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e Green’s function: Definition and Physics



GF: Definition and physics
000000

Quantum many-body problem

Main object: System of many () interacting electrons

2

H=T 4V + W = /dx i (x) (_% +ert(r)> h(x)

e [ 60016 )9

@ x = (r,0): space-spin coordinate



GF: Definition and physics
000000

Quantum many-body problem

Main object: System of many () interacting electrons

A 2 ?
=4 Vet W = [ 3109 (=5 ven)) 09
e i 316051 o))

r— v

@ x = (r,0): space-spin coordinate
@ 4T (x), ¢(x): electron creation and annihilation operators



GF: Definition and physics
000000

Quantum many-body problem

Main object: System of many () interacting electrons

2
=4 Vet W = [ 3109 (=5 ven)) 09

2
+1/dxdx' ﬁT(x)@ZT(X’); b(x")ih(x)
2 |r — 1’|
@ x = (r,0): space-spin coordinate
@ 4T (x), ¢(x): electron creation and annihilation operators

HTY) = EY|0Y),

|wd') is the ground state (GS) wave function

Equilibrium (GS at T' = 0) MBPT is aimed at studying ground state
properties and some simple/typical weakly exited states }
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Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature

G, t;x', 1) = iU | Tlbr (x, )P (', )] Tg))

@ |U}): N-particle ground state of A: H|¥)) = EN|w))
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Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature

G, t;x', 1) = iU | Tlbr (x, )P (', )] Tg))

@ |U}): N-particle ground state of A: H|¥)) = EN|w))
® Uy(x,t) = eftj(x)e=iAt and i, (x,t) = et (x)e 1 H1:
electron field operators in Heisenberg picture



GF: Definition and physics
[e]e] Yolole}

Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature

G, t;x', 1) = iU | Tlbr (x, )P (', )] Tg))

@ |U}): N-particle ground state of A: H|¥)) = EN|w))
® Yy (x,t) = eftp(x)e "t and P (x,1) = el (x)e 1
electron field operators in Heisenberg picture
@ T': time-ordering operator
- . D (x, )P (x ), >t
Tlu(x, t)w}{(xlv t/)] = St i ,
P (x,t) x,t), t<t

m(
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Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature

G(x, ;%' 1) = —i(UY [T [hw (x, )l (x', ¢)] |

@ |U}): N-particle ground state of A: H|¥)) = EN|w))

® Uy(x,t) = eftj(x)e=iAt and i, (x,t) = et (x)e 1 H1:
electron field operators in Heisenberg picture

@ T': time-ordering operator
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Physical meaning of Green function: Propagator

iG(t, 1) = 0(t — ') (b (x, )y (', 1)) — O —

[Taken from Ouantum Theory of Many Body Systems by
A. M. Zagoskin, Springer 1998]

£ (g (st ) (x, )

t>t:

Propagation of a particle
added to the system

t<t

Propagation of a hole after
one particle is removed
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Spectral information contained in Green function

Time evolution/propagation in QM is described by em it —
_r
w—€e +iy

Poles of G(w) should correspond to the energies of particle/hole
excitations propagating through the system.

On experimental side G(w) is expected to be related to the spectra of
direct/inverse photoemission (experimental electron removal/addition)

\ hv
hv c

G(t) ~ eTiettemnt 20 Glw)

S~ ~—
Vv /\
\Y

direct photoemission inverse photoemission
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Observables from the Green function

Green function is directly related to the 1-particle density matrix

p(x,x") = (U |ihT (%) (x)| W) = —i hrt)f_l|r Gx, t;x ) = —iG(x,t;x',tT)

In general from 1-particle Green function we can extract:
@ ground-state expectation values of any single-particle operator

0 = [ dxdx’ ' (x)o(x,x i) (x')
e.g., the ground state density n(r) = —i>__G(ro,t;ro,th)

@ ground-state energy of the system

Galitski-Migdal formula

. 2
El = —%/dx lim lim (2% — V_> G(ro,t;x'o,t")

t/—tt r’'—=r 2

@ spectrum of system: direct/inverse photoemission
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@ Green's function: Some Mathematical Properties
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Green function of noninteracting system |

F : ; Y N v?
or noninteracting system H = ., h(r;) = 35— | =5 + Veat(r;)

Particles occupy single-particle states ¢;(r) with energies ; up to Er

h(r)ei(r) = eipi(r)

Examples:
@ Homogeneous system [v..:(r) = 0]: plane wave states | = k
_ 1 _ikr
pi(r) = e

@ Periodic system [vm(r + R) = veqt(r)]: Bloch states | = n, k
i(r) = S tin (r)e’”
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Green function of noninteracting system |

F : ; Y N v?
or noninteracting system H = ., h(r;) = 35— | =5 + Veat(r;)

Particles occupy single-particle states ¢;(r) with energies ; up to Er

ﬁ(r)w(f) = epi(r)
Examples:
@ Homogeneous system [v..:(r) = 0]: plane wave states | = k
801(1') — ﬁeikr
@ Periodic system [ve,:(r + R) = veq(r)]: Bloch states | = n, k
oi(r) = o txa (r)e’™
Time dependence of field operators is very simple (no interactions!):

Z[;H(r,t) _ Ze_iglt@l(r)&l7 Zezezt *

l

{&IT, ay} = oy
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Green function of noninteracting system Il

iGo(r, t;x',1') = (O (s (x, ) (x', )] 0)
= > |6t — )(0laa] |0) — 6t ) 0lafal0) | i ()i (e

l
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Green function of noninteracting system Il

iGo(r, t;', ') = (0T [ (x, )b}y (¢, )] 0)

= > |00~ )(0lanaf 0) — Ot — 1)(0laa 0} |1 (x) g ()1
l

unocc occ

=0(t—t") > (@) (e T 0t —1) Y pi(x) ey (x)e )
l

l

propagation of extra particle propagation of extra hole
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Green function of noninteracting system Il

iGo(r, t;', ') = (0T [ (x, )b}y (¢, )] 0)

= 7 [ote — #)00anaf 10) 62 — 1) 0lafanl0)] u(x)f (1)< ¢
l

unocc occ

=0(t—t") > (@) (e T 0t —1) Y pi(x) ey (x)e )
l

l

propagation of extra particle propagation of extra hole

Using the completeness relation ), ;(r)y; (r') = 6(r — r’) we find

[iat - ﬁ(r)} Golr, t;x/,¢') = 8(t — t')o(r — 1)

For noninteracting system Gy (r, ¢;1’,¢') is the usual “mathematical”
Green'’s function of the Schrédinger operator L = i9; — h(r) J
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Green function of noninteracting system IlI

Fourier transform: G(x,x',w) = [ d(t — t')G(x,x/,t — t')e™ (1)

Spectral representation of noninteracting Green function

unocc occ
<Pl SOZ 901
I‘ I‘ UJ E E
= & + zn ; =&y = 177
electron part hole part

Spectral functions (spectral densities) of particle and hole excitations:
unocc
A, w) = Y @i(r)ef (2)d(w — e+ p)
l
occ

(r,v',w) thl Swe —p)

eo A VA A i,
Go(r,r’,w):/ dw’{ e(rar,/w). I h(r,r,lw). } J
0 w—p—w+1m  w—ptw —n
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Green function of interacting many-particle system

use completeness relation 1 =37, [T =) (WY *! | —

iG(x, 1%, ) = (N [T [p (v, )L ()] W)

=0t — )Y gr(x)gi(x)e "B B
k

—0(t' — )Y f7 (%) fi()e B B

k

with quasiparticle amplitudes
fe(e) = (WD), fi(x) = (T[T ()| )

ge(x) = (L)), gi(x) = (T ()|
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Green function of interacting many-particle system

use completeness relation 1 =37, [T =) (WY *! | —

iG(x, 1%, ) = (N [T [p (v, )L ()] W)

=0t — )Y gr(x)gi(x)e "B B
k

—0(t' — )Y f7 (%) fi()e B B

k

with quasiparticle amplitudes
fe(e) = (WD), fi(x) = (T[T ()| )

gk(x) = (T[T, gi(x) = (U (%) wg)
In the noninteracting limit g;(x) and fi(x) reduce to the orbitals oy (x)

gr(¥) = @™ x),  fe(x) = @R (x)
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Lehmann representation of Green function

G(x,x';t—1t') Lourier, G(x,x";w)

Spectral (Lehmann) representation

hole

gr(x) g5 (x")
_l’_
w— (BYT - EY) +in 2

part

G(x,x;w) = Z

k

Je() fr (X))
w— (B —EY™") —in

k
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Lehmann representation of Green function

G(x,x;t—1t) Lourler, G(x,x';w)

Spectral (Lehmann) representation

hole

gr(x) g5 (x")
_l’_
w— (BYT - EY) +in 2

part

G(x,x;w) = Z

k

fe(x) fr(x)
w— (B —EY™") —in

k

Rewrite energy differences in the denominators:
Y — BY = (% - B - (B - By ) =l - 4,

By - BY ™ = (B - B~ (B — BY) =< T

Here A — electron affinity, and Z — ionization potential

“Thermodynamic” fundamental energy gap: £, =7 — A
Chemical potential at 7 — 0: p = —1(Z + A) J
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Analytic structure of Green function

Spectral functions of particle and hole excitations:

part
N+1 1
(r,r',w) ng r)gp(r w—ek Eg)
hole
N—-1 1
(r,r',w) E fe(x) fi(r w— &y iEg)

w—p—w 4+ w—p+w —in

(eoe] / / / !
G(I‘,I’l,w)z/ dw/[ AE(raraw). + Ah(r,r,w) :| J
0

7! (hole excitations) A

e XOOOOOKIXXXKIXXEXKK K :
t

T M ””xxxxxxxxxxxxxxxx

(particle e\cfrmwm;

Re(m)

In extended systems poles merge into branch cut
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Q Basics of MBPT: Introduction to Feynman diagrams
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Perturbation theory for Green functions

Green function G(x, t;x', ') = —i(UY | T[r (x, ) (x',1)1]|0) is a
very complicated object, it involves many-body ground state |¥))

— perturbation theory to calculate Green function:

1. split Hamitonian in two parts

H=Hy+W=T4Vs =+ W J

2. treat interaction W as perturbation

— machinery of many-body perturbation theory: Wick’s theorem,
Gell-Mann-Low theorem, and, most importantly, Feynman diagrams
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Perturbation theory for Green functions

Green function G(x, t;x', ') = —i(UY | T[r (x, ) (x',1)1]|0) is a
very complicated object, it involves many-body ground state |¥))

— perturbation theory to calculate Green function:

1. split Hamitonian in two parts

H=Hy+W=T4Vs =+ W J

2. treat interaction W as perturbation

— machinery of many-body perturbation theory: Wick’s theorem,
Gell-Mann-Low theorem, and, most importantly, Feynman diagrams

On the other hand, Green function is a very intuitive object (propaga-
tor) and the structure of the perturbation theory can be easily under-
stood from qualitative/physical arguments
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Scattering of noninteracting particles by a potential |

fAL(r) = —%2 +vo(r) +vi(r) = ho + v1
— treat additional potential v, () as a perturbation
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Scattering of noninteracting particles by a potential |

fAL(r) = —%2 +vo(r) +vi(r) = ho + v1
— treat additional potential v, () as a perturbation

I. Qualitative consideration
./
— free propagation

Y,
A — scattering event

Xt ,
———— — full propagation



Diagrammatics |
0000000000

Scattering of noninteracting particles by a potential |

fAL(r) = —%2 +vo(r) +vi(r) = ho + v1
— treat additional potential v, () as a perturbation

I. Qualitative consideration
15
— free propagation

X,
A — scattering event

Xt ,
———— — full propagation

o o o0
| I |
Xtox't' oxt o x\oxt Uoxi XU U x'yp
e + 1 + 1 1
Xl X0, X1,

Integration over all intermediate coordinates = summing up all
trajectories connecting points (x,t) and (x',t')
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Scattering of noninteracting particles by a potential Il

Il. Where diagrams formally come from
[0y — ho(x) —v1(x)]G(x, t;x/,t') = 6(t — ') (x — X)
———

Gyt
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Scattering of noninteracting particles by a potential Il

Il. Where diagrams formally come from
[0y — ho(x) —v1(x)]G(x, t;x/,t') = 6(t — ') (x — X)
———
Gyt

Equivalent integral equation:
G(x, t;x',t") = GO(X,t;X/,t/)JF/ dt1dx1Go(x, t;x1,t1)v1(x1)G(x1, t1; %, 1)

[iat — ilo — Ul]G =1 - G = GO + Go’UlG
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Scattering of noninteracting particles by a potential Il

Il. Where diagrams formally come from
[0y — ho(x) —v1(x)]G(x, t;x/,t') = 6(t — ') (x — X)
———
Gyt

Equivalent integral equation:
G(x, t;x',t") = GO(X,t;X/,t/)JF/ dt1dx1Go(x, t;x1,t1)v1(x1)G(x1, t1; %, 1)

[iat — ilo — Ul]G =1 - G = GO + GOU1G
G = Go + Gov1Go + Gov1Gov1 Go + Gov1 Gov1 Gov1 Go + . ...

! '

| -xy[ -xv[’ 1ot
x,)l/\ = v](x) = Go(x,t;x,t)
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Feynman diagrams in interacting system

Feynman diagrams: graphical representation of perturbation series
elements of diagrams:

.t — » xt Green function G of noninteracting system

.t ——— xt Green function G of interacting system

*"M"‘ Coulomb interaction ve (x, t; x, ') = ﬁi:t//\)
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Perturbation series for Green function

Perturbation series for G(x,t;x’,t'): sum of all connected diagrams

NP

to each elementary vertex v}é\ we assign a space-time point (x, t)
and integrate over coordinates of all intermediate points

@ Mathematically each diagram is a multidimensional integral
@ Physically it corresponds to a particular propagation “path”
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Feynman diagrams for Fourier transformed G

In equilibrium all functions depend only on time difference:
Gx,t;x,t') = Gx,x,t —t'), va(x, t;x/',t") = §(t — t')vc(|x — X'|)

— Fourier transform in time: G(x,x’,w), vc(|x —x/|)
Elements of Fourier transformed diagrams:

Y ————%" noninteracting Green function Gy (x,x’,w)

w / . . .
X=—==——X Green function G(x,x’,w) of interacting system

w-€ w'+e . . , 1
XMX' Coulomb interaction ve (x, x',w) = o
0w € o

&
@ ateach vertex 7x frequency is conserved

@ integral over all intermediate coordinates and frequencies
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Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

R R i
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Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

— - O + O ...
- - 2 PR +%+§% +...

¥(x,x’,w) —sum of all 1-particle irreducible (1PI) diagrams
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Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

— - O + O ...
- - 2 PR +%+§% +...

¥(x,x’,w) —sum of all 1-particle irreducible (1PI) diagrams

Dyson equation:

===—>—+——@==

G(x,x',w) = Go(x,x’,w)—i—/ dx1dx2Go(x,x1,w) S (X1, X2, w)G(x2, X, w)
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Dyson equation and quasiparticle energies

G(x,x',w) = Go(x,x',w)—l—/ dx1dxoGo(x, %1, w) N (X1, X2, w)G (%2, X", W)

Energies ¢,, of 1-particle excitations:
poles of G(w) or, equivalently, zeros of G~ (w) = [Gy* (w) — B(w)]~?

[en — ho(X)]pn(x) — / dx'S(x, %, ep)n(x') =0
N———’
Ggl(an)

¥ (x,x’,w) — interaction correction to effective 1-particle Hamiltonian
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Dyson equation and quasiparticle energies

G(x,x',w) = Go(x,x',w)—l—/ dx1dxoGo(x, %1, w) N (X1, X2, w)G (%2, X", W)

Energies ¢,, of 1-particle excitations:
poles of G(w) or, equivalently, zeros of G~ (w) = [Gy* (w) — B(w)]~?

[en — ho(X)]pn(x) — / dx'S(x, %, ep)n(x') =0
N———’
Gt;l(an)

¥ (x,x’,w) — interaction correction to effective 1-particle Hamiltonian

Approximation strategies
@ Approximate X (w) (e.g., by truncating diagrammatic series)
@ Solve Dyson equation for G(w)

By keeping a few diagrams for ¥ we generate infinite series for G
— “partial summation” — most useful diagrammatic trick
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Skeletons and dressed skeletons

Skeleton diagram: self-energy diagram which does contain no other
self-energy insertions except itself }

Skeetons: g} T o B

No skeletons: % Ej % é % .....

Dressed skeleton: replace all Gy-lines in a skeleton by G-lines —>
Self energy ¥ (w): sum of all dressed skeleton diagrams J

— X becomes functional of G: ¥ = X[G] (to be approximated)
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Hartree-Fock approximation
First order skeleton diagrams for ¥ — Hartree-Fock

®-F -
Ypr(r,r’) =6(r — v )vg(r) + X, (r,r’') is frequency independent
n(r’)

— Hartree potential

vy (r) = /dr’vo(r—r')n(r) /d !

v — |
second term X, (r, r’) — nonlocal Fock exchange potential

HF-Dyson equation is solved by the HF Green function Gy :

unocc occ

pu(r)py (r') ()] (r')
Gur(r,r',w) =
HF( ) ; w—al—i—m zz: —El—m

where ¢;(r) and ; — HF orbitals and energies
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e More on diagrammatics: GW, Hedin, etc...
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Approximations beyond Hartree-Fock

I. Simplest w-dependent X: 2nd-order Born approximation

@ - 53 oo

Strictly valid for dilute gases with short-range interaction
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Approximations beyond Hartree-Fock

I. Simplest w-dependent X: 2nd-order Born approximation

@ - 53 oo

Strictly valid for dilute gases with short-range interaction

Il. Dynamically screened interaction and GW approximation

— X =GW, W =uvg+vcGGW

GW = “dynamically screened exchange”:

Interaction is screened by virtual e-h pairs (series of e-h bubbles)
Screening is extremely important in extended Coulomb systems like
plasmas and solids (more on practical GW comes soon).
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Vertex insertions

Diagrams missing in GW: interaction lines in the “corners”

Vertex insertion

(part of a) diagram with one external incoming and one outgoing
Go-line, and one external interaction line

Reducible vertex insertions: % ﬁfw %\
Irreducible vertex insertions: »w ?N }w mw

Only irreducible vertex insertions are missing in GW approximation!
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Hedin’s equations (exact!)

IS o)
M = A+ AT

> = <)
Z@”:W+ s r

[T 8T e

v = % — effective irreducible electron-hole interaction
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GW from Hedin’s equations

Full system of Hedin’s equations

G=Gg+GugXQG
> =GWT
W =wve + vcllW
II = GGT
0%
I'=1+— r

+5GGG

4

Hedin’s equations can be “solved” iteratively by setting v = 3% =0on
the first step of iterations. On this step we recover GW approximation

Initial step of Hedin’s iterations — GW approximation

r=1— X=GW, I=GG
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Concluding remarks

Beyond the scope of this lecture:

@ Finite temperature (Matsubara) Green functions
@ Nonequilibrium (Keldysh) Green functions

Both in Matsubara and in Keldysh formalisms the structure of
diagrammatic series remains the same.

All changes can be attributed to time integration — extension to a
complex “time” plane and integration over different time-contours.
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Outline

e GW in practice
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Dyson equation

[w — ho(x1)]G(x1, X2, w) — /dX3E(x1,X3,w)G(X3,xQ,w) = §(x1 — X2)

v

Analytic continuation of G: Biorthonormal representation

D) (x1, 2) D (x2, 2)

G(x1, X2, 2) :Z z — Ex(2)

A

ho(x1)® (x1, 2) + /dsz(xl,XQ, 2)®y(Xa, 2) = Ex(2)®x(x1, 2)

ho(x1)®a(x1, 2 /dX2‘I>A X2, 2)5(x2, X1, 2) = Ex(2)®x(x1, 2)

/dx&b\(x, 2)®y(x,2) = dan
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Dyson equation

Complex poles of G — Quasiparticles
en—Ex(en) =0 = &, =E\(e,)
Pn(x) = Pa(x,€n)

Analytic continuation of G: Biorthonormal representation

D) (x1, 2) D (x2, 2)

G(x1, X2, 2) :Z z — Ex(2)

A

ho(x1)® (x1, 2) + /dsz(xl,XQ, 2)®y(Xa, 2) = Ex(2)®x(x1, 2)

ho(x1)®a(x1, 2 /dxz‘b,\ X2, 2)8(Xa, X1, 2) = Ex(2)®x(x1,2)

/dx&b\(x, 2)®y(x,2) = dan
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GoWy: Perturbative QP corrections

Standard perturbative G, corrections to the KS-DFT spectrum
ho(%)i (%) + Viee (%) 0i(%) = €npi(x)
ho()6:) + [ xS0 = B)on(x) = Bt
First order perturbative correction with ¥ = GW

E; — & = (pi| B(E;) — Vaelpi)

E(E;) = X(ei) + (B — €:)0uZ(w)le,
E; = &i + Zi{pilX(e:) — Vielws)
Zi = (1 = {#il0uT(W)le; i) ™

Hybertsen and Louie, PRB 34, 5390 (1986)
Godby, Schliter, and Sham, PRB 37, 10159 (1988)
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GoWy: Results for the fundamental gap

T T T T T T
8 w o -
S o So% o
r a L N _EUJ“ b
<553 In
or 3 58 G éj--"o o
s O acg Lo
- 8BS ©g i
- &) ‘0@ D g m
=3 5 89552 % ]
B0 BEEp w4
@ 9% |1
E|  Ssaggpto oy 2
3 ol =¥ o
S o GEDY m S 7
'EE& £ @]
T W ool Tl |
- ]
o ¥ . m:LDA -
o O:GW(LDA)
L.my - v ]

experimental gap (eV)

M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006)
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GoW, results

Great improvement over LDA.
Problem: Dependence on the starting point (LDA)

Quality of the results is tied to the quality of LDA wave functions

perturbative GoWjy

@ works reasonably well for sp electron systems
@ questionable for df systems and whenever LDA is bad
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Beyond G,V

Alternative starting points and/or self-consistent QP schemes

@ Looking for a better starting point:
e Kohn-Sham with other functionals (EXX, LDA+U, ...)
e hybrid functional (HSEOQS, ...)

@ Effective quasiparticle Hamiltonians:

e quasiparticle self-consistent GW (QPscGW) — Faleev 2004
@ Hedin's COHSEX approximation — Bruneval 2005
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Beyond G,WW,: QPscGW scheme

Retain only hermitian part of GW self-energy and iterate QP

(6i5165) = SRel(GIZ(EIos) + (6:[5(E))Io)]

o
3+ Mgo” - |
o.-
e R i
DO " ca0
6 S-S0 4
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=
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G
0 -
1 1 | 1 |
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experimental gap (eV)

S. Faleev, M. van Schilfgaarde, and T. Kotani, PRL 93, 126406 (2004)
M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006)
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Beyond LDA+G,W,: COHSEX approximation

114 ith (W) — |#i) (@l
¥ = ¥, + Xs: contributions from poles of G(w) or W, (w) = W(w) — v

occ

X1 (%1, X2, w E ¢i(x1)o W (x1,X2,w — E;)
Z °° dw' ITm W, (x1, X2, w")
E b) b 1 — 2z 2 2
2(x1, %2, Pi(x1)¢ /0 T w—FE; —uW

COHSEX approximation: setw — F; =0

occ

Esex (X1, X2) Z@ x1)¢; (x2)W (x1,%2,w = 0)

Scon(x1,%2) = 16(x1 — x2) W (x1, X2, w = 0)

COHSEX+G W, — F Bruneval, N. Vast, and L. Reining, PRB 74, 045102 (2006)
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One-particle GF and physics

Physical information contained in G(x1, X2, w)
@ G — p(x1,x2) — ground state single-particle observables
@ Ground state total energy via the Galitski-Migdal formula

@ Poles of G(w) — spectrum of single-particle excitations —
direct/inverse photoemission, fundamental gap £, =7 — A
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One-particle GF and physics

Physical information contained in G(x1, X2, w)

@ G — p(x1,x2) — ground state single-particle observables
@ Ground state total energy via the Galitski-Migdal formula

@ Poles of G(w) — spectrum of single-particle excitations —
direct/inverse photoemission, fundamental gap £, =7 — A

Importantly: the fundamental gap # the optical gap

To describe optical experiments we need more!

Two-particles Green function and the Bethe-Salpeter equation
(comes in the next lecture)
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Literature: endless number of textbooks

Classics from 1960s - 1970s
@ A.A. Abrikosov, L.P. Gor’kov, I.Ye. Dzyaloshinskii, Quantum field
theoretical methods in statistical physics (Pergamon Press, 1965)
@ A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle
Systems (McGraw-Hill, 1971) and later edition by Dover press
@ R.D. Mattuck, A guide to Feynman diagrams in the many-body
problem (McGraw-Hill, 1967), extended 2nd edition (1992)

More recent books with additional/new material

@ JW. Negele, H. Orland, Quantum many-particle systems
(Westview Press, 1988, 1998)

@ A.M. Zagoskin, Quantum Theory of Many-Body Systems
(Springer, 1998)

@ G. Stefanucci, R. van Leeuwen, Nonequilibrium Many Body
Theory of Quantum Systems: A Modern Introduction
(Cambridge University Press, 2013)

@ R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons.
Theory and Computational Approaches
(Cambridge University Press, 2016)



	Green's function: Definition and Physics
	Green's function: Some Mathematical Properties
	Basics of MBPT: Introduction to Feynman diagrams
	More on diagrammatics: GW, Hedin, etc... 
	GW in practice
	Literature

