat{H}_0 + \hat{W} = \hat{T} + \hat{V}_{ext} + \hat{W}$$

2. treat interaction \hat{W} as perturbation

 \longrightarrow machinery of many-body perturbation theory: Wick's theorem, Gell-Mann-Low theorem, and, most importantly, Feynman diagrams

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Perturbation	theory for	Green fur	nctions		

Green function $G(\mathbf{x},t;\mathbf{x}',t') = -i\langle \Psi_0^N | \hat{T}[\hat{\psi}_H(\mathbf{x},t)\hat{\psi}_H(\mathbf{x}',t')^{\dagger}] | \Psi_0^N \rangle$ is a very complicated object, it involves many-body ground state $| \Psi_0^N \rangle$

 \longrightarrow perturbation theory to calculate Green function:

1. split Hamitonian in two parts

$$\hat{H} = \hat{H}_0 + \hat{W} = \hat{T} + \hat{V}_{ext} + \hat{W}$$

2. treat interaction \hat{W} as perturbation

 \longrightarrow machinery of many-body perturbation theory: Wick's theorem, Gell-Mann-Low theorem, and, most importantly, Feynman diagrams

On the other hand, Green function is a very intuitive object (propagator) and the structure of the perturbation theory can be easily understood from qualitative/physical arguments

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Scattering of	f nonintera	cting parti	cles by a	potential	

$\hat{h}(r) = -\frac{ abla^2}{2} + v_0(r) + v_1(r) = \hat{h}_0 + v_1$

 \longrightarrow treat additional potential $v_1(r)$ as a perturbation

$$\hat{h}(r) = -\frac{\nabla^2}{2} + v_0(r) + v_1(r) = \hat{h}_0 + v_1$$

 \longrightarrow treat additional potential $v_1(r)$ as a perturbation

I. Qualitative consideration

 $\begin{array}{l} \mbox{Integration over all intermediate coordinates} \equiv \mbox{summing up all} \\ \mbox{trajectories connecting points } (\mathbf{x},t) \mbox{ and } (\mathbf{x}',t') \end{array}$

II. Where diagrams formally come from

$$\left[\underbrace{i\partial_t - \hat{h}_0(\mathbf{x})}_{G_0^{-1}} - v_1(\mathbf{x})\right] G(\mathbf{x}, t; \mathbf{x}', t') = \delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$

II. Where diagrams formally come from

$$\left[\underbrace{i\partial_t - \hat{h}_0(\mathbf{x})}_{G_0^{-1}} - v_1(\mathbf{x})\right] G(\mathbf{x}, t; \mathbf{x}', t') = \delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$

Equivalent integral equation:

$$G(\mathbf{x}, t; \mathbf{x}', t') = G_0(\mathbf{x}, t; \mathbf{x}', t') + \int dt_1 d\mathbf{x}_1 G_0(\mathbf{x}, t; \mathbf{x}_1, t_1) v_1(\mathbf{x}_1) G(\mathbf{x}_1, t_1; \mathbf{x}', t')$$
$$[i\partial_t - \hat{h}_0 - v_1]G = I \quad \to \quad G = G_0 + G_0 v_1 G$$

Scattering of noninteracting particles by a potential II

II. Where diagrams formally come from

$$\left[\underbrace{i\partial_t - \hat{h}_0(\mathbf{x})}_{G_0^{-1}} - v_1(\mathbf{x})\right] G(\mathbf{x}, t; \mathbf{x}', t') = \delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$

Equivalent integral equation:

$$G(\mathbf{x}, t; \mathbf{x}', t') = G_0(\mathbf{x}, t; \mathbf{x}', t') + \int dt_1 d\mathbf{x}_1 G_0(\mathbf{x}, t; \mathbf{x}_1, t_1) v_1(\mathbf{x}_1) G(\mathbf{x}_1, t_1; \mathbf{x}', t')$$

$$[i\partial_t - \hat{h}_0 - v_1]G = I \quad \rightarrow \quad G = G_0 + G_0 v_1 G$$

$$G = G_0 + G_0 v_1 G_0 + G_0 v_1 G_0 v_1 G_0 + G_0 v_1 G_0 v_1 G_0 v_1 G_0 + \dots$$

$$x, t \quad x', t' = v_j(x) \qquad x, t \quad x', t' = G_0(x, t; x', t')$$

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Feynman d	iagrams in	interacting	system		

Feynman diagrams: graphical representation of perturbation series elements of diagrams:

x', t' \longrightarrow x, t Green function G_0 of noninteracting system

x', t' \longrightarrow x, t Green function G of interacting system

x, t Coulomb interaction $v_{\rm C}(\mathbf{x},t;\mathbf{x}',t') = \frac{\delta(t-t')}{|\mathbf{r}-\mathbf{r}'|}$

Perturbation series for Green function

Perturbation series for $G(\mathbf{x}, t; \mathbf{x}', t')$: sum of all <u>connected</u> diagrams

to each elementary vertex $\xrightarrow{x,t \leq x}$ we assign a space-time point (\mathbf{x},t) and integrate over coordinates of all intermediate points

- Mathematically each diagram is a multidimensional integral
- Physically it corresponds to a particular propagation "path"

Feynman diagrams for Fourier transformed G

In equilibrium all functions depend only on time difference:

$$G(\mathbf{x}, t; \mathbf{x}', t') = G(\mathbf{x}, \mathbf{x}', t - t'), \ v_{\rm C}(\mathbf{x}, t; \mathbf{x}', t') = \delta(t - t')v_{\rm C}(|\mathbf{x} - \mathbf{x}'|)$$

 \longrightarrow Fourier transform in time: $G(\mathbf{x}, \mathbf{x}', \omega)$, $v_{C}(|\mathbf{x} - \mathbf{x}'|)$

Elements of Fourier transformed diagrams:

noninteracting Green function $G_0(\mathbf{x},\mathbf{x}',\omega)$

$$x \xrightarrow{\omega} x'$$

Green function $G(\mathbf{x},\mathbf{x}',\omega)$ of interacting system

Coulomb interaction
$$v_{\rm C}(\mathbf{x}, \mathbf{x}', \omega) = \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

• at each vertex $w_{\chi}^{\xi^{c}}$ frequency is conserved

integral over all intermediate coordinates and frequencies

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

 $\Sigma(\mathbf{x},\mathbf{x}',\omega)$ – sum of all 1-particle irreducible (1PI) diagrams

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

 $\Sigma(\mathbf{x},\mathbf{x}',\omega)$ – sum of all 1-particle irreducible (1PI) diagrams

Dyson equation:

$$\Rightarrow$$
 = \rightarrow + \rightarrow Σ

 $G(\mathbf{x}, \mathbf{x}', \omega) = G_0(\mathbf{x}, \mathbf{x}', \omega) + \int d\mathbf{x}_1 d\mathbf{x}_2 G_0(\mathbf{x}, \mathbf{x}_1, \omega) \Sigma(\mathbf{x}_1, \mathbf{x}_2, \omega) G(\mathbf{x}_2, \mathbf{x}', \omega)$

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature
D		1			

Dyson equation and quasiparticle energies

$$G(\mathbf{x}, \mathbf{x}', \omega) = G_0(\mathbf{x}, \mathbf{x}', \omega) + \int d\mathbf{x}_1 d\mathbf{x}_2 G_0(\mathbf{x}, \mathbf{x}_1, \omega) \Sigma(\mathbf{x}_1, \mathbf{x}_2, \omega) G(\mathbf{x}_2, \mathbf{x}', \omega)$$

Energies ε_n of 1-particle excitations: poles of $G(\omega)$ or, equivalently, zeros of $G^{-1}(\omega) = [G_0^{-1}(\omega) - \Sigma(\omega)]^{-1}$

$$[\underbrace{\varepsilon_n - \hat{h}_0(\mathbf{x})}_{G_0^{-1}(\varepsilon_n)}]\phi_n(\mathbf{x}) - \int d\mathbf{x}' \Sigma(\mathbf{x}, \mathbf{x}', \varepsilon_n)\phi_n(\mathbf{x}') = 0$$

 $\Sigma(\mathbf{x},\mathbf{x}',\omega)$ – interaction correction to effective 1-particle Hamiltonian

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
D		and the second set of a			

Dyson equation and quasiparticle energies

$$G(\mathbf{x}, \mathbf{x}', \omega) = G_0(\mathbf{x}, \mathbf{x}', \omega) + \int d\mathbf{x}_1 d\mathbf{x}_2 G_0(\mathbf{x}, \mathbf{x}_1, \omega) \Sigma(\mathbf{x}_1, \mathbf{x}_2, \omega) G(\mathbf{x}_2, \mathbf{x}', \omega)$$

Energies ε_n of 1-particle excitations: poles of $G(\omega)$ or, equivalently, zeros of $G^{-1}(\omega) = [G_0^{-1}(\omega) - \Sigma(\omega)]^{-1}$

$$\underbrace{[\varepsilon_n - \hat{h}_0(\mathbf{x})]}_{G_0^{-1}(\varepsilon_n)} \phi_n(\mathbf{x}) - \int d\mathbf{x}' \Sigma(\mathbf{x}, \mathbf{x}', \varepsilon_n) \phi_n(\mathbf{x}') = 0$$

 $\Sigma(\mathbf{x},\mathbf{x}',\omega)$ – interaction correction to effective 1-particle Hamiltonian

Approximation strategies

- Approximate $\Sigma(\omega)$ (e.g., by truncating diagrammatic series)
- Solve Dyson equation for G(w)

By keeping a few diagrams for Σ we generate infinite series for $G \longrightarrow$ "partial summation" – most useful diagrammatic trick

Skeletons and dressed skeletons

Skeleton diagram: self-energy diagram which does contain no other self-energy insertions except itself

Dressed skeleton: replace all G_0 -lines in a skeleton by G-lines \longrightarrow Self energy $\Sigma(\omega)$: sum of all dressed skeleton diagrams

$$(\Sigma) = \underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} + \underbrace{\begin{array}{c} \\ \\ \end{array}} + \underbrace{\begin{array}{c} \\ \\ \\ \end{array}} + \underbrace{\begin{array}{c} \\ \end{array}} + \underbrace{\end{array}} + \underbrace{\end{array}} + \underbrace{\begin{array}{c} \\ \end{array}} + \underbrace{\begin{array}{c} \\ \end{array}} + \underbrace{\end{array}} + \underbrace{\end{array} + \underbrace{\end{array}} + \underbrace{} + \underbrace{\\} + \underbrace{} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\ + \underbrace{} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\ + \underbrace{\\} + \underbrace{\\} + \underbrace{\\\\ + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\\\ + \underbrace{\\} + \underbrace{\\} + \underbrace{\\} + \underbrace{\\\\ + \underbrace{\\} + \underbrace{\\} + \underbrace{\\ + \underbrace{\\} + \underbrace{\\} + \underbrace{\\\\ + \underbrace{\\}$$

 $\longrightarrow \Sigma$ becomes functional of G: $\Sigma = \Sigma[G]$ (to be approximated)

Hartree-Fock approximation

First order skeleton diagrams for $\Sigma \longrightarrow \mathsf{Hartree}\text{-}\mathsf{Fock}$

 $\Sigma_{HF}(\mathbf{r},\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}')v_H(\mathbf{r}) + \Sigma_x(\mathbf{r},\mathbf{r}')$ is frequency independent

$$v_H(\mathbf{r}) = \int d\mathbf{r}' v_C(\mathbf{r} - \mathbf{r}') n(\mathbf{r}') = \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$
 – Hartree potential

second term $\Sigma_x(\mathbf{r},\mathbf{r}')$ – nonlocal Fock exchange potential

HF-Dyson equation is solved by the HF Green function G_{HF} :

$$G_{HF}(\mathbf{r}, \mathbf{r}', \omega) = \sum_{l}^{\text{unocc}} \frac{\varphi_l(\mathbf{r})\varphi_l^*(\mathbf{r}')}{\omega - \varepsilon_l + i\eta} + \sum_{l}^{\text{occ}} \frac{\varphi_l(\mathbf{r})\varphi_l^*(\mathbf{r}')}{\omega - \varepsilon_l - i\eta}$$

where $\varphi_l(\mathbf{r})$ and $\varepsilon_l - \mathsf{HF}$ orbitals and energies

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	
			00000	

Outline

- Green's function: Definition and Physics
- Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- More on diagrammatics: GW, Hedin, etc...
- 5 GW in practice

6 Literature

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Approximat	ions hevor	nd Hartree	-Fock		

I. Simplest ω -dependent Σ : 2nd-order Born approximation

$$\Sigma$$
 = ξ + ξ + ξ

Strictly valid for dilute gases with short-range interaction

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Approximati	ons beyond	d Hartree-	Fock		

I. Simplest ω -dependent Σ : 2nd-order Born approximation

Strictly valid for dilute gases with short-range interaction

II. Dynamically screened interaction and GW approximation

24

$$\to \Sigma = GW, \quad W = v_{\rm C} + v_{\rm C} GGW$$

 $GW \equiv$ "dynamically screened exchange": Interaction is screened by virtual e-h pairs (series of e-h bubbles) Screening is extremely important in extended Coulomb systems like plasmas and solids (more on practical GW comes soon).

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II		
000000	0000000	0000000000	000000	000000000	00

Vertex insertions

Diagrams missing in GW: interaction lines in the "corners"

Vertex insertion

(part of a) diagram with one external incoming and one outgoing G_0 -line, and one external interaction line

Only irreducible vertex insertions are missing in GW approximation!

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II		
000000	0000000	0000000000	000000	000000000	

Hedin's equations (exact!)

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II		
000000	0000000	0000000000	000000	000000000	00

Hedin's equations (exact!)

 $\gamma = \frac{\delta \Sigma}{\delta G}$ – effective irreducible electron-hole interaction

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	
			000000	

GW from Hedin's equations

Full system of Hedin's equations

 $G = G_H + G_H \Sigma G$ $\Sigma = GW\Gamma$ $W = v_C + v_C \Pi W$ $\Pi = GG\Gamma$ $\Gamma = 1 + \frac{\delta \Sigma}{\delta G} GG\Gamma$

Hedin's equations can be "solved" iteratively by setting $\gamma = \frac{\delta \Sigma}{\delta G} = 0$ on the first step of iterations. On this step we recover GW approximation

Initial step of Hedin's iterations - GW approximation

 $\Gamma = 1 \longrightarrow \Sigma = GW, \quad \Pi = GG$

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 000000000	Literature 00
Concluding	remarks				

Beyond the scope of this lecture:

- Finite temperature (Matsubara) Green functions
- Nonequilibrium (Keldysh) Green functions

Both in Matsubara and in Keldysh formalisms the structure of diagrammatic series remains the same.

All changes can be attributed to time integration – extension to a complex "time" plane and integration over different time-contours.

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW	
				00000000	
~					

Outline

- Green's function: Definition and Physics
- Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- 4 More on diagrammatics: GW, Hedin, etc...

5 GW in practice

6 Literature

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 0●0000000	Literature 00
Dyson equa	tion				

$$[\omega - \hat{h}_0(\mathbf{x}_1)]G(\mathbf{x}_1, \mathbf{x}_2, \omega) - \int d\mathbf{x}_3 \Sigma(\mathbf{x}_1, \mathbf{x}_3, \omega)G(\mathbf{x}_3, \mathbf{x}_2, \omega) = \delta(\mathbf{x}_1 - \mathbf{x}_2)$$

Analytic continuation of G: Biorthonormal representation

$$G(\mathbf{x}_1, \mathbf{x}_2, z) = \sum_{\lambda} \frac{\Phi_{\lambda}(\mathbf{x}_1, z) \tilde{\Phi}_{\lambda}(\mathbf{x}_2, z)}{z - E_{\lambda}(z)}$$

$$\begin{split} \hat{h}_{0}(\mathbf{x}_{1})\Phi_{\lambda}(\mathbf{x}_{1},z) &+ \int d\mathbf{x}_{2}\Sigma(\mathbf{x}_{1},\mathbf{x}_{2},z)\Phi_{\lambda}(\mathbf{x}_{2},z) = E_{\lambda}(z)\Phi_{\lambda}(\mathbf{x}_{1},z) \\ \hat{h}_{0}(\mathbf{x}_{1})\tilde{\Phi}_{\lambda}(\mathbf{x}_{1},z) &+ \int d\mathbf{x}_{2}\tilde{\Phi}_{\lambda}(\mathbf{x}_{2},z)\Sigma(\mathbf{x}_{2},\mathbf{x}_{1},z) = E_{\lambda}(z)\tilde{\Phi}_{\lambda}(\mathbf{x}_{1},z) \\ &\int d\mathbf{x}\tilde{\Phi}_{\lambda}(\mathbf{x},z)\Phi_{\lambda'}(\mathbf{x},z) = \delta_{\lambda\lambda'} \end{split}$$

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW ○●○○○○○○○	Literature 00
Dyson equ	ation				

Complex poles of $G \mapsto \text{Quasiparticles}$ $\varepsilon_n - E_\lambda(\varepsilon_n) = 0 \implies \varepsilon_n = E_\lambda(\varepsilon_n)$ $\phi_n(\mathbf{x}) = \Phi_\lambda(\mathbf{x}, \varepsilon_n)$

Analytic continuation of G: Biorthonormal representation

$$G(\mathbf{x}_1, \mathbf{x}_2, z) = \sum_{\lambda} \frac{\Phi_{\lambda}(\mathbf{x}_1, z) \tilde{\Phi}_{\lambda}(\mathbf{x}_2, z)}{z - E_{\lambda}(z)}$$

$$\begin{split} \hat{h}_{0}(\mathbf{x}_{1})\Phi_{\lambda}(\mathbf{x}_{1},z) &+ \int d\mathbf{x}_{2}\Sigma(\mathbf{x}_{1},\mathbf{x}_{2},z)\Phi_{\lambda}(\mathbf{x}_{2},z) = E_{\lambda}(z)\Phi_{\lambda}(\mathbf{x}_{1},z) \\ \hat{h}_{0}(\mathbf{x}_{1})\tilde{\Phi}_{\lambda}(\mathbf{x}_{1},z) &+ \int d\mathbf{x}_{2}\tilde{\Phi}_{\lambda}(\mathbf{x}_{2},z)\Sigma(\mathbf{x}_{2},\mathbf{x}_{1},z) = E_{\lambda}(z)\tilde{\Phi}_{\lambda}(\mathbf{x}_{1},z) \\ &\int d\mathbf{x}\tilde{\Phi}_{\lambda}(\mathbf{x},z)\Phi_{\lambda'}(\mathbf{x},z) = \delta_{\lambda\lambda'} \end{split}$$

		000000000000000000000000000000000000000		00000000	00
C W · Dort	urbative O	Doorrooti	200		

G_0W_0 : Perturbative QP corrections

Standard perturbative G_0W_0 corrections to the KS-DFT spectrum

$$\begin{split} \hat{h}_0(\mathbf{x})\varphi_i(\mathbf{x}) + V_{\mathrm{xc}}(\mathbf{x})\varphi_i(\mathbf{x}) &= \varepsilon_n\varphi_i(\mathbf{x})\\ \hat{h}_0(\mathbf{x})\phi_i(\mathbf{x}) + \int d\mathbf{x}' \Sigma(\mathbf{x}, \mathbf{x}', \omega = E_i)\phi_i(\mathbf{x}') &= E_i\phi_i(\mathbf{x}) \end{split}$$

First order perturbative correction with $\boldsymbol{\Sigma} = \boldsymbol{G}\boldsymbol{W}$

$$E_i - \varepsilon_i = \langle \varphi_i | \Sigma(E_i) - V_{\rm xc} | \varphi_i \rangle$$

$$\Sigma(E_i) = \Sigma(\varepsilon_i) + (E_i - \varepsilon_i)\partial_{\omega}\Sigma(\omega)|_{\varepsilon_i}$$
$$E_i = \varepsilon_i + Z_i \langle \varphi_i | \Sigma(\varepsilon_i) - V_{\rm xc} | \varphi_i \rangle$$
$$Z_i = (1 - \langle \varphi_i | \partial_{\omega}\Sigma(\omega) |_{\varepsilon_i} | \varphi_i \rangle)^{-1}$$

Hybertsen and Louie, PRB **34**, 5390 (1986) Godby, Schlüter, and Sham, PRB **37**, 10159 (1988)

M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006)

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 0000●0000	Literature 00
	_				

G_0W_0 results

Great improvement over LDA.

Problem: Dependence on the starting point (LDA)

Quality of the results is tied to the quality of LDA wave functions

perturbative $G_0 W_0$

- works reasonably well for *sp* electron systems
- questionable for *df* systems and whenever LDA is bad

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW	
				000000000	

Beyond G_0W_0

Alternative starting points and/or self-consistent QP schemes

- Looking for a better starting point:
 - Kohn-Sham with other functionals (EXX, LDA+U, ...)
 - hybrid functional (HSE06, ...)

• Effective quasiparticle Hamiltonians:

- quasiparticle self-consistent GW (QPscGW) Faleev 2004
- Hedin's COHSEX approximation Bruneval 2005

 GF: Math properties
 Diagrammatics I
 Diagrammatics II
 GW
 Literature

 D00000
 0000000
 000000
 0000000
 00000000
 00

 D00000
 0000000
 000000
 0000000
 00
 00

Beyond G_0W_0 : QPscGW scheme

Retain only hermitian part of GW self-energy and iterate QP

$$\langle \phi_i | \Sigma | \phi_j \rangle \mapsto \frac{1}{2} \mathsf{Re}[\langle \phi_i | \Sigma(E_i) | \phi_j \rangle + \langle \phi_i | \Sigma(E_j) | \phi_j \rangle]$$

S. Faleev, M. van Schilfgaarde, and T. Kotani, PRL **93**, 126406 (2004) M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL **96**, 226402 (2006)

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	GW 0000000●0	Literature 00
				10 C	

Beyond LDA+ G_0W_0 : COHSEX approximation

GW self-energy with $G(\omega) = \sum_i \frac{|\phi_i\rangle\langle\phi_i|}{\omega - E_i + i\eta \cdot \text{sgn}(\omega)}$

 $\Sigma = \Sigma_1 + \Sigma_2$: contributions from poles of $G(\omega)$ or $W_p(\omega) = W(\omega) - v$

$$\Sigma_1(\mathbf{x}_1, \mathbf{x}_2, \omega) = -\sum_i^{\text{occ}} \phi_i(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) W(\mathbf{x}_1, \mathbf{x}_2, \omega - E_i)$$

$$\Sigma_2(\mathbf{x}_1, \mathbf{x}_2, \omega) = -\sum_i \phi_i(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) \int_0^\infty \frac{d\omega'}{\pi} \frac{\operatorname{Im} W_p(\mathbf{x}_1, \mathbf{x}_2, \omega')}{\omega - E_i - \omega'}$$

COHSEX approximation: set $\omega - E_i = 0$

$$\Sigma_{\text{SEX}}(\mathbf{x}_1, \mathbf{x}_2) = -\sum_{i}^{\text{occ}} \phi_i(\mathbf{x}_1) \phi_i^*(\mathbf{x}_2) W(\mathbf{x}_1, \mathbf{x}_2, \omega = 0)$$

$$\Sigma_{\text{COH}}(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2}\delta(\mathbf{x}_1 - \mathbf{x}_2)W_p(\mathbf{x}_1, \mathbf{x}_2, \omega = 0)$$

COHSEX+G0W0 - F. Bruneval, N. Vast, and L. Reining, PRB 74, 045102 (2006)

GF: Math properties

00000000

GW

One-particle GF and physics

Physical information contained in $G(\mathbf{x}_1, \mathbf{x}_2, \omega)$

- $G \mapsto \rho(\mathbf{x}_1, \mathbf{x}_2) \mapsto$ ground state single-particle observables
- Ground state total energy via the Galitski-Migdal formula
- Poles of $G(\omega) \mapsto$ spectrum of single-particle excitations \mapsto direct/inverse photoemission, fundamental gap $E_q = \mathcal{I} - \mathcal{A}$

GF: Math properties

00000000

GW

One-particle GF and physics

Physical information contained in $\overline{G(\mathbf{x}_1, \mathbf{x}_2, \omega)}$

- $G \mapsto \rho(\mathbf{x}_1, \mathbf{x}_2) \mapsto$ ground state single-particle observables
- Ground state total energy via the Galitski-Migdal formula
- Poles of $G(\omega) \mapsto$ spectrum of single-particle excitations \mapsto direct/inverse photoemission, fundamental gap $E_a = \mathcal{I} - \mathcal{A}$

Importantly: the fundamental gap \neq the optical gap

To describe optical experiments we need more!

Two-particles Green function and the Bethe-Salpeter equation (comes in the next lecture)

GF: Definition and physics	GF: Math properties	Diagrammatics I	Diagrammatics II	Literature
				0
- ···				

Outline

- Green's function: Definition and Physics
- Green's function: Some Mathematical Properties
- Basics of MBPT: Introduction to Feynman diagrams
- 4 More on diagrammatics: GW, Hedin, etc...

5 GW in practice

1. March 1. Constant	 	and a set of the	
			00
	Diagrammatics I	Diagrammatics II	Literature

Literature: endless number of textbooks

Classics from 1960s - 1970s

- A.A. Abrikosov, L.P. Gor'kov, I.Ye. Dzyaloshinskii, Quantum field theoretical methods in statistical physics (Pergamon Press, 1965)
- A.L. Fetter, J.D. Walecka, *Quantum Theory of Many-Particle Systems* (McGraw-Hill, 1971) and later edition by Dover press
- R.D. Mattuck, A guide to Feynman diagrams in the many-body problem (McGraw-Hill, 1967), extended 2nd edition (1992)

More recent books with additional/new material

- J.W. Negele, H. Orland, *Quantum many-particle systems* (Westview Press, 1988, 1998)
- A.M. Zagoskin, *Quantum Theory of Many-Body Systems* (Springer, 1998)
- G. Stefanucci, R. van Leeuwen, *Nonequilibrium Many Body Theory of Quantum Systems: A Modern Introduction* (Cambridge University Press, 2013)
- R.M. Martin, L. Reining, D.M. Ceperley, *Interacting Electrons. Theory and Computational Approaches* (Cambridge University Press, 2016)