Practical BSE Calculations with BerkeleyGW + Octopus

Felipe H. da Jornada now at Stanford University

David A. Strubbe

Department of Physics University of California, Merced

TDDFT Benasque Workshop – 24 Oct 2022

Summary

#1 – Theory and Algorithms

#2 – Typical BSE Workflow in BerkeleyGW

#3 – Issues Unique to the BSE Code

Theory Review: Optical Absorption

No electron-hole interactions

Quasi-electron: $|c\mathbf{k}\rangle$

Quasi-hole: $|v\mathbf{k} + \mathbf{q}\rangle$

$$H_{int} \sim \mathbf{A} \cdot \hat{\mathbf{v}}$$

$$\mathcal{E}_{2}(-\mathbf{q}, \omega) \propto \sum_{vc\mathbf{k}} |\langle v\mathbf{k} + \mathbf{q} | \hat{v} | c\mathbf{k} \rangle|^{2} \delta \left[\omega - \left(E_{c\mathbf{k}} - E_{v\mathbf{k} + \mathbf{q}} \right) \right]$$

With electron-hole interactions

Correlated electron-hole pair: $|S\rangle$

$$\varepsilon_2(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{v}|S\rangle|^2 \delta[\omega - \Omega_S]$$

$$|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} |v\mathbf{k} + \mathbf{q}\rangle \otimes |c\mathbf{k}\rangle$$

Solutions of the Bethe-Salpeter equation (BSE)

Bethe Salpeter Equation (BSE)

▶ Absorption spectrum with excitonic effects → diagonalize BSE Hamiltonian:

$$[H]_{(vc\mathbf{k}),(v'c'\mathbf{k}')}$$

$$[H] = [E_c - E_v] + [K] \leftarrow \text{dense "kernel"} \\ \sim \text{diagonal} \\ \sim \text{kinetic term}$$

<u>Challenge</u>: compute quasiparticle corrections and kernel matrix elements on a <u>very fine k-grid!</u>

BerkeleyGW Interpolation Scheme

BerkeleyGW solution: Interpolate QP energies and BSE kernel

Step 1: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}}$$

Step 2: Interpolate QP energies and matrix elements

$$\langle vc\underline{\mathbf{k}_{\mathrm{fi}}}|K|v'c'\underline{\mathbf{k}_{\mathrm{fi}}'}\rangle = \sum_{n_{1},n_{2},n_{3},n_{4}} C_{c,n_{1}}^{\mathbf{k}_{\mathrm{co}}} C_{v,n_{2}}^{*\mathbf{k}_{\mathrm{co}}} C_{c',n_{3}}^{\mathbf{k}_{\mathrm{co}}'} C_{v',n_{4}}^{\mathbf{k}_{\mathrm{co}}'} \langle n_{2}n_{1}\underline{\mathbf{k}_{\mathrm{co}}}|K|n_{4}n_{3}\underline{\mathbf{k}_{\mathrm{co}}'}\rangle$$

BerkeleyGW Interpolation Scheme

▶ In practice: <u>trading bands for k-points</u>

- How to get a good interpolation?
 - Include a <u>large</u> number of bands from the coarse grid!

BerkeleyGW QP Interpolation

- BerkeleyGW also performs a <u>linear interpolation</u> for QP corrections.
- Linear interpolation + expansion over bands:
 - Captures (nk)-dependent QP correction and band crossing
 - Very smooth interpolation of band structure
 - Robust scheme, and very few parameters

D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013)

Key Points

- Interpolation scheme: trading bands for k-points
- Interpolation of kernel and QP corrections

Typical BSE Workflow in BerkeleyGW

BerkeleyGW Workflow

sigma.x

Step 1: Calculate QP-corrected band structure on a coarse grid

$$\{E_c\}_{\rm co,} \{E_v\}_{\rm co,}$$

kernel.x

Step 2: Calculate BSE kernel on the same coarse grid

$$[K]_{co}$$

absorption.x

Step 3: Interpolate to a fine k-grid and build BSE Hamiltonian...

$$[H]_{co} \Rightarrow [H]_{fi}$$

... and diagonalize BSE Hamiltonian

evals
$$[H]_{fi} \Rightarrow \varepsilon_2$$

(Not shown: mean-field, epsilon, convergence)

Step 1: Calculate QP-corrected band structure on a coarse grid

$${E_c}_{co,}$$
 ${E_v}_{co,}$

- Recommended: eqp.dat
 - Calculate QP energies on all k-points from WFN_inner.
 - ▶ Use the script eqp.py to generate eqp.dat file \rightarrow no human intervention!
- Also possible: scissors operators, less reliable (not covered here)

1. Sigma

Sample sigma.inp (assuming we are using eqp.dat)

```
screened_coulomb_cutoff <?>
bare_coulomb_cutoff <?>
number_bands <?>
band_occupation <?>
band_index_min <?>
band_index_max <?>
screening_semiconductor
number kpoints <?>
begin kpoints
 <put all k-points from WFN_INNER here>
end
```

Note the two different # of bands:

$$E_{n\mathbf{k}}^{\mathrm{QP}} \sim \langle n\mathbf{k} | \Sigma | n\mathbf{k} \rangle$$

Remember to calculate Sigma on more bands because of the interpolation!

Step 2: Calculate BSE kernel on the same coarse grid

 $[K]_{co}$

- Time consuming!
 - Computes $(n_v n_c n_k)^2$ matrix elements

$$= \qquad \qquad - \qquad W_{o}$$
 bsexmat bsedmat head, wing, body

- ▶ Recommended:
 - Use same WFN_co as in Sigma (WFN_inner)

2. Kernel

Sample kernel.inp

```
number_val_bands <?>
number_cond_bands <?>
screened_coulomb_cutoff <?>
<?>_symmetries_coarse_grid
screening_<?>
```

Remember to calculate Kernel on more bands because of the interpolation!

Must be ≤ than the # of bands used in Sigma.

You'll typically want to use symmetries here, so put: use_symmetries_coarse_grid

3. Absorption

Step 3: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

$$[H]_{co} \Rightarrow [H]_{fi}$$

... and diagonalize BSE Hamiltonian

evals
$$[H]_{fi} \Rightarrow \varepsilon_2$$

- Absorption needs same coarse WFN_co from Kernel/Sigma
- Absorption also need two fine WFN files:
 - WFN_fi: for conduction states
 - WFNq_fi: for valence states
- Good practice: use arbitrarily-shifted low-symmetry k-grids
 - This maximizes the number of inequivalent transitions you capture.

3. Absorption

Sample absorption.inp

 \mathbf{k}_{co}

Band index

3. Absorption – Workflow

absorption.inp eps0mat epsmat eqp*.dat absorption.x bsedmat bsexmat WFN_co WFN_fi WFNq_fi

absorption_noeh.dat

absorption_eh.dat

eigenvalues.dat

eigenvectors.dat

d?mat_norm.dat

Typical BSE Workflow in BerkeleyGW

Key Points

- BSE codes are separated into two parts:
 - Kernel.x: calculates kernel on coarse grid
 - Absorption.x: interpolates and diagonalizes [H]
- number * bands coarse, number * bands fine.

Issues Unique to the BSE Code

- Velocity Operator
- 2. Finite Systems + Octopus
- 3. Estimating the Quality of the Interpolation
- 4. Analyzing Exciton Files
- 5. Convergence!

1. Velocity Operator

$$\varepsilon_2(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\mathbf{v}}|S\rangle|^2 \delta[\omega - \Omega_S] \qquad \langle 0|\hat{\mathbf{v}}|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^S \langle v\mathbf{k} + \mathbf{q}|\hat{\mathbf{v}}|c\mathbf{k}\rangle$$

Because of non-local pseudopotential and QP corrections, the velocity operator is not the same as the momentum!

$$\hat{v} = i[H, \hat{r}] = \hat{p} + i[V, \hat{r}]$$

use_velocity

- Recommended option!
- Needs WFN_fi and WFNq_fi.
- Specify q-shift: $\mathbf{k}_{\mathrm{WFN_{fi}}} + \mathbf{q}_{\mathrm{shift}} = \mathbf{k}_{\mathrm{WFNq_{fi}}}$

$$\langle 0|\hat{v}|S\rangle \approx \frac{\Omega_S}{q} \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^S \langle v\mathbf{k} + \mathbf{q} | e^{-i\mathbf{q}\cdot\mathbf{r}} | c\mathbf{k} \rangle$$

use_momentum

- Not recommended!
- Needs only WFN.
- Specify polarization ${f e}_{\lambda}$ of \widehat{v} .

$$\langle v\mathbf{k} + \mathbf{q}|\hat{v}|c\mathbf{k}\rangle \approx \langle v\mathbf{k}|\hat{p}_{\lambda}|c\mathbf{k}\rangle$$

2. Finite Systems + Octopus (benzene)

- For finite systems, Octopus can calculate the single-particle velocity matrix elements directly!
 - No need for two different WFN files and a q-shift in the absorption code.
 - BerkeleyGW can calculate $\varepsilon_2(\mathbf{q}=0)$ "exactly".

3. Quality of the Interpolation

- How to measure the quality of WFN expansion?
- ▶ If we include ∞ bands:

$$\sum_{n'} |C_{n,n'}^{\mathbf{k}_{\text{co}}}|^2 = 1$$

Finite basis set – normalization is reported in files d?mat_norm.dat:

```
Norm of dvv matrices : Spins =
                                dist
                                        dvv ^2
      k-point
                     ik co
0.059 , 0.046 , 0.039 )
                        1 0.054
                                       0.987006
0.059 , 0.046 , 0.039 ) 1 2 0.054
                                       0.953488
                         1 3 0.054
0.059 , 0.046 , 0.039 )
                                      0.892665
                         2 1 0.139
0.059 , 0.046 , 0.164 )
                                       0.923182
```

- How to get a good interpolation?
 - Include a large number of bands from the coarse grid!
 - Start from a fine enough grid

Before renormalization of coefficients.

4. Analyzing Excitons

- Optical spectrum $\varepsilon_2(\omega)$, $\varepsilon_1(\omega)$:
 - <u>absorption noeh.dat</u>: GW-RPA without local fields
 - <u>absorption eh.dat</u>: GW-BSE with local fields
- \blacktriangleright Eigenvalues of the BSE equation Ω_S :
 - eigenvalues.dat: useful to see if there are degeneracies, splitting, etc.
 or whether there are "dark" states not contributing the optical spectrum
- Where the exciton is coming from:
 - summarize_eigenvectors.x
 - Need to set the flag write_eigenvalues in absorption.inp

5. Convergence!

- There are 4 convergence parameters in a typical BSE calculation:
 - # of k-points in the fine grid
 - # of <u>bands</u> in the <u>fine</u> grid
 - # of k-points in the coarse grid
 - # of <u>bands</u> in the <u>coarse</u> grid

D. Qiu, F. H. da Jornada, S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).

A paper about converging properly, with an erratum about further convergence...

Make sure you converge your calculations!

Issues Unique to the BSE Code

1. Velocity operator

Key Points

- Why we need 2 WFN files: velocity operator
- Convergence!

5. Convergence!