

TDDFT in Chemistry and Biochemistry

Shane M. Parker Case Western Reserve University Department of Chemistry shane.parker@case.edu <u>quantumparker.com</u>

EST. 1826

Lecture 2: Molecular Properties BENASQUE 9th TDDFT: Prospects and Applications

Photochemistry

image from <u>quora.com</u>

Use TDDFT to determine

- identities of the states involved? properties?
- photochemical • pathway? timescales?

Sun, Q.; Mosquera-Vazquez, S.; Lawson Daku, L. V. M.; Gu n e, L.; Goodwin, H. A.; Vauthey, E.; Hauser, A. J. Am. Chem. Soc. 2013, 135 (37), 13660–13663.

Photochemistry requires, TDDFT provides

Disclaimer: I am a Chemist

density is $\rho(x,t)$

space-spin $x \to (\vec{r}, \sigma)$

- 1 particle density matrix is $\rho(x, x', t)$ o
- assuming the adiabatic approximation to the XC functional is useful
- typically think about **isolated or solvated molecules**

hybrid density functionals preferred

or
$$\gamma(x,x')$$

The requisite properties

Photochemistry of Thymine

Interpreting Excited States

Action Lagrangian

Action functional

action functional

$$\mathcal{S}[\Phi] = \langle\!\langle \Phi | \hat{H}(t) \rangle$$

with

$$\langle\!\langle u|v\rangle\!\rangle \equiv \frac{1}{T} \int_0^T \mathrm{d}$$

Stationarity of the action yields the Schrödinger equation $\frac{\delta \mathcal{A}}{\delta \langle\!\langle \Phi |} = \left(\hat{H} \right)$ λ

Differentiating the action yields properties $\frac{\delta \mathcal{A}}{\delta v(x,t)} = \mathbf{\Pi}^{(1)}$

Convenient to define time-dependent quantum mechanical properties through the

$$-\mathrm{i}rac{\partial}{\partial t}|\Phi
angle$$

 $lt\langle u(t)|v(t)\rangle$

$$(t) - i\frac{\partial}{\partial t} \Big) |\Phi\rangle = 0$$

$$\rho(x,t) = \rho(x,t)$$

Action Lagrangian for time-periodic perturbations

Time-periodic potential means

 $\Phi(t+T)$

- Purely periodic part treated through action Lagrangian $\mathcal{A}[\Phi,\varepsilon] = \langle\!\langle \Phi | \hat{H}(t) \rangle\!\rangle$
- Reduces to *quasi-energy* at stationary point $\mathcal{A}[\Phi,$
- and energy eigenvalues in time-independent case $\mathcal{A}^{(0)}$

$$\Gamma) = e^{\mathbf{i}\alpha}\Phi(t)$$

$$-i\frac{\partial}{\partial t}|\Phi\rangle - \varepsilon(\langle\!\langle \Phi|\Phi\rangle\!\rangle - 1)$$

$$\varepsilon]|_{\mathrm{stat}} = \varepsilon$$

$$[\Phi,\varepsilon]|_{\text{stat}} = E_n$$

Exact response properties

Define Hamiltonian

^

$$\hat{H}(t) = \hat{H}_0 + \hat{v}(t)$$
$$\hat{v}(t) = \int \mathrm{d}x v(t, x) \hat{\rho}(x)$$

$$v(t,x) = \sum_{\alpha} v_{\alpha}(x) e^{-i\omega_{\alpha}t} + v_{-\alpha}(x) e^{i\omega_{\alpha}t}$$

And assume ground state is initial state $|\Psi\rangle\rangle|_{v=0} \equiv$

. Differentiate, ma

ake stationary, evaluate at v=0
$$f^{(\alpha\beta\dots)} \equiv f^{(\alpha\beta\dots)}(x_1, x_2, \dots) \equiv \left. \frac{\delta^n f}{\delta v_{\alpha}(x_1) \delta v_{\beta}(x_2) \dots} \right|_{\text{stat}, v=0}$$

$$\equiv |\Psi^{(0)}\rangle = |0\rangle$$

Exact static properties

Differentiate

Make stationary

$$\frac{\delta \mathcal{A}^{(\alpha)}}{\delta \langle\!\langle \Psi^{(\alpha)} |} = (\hat{H}_0 - E_0 - \frac{\partial}{\partial t}) |\Psi^{(0)} \rangle\!\rangle = 0$$
$$|\Psi^{(0)} \rangle\!\rangle = |0\rangle$$

Evaluate

$$\Pi^{(1)}(x) = \varepsilon^{(\alpha)} = \rho^{00}(x)$$

 $\mathcal{A}^{(\alpha)} = \left\langle \Psi^{(\alpha)} \hat{H}_0 - E_0 - \frac{\partial}{\partial t} \Psi^{(0)} \right\rangle$ $+ \langle\!\langle \Psi^{(0)} \hat{H}_0 - E_0 - \frac{\partial}{\partial t} \Psi^{(\alpha)} \rangle\!\rangle$ $+ \langle\!\langle \Psi^{(0)} | \hat{\rho}(x) \mathrm{e}^{-\mathrm{i}\omega_{\alpha}t} - \varepsilon^{(\alpha)} | \Psi^{(0)} \rangle\!\rangle + \varepsilon^{(\alpha)}$

 $\overline{\rho}(x) = \hat{\rho}(x) - \rho^{00}(x)$

Exact linear response

Differentiate

Make stationary

$$\frac{\mathcal{A}^{(\alpha\beta)}}{\delta\langle\!\langle \Psi^{(\beta)}|} = (\hat{H}_0 - E_0 - \mathrm{i}\frac{\partial}{\partial t})|\Psi^{(\alpha)}\rangle\!\rangle + \bar{\rho}(x_1)\mathrm{e}^{-\mathrm{i}\omega_{\alpha}t}|\Psi^{(0)}\rangle\!\rangle = 0$$
$$|\Psi^{(\alpha)}\rangle\!\rangle = -(\hat{H}_0 - E_0 - \omega_{\alpha})^{-1}\bar{\rho}(x_1)|0\rangle\mathrm{e}^{-\mathrm{i}\omega_{\alpha}t}$$

$$\frac{1}{|\Psi^{(\alpha)}|} = (\hat{H}_0 - E_0 - i\frac{\partial}{\partial t})|\Psi^{(\alpha)}\rangle + \bar{\rho}(x_1)e^{-i\omega_{\alpha}t}|\Psi^{(0)}\rangle = 0$$
$$\Psi^{(\alpha)}\rangle = -(\hat{H}_0 - E_0 - \omega_{\alpha})^{-1}\bar{\rho}(x_1)|0\rangle e^{-i\omega_{\alpha}t}$$

Evaluate

$$\Pi^{(2)}(\omega, x_1, x_2) = -\left[\langle 0 | \bar{\rho}(x_2) (\hat{H}_0 - E_0 - \omega)^{-1} \bar{\rho}(x_1) | 0 \rangle \right]$$

 $+\langle 0|\bar{\rho}(x)\rangle$

$$|\Psi^{(\beta)}\rangle + \langle\!\langle \Psi^{(\beta)} | \hat{H}_{0} - E_{0} - \mathbf{i} \frac{\partial}{\partial t} | \Psi^{(\alpha)} \rangle\!\rangle \\ \rangle \rangle + \langle\!\langle \Psi^{(0)} | \bar{\rho}(x_{2}) \mathrm{e}^{-\mathrm{i}\omega_{\beta}t} | \Psi^{(\alpha)} \rangle\!\rangle \\ \rangle + \langle\!\langle \Psi^{(0)} | \bar{\rho}(x_{1}) \mathrm{e}^{-\mathrm{i}\omega_{\alpha}t} | \Psi^{(\beta)} \rangle\!\rangle$$

$$(\hat{H}_0 - E_0 + \omega)^{-1} \bar{\rho}(x_2) |0\rangle_{10}$$

Exact linear response: sum-over-states

$$\Pi^{(2)}(\omega, x_1, x_2) = -\left[\langle 0|\bar{\rho}(x_2)(\hat{H}_0 - E_0 - \omega)^{-1}\bar{\rho}(x_1)|0\rangle + \langle 0|\bar{\rho}(x_1)(\hat{H}_0 - E_0 + \omega)^{-1}\bar{\rho}(x_2)|0\rangle \right]$$

Spectral representation of inverse $(\hat{H} - z)^{-1} =$

Gives the sum-over-states expression $\Pi^{(2)}(\omega, x_1, x_2) = -\sum_{\substack{n \neq 0}} \left[\frac{\rho}{-1} \right]$

$$= \sum_{n} \frac{|\Phi_n\rangle \langle \Phi_n|}{E_n - z}$$

$$\frac{\rho^{0n}(x_2)\rho^{n0}(x_1)}{\Omega_{0n}-\omega} + \frac{\rho^{0n}(x_1)\rho^{n0}(x_2)}{\Omega_{0n}+\omega}$$

Exact quadratic response

 $\mathcal{A}^{(\alpha\beta\gamma)} = \mathcal{P}^{(\alpha\beta\gamma)} \langle\!\!\langle$ Insert first-order results $\Pi^{(3)}(\omega_{\alpha}, \omega_{\beta}, x_1, x_2, x_3) =$ $\mathcal{P}^{(\alpha\beta\gamma)} \langle 0 | \bar{\rho}(x_1) (\hat{H}_0 - E_0 + E_0) \rangle$

Sum-over-states: $\Pi^{(3)}(\omega_{\alpha}, \omega_{\beta}, x_1, x_2, x_3) =$ $\sum_{\substack{n\neq 0}} \left[\frac{\rho^{0n}(x_1)\bar{\rho}^{nm}(x_2)\rho^{m0}(x_2)}{(\Omega_{0n}-\omega_{\alpha})(\Omega_{0m}+\omega_{\alpha})} \right]$ $m \neq 0$ $+\frac{\rho^{0n}(x_2)\bar{\rho}^{nm}(x_1)\rho^{m0}(x_1)}{(\Omega_{0n}+\omega_\beta)(\Omega_{0m}-\omega_\beta)}$ $+\frac{\rho^{0n}(x_3)\bar{\rho}^{nm}(x_1)\rho^{m0}(x_1)}{(\Omega_{0n}+\omega_{\gamma})(\Omega_{0m}-\omega_{\gamma})}$

$$\langle \Psi^{(\alpha)} | \bar{\rho}(x_2) \mathrm{e}^{-\mathrm{i}\omega_\beta t} | \Psi^{(\gamma)} \rangle$$

$$\omega_{\alpha})^{-1}\bar{\rho}(x_2)(\hat{H}_0 - E_0 - \omega_{\gamma})^{-1}\bar{\rho}(x_3)|0\rangle$$

$$\frac{(x_3)}{\omega_{\gamma}} + \frac{\rho^{0n}(x_1)\bar{\rho}^{nm}(x_3)\rho^{m0}(x_2)}{(\Omega_{0n} + \omega_{\alpha})(\Omega_{0m} - \omega_{\beta})}$$

$$\frac{\langle x_3 \rangle}{\langle \omega_{\gamma} \rangle} + \frac{\rho^{0n}(x_2)\bar{\rho}^{nm}(x_3)\rho^{m0}(x_1)}{(\Omega_{0n} + \omega_{\beta})(\Omega_{0m} - \omega_{\alpha})}$$
$$\frac{\langle x_2 \rangle}{\langle \omega_{\beta} \rangle} + \frac{\rho^{0n}(x_3)\bar{\rho}^{nm}(x_2)\rho^{m0}(x_1)}{(\Omega_{0n} + \omega_{\gamma})(\Omega_{0m} - \omega_{\alpha})} \right]$$

12

Exact response theory: the big idea

RG justifies only the validity of the time-dependent density

No wavefunction available!

$$\Pi^{(2)}(\omega, x_1, x_2) = -\sum_{n \neq 0} \begin{bmatrix} \rho^{0n}(x_2)\rho^{n0}(x_1) \\ \Omega_{0n} - \omega \end{bmatrix} + \frac{\rho^{0n}(x_1)\rho^{n0}(x_2)}{\Omega_{0n} + \omega} \end{bmatrix}$$

Linear response allows a **definition** of excitation energies ground-to-excited state transition densities

$$\Pi^{(3)}(\omega_{\alpha},\omega_{\beta},x_{1},x_{2},x_{3}) = \sum_{\substack{n\neq 0\\m\neq 0}} \left[\frac{\rho^{0n}(x_{1})\bar{\rho}^{nm}(x_{3})\rho^{m0}(x_{2})}{(\Omega_{0n}+\omega_{\alpha})(\Omega_{0m}-\omega_{\beta})} + \dots \right]$$

Quadratic response allows a **definition** of state-to-state transition densities

TDDFT Action Lagrangian

$$\begin{aligned} \mathcal{A}[\boldsymbol{\varphi},\varepsilon] = &\frac{1}{T} \int_{0}^{T} \mathrm{d}t \sum_{j} \left[\int \mathrm{d}x \left(\frac{1}{2} |\nabla \varphi_{j}(t,x)|^{2} - \mathrm{i}\varphi_{j}^{*}(t,x) \frac{\partial \varphi_{j}(t,x)}{\partial t} \right) \right. \\ &\left. + \int \mathrm{d}x \varphi_{j}^{*}(t,x) v(t,x) \varphi_{j}(t,x) - \sum_{k} \varepsilon_{jk} \left(\int \mathrm{d}x \varphi_{j}^{*}(t,x) \varphi_{k}(t,x) - \delta_{jk} \right) \right] \\ &\left. + \mathcal{A}^{\mathrm{HXC}}[\rho] \end{aligned}$$

Stationarity

$$\frac{\delta \mathcal{A}[\varphi,\varepsilon]}{\delta \varphi_j^*(t,x)} = \frac{1}{2} \nabla^2 \varphi_j(t,x) + v^s(t,x)\varphi_j(t,x) - \mathrm{i}\frac{\partial \varphi_j(t,x)}{\partial t} - \sum_k \varepsilon_{jk}\varphi_k(t,x) = 0$$

$$v^{s}(t,x) = v(t,x) + v^{\mathrm{HXC}}(t,x)$$

$$\mathcal{A}[\varphi,\varepsilon]|_{\text{stat}} = \sum_{j} \left(\varepsilon\right)^{j}$$

 $\varepsilon_{jj} - v_{jj}^{\mathrm{HXC}}[\rho]) + \mathcal{A}^{\mathrm{HXC}}[\rho]$

TDDFT linear response

$\begin{aligned} \mathbf{Differentiate} \\ \mathcal{A}^{(\alpha\beta)} &= \int_0^T \mathrm{d}t \int \mathrm{d}x \sum_j \left[\varphi_j^{*(\alpha)} + \varphi_j^{*(\alpha)} + \varphi_j^{*(\alpha)} + \varphi_j^{*(\alpha)} \right] \end{aligned}$

Using chain rule

$$\mathcal{A}^{\mathrm{HXC}(\alpha\beta)}[\rho] = \int \mathrm{d}\zeta v^{\mathrm{HXC}}[\rho](\tau, y) + \int \mathrm{d}\zeta_1 \mathrm{d}\zeta_2 f^{\mathrm{HXC}}(\tau, y) d\zeta_1 \mathrm{d}\zeta_2 f^{\mathrm{HXC}}(\tau, y)$$

$$\begin{split} \varphi_{j}^{*(\alpha)} \left(\hat{h} - i \frac{\partial}{\partial t} \right) \varphi_{j}^{(\beta)} + \varphi_{j}^{*(\beta)} \left(\hat{h} - i \frac{\partial}{\partial t} \right) \varphi_{j}^{(\alpha)} \\ &+ \varphi_{j}^{*(\alpha)} \bar{\rho}(x_{2}) \varphi_{j} e^{-i\omega_{\beta}t} + \varphi_{j}^{*} \bar{\rho}(x_{2}) \varphi_{j}^{(\alpha)} e^{-i\omega_{\beta}t} \\ &+ \varphi_{j}^{*(\beta)} \bar{\rho}(x_{1}) \varphi_{j} e^{-i\omega_{\alpha}t} + \varphi_{j}^{*} \bar{\rho}(x_{1}) \varphi_{j}^{(\beta)} e^{-i\omega_{\alpha}t} \Big] \\ &+ \mathcal{A}^{\mathrm{HXC}(\alpha\beta)}[\rho] \end{split}$$

$$\operatorname{XC}(\alpha\beta)[\rho]$$

 $(y)\rho^{(\alpha\beta)}(\tau,y)$

 $[\rho](\tau_1 - \tau_2), y_1, y_2)\rho^{(\alpha)}(\tau_1, y_1)\rho^{(\beta)}(\tau_2, y_2)$

TDDFT linear response

Expand orbitals:
$$\mathbf{U}(t) = e^{\boldsymbol{\kappa}(t)}$$

 $\varphi_j(t, x) = \phi_j(x) + \sum_a \phi_a(x)\kappa_{ja}(t) + \frac{1}{2}\sum_{ak} \phi_k(x)\kappa_{ja}(t)\kappa_{ak}(t) + \dots$
 $\varphi_a(t, x) = \phi_a(x) + \sum_j \phi_j(x)\kappa_{aj}(t) + \frac{1}{2}\sum_{jb} \phi_b(x)\kappa_{aj}(t)\kappa_{jb}(t) + \dots$
Make stationary
 $\frac{\partial \mathcal{A}^{(\alpha\beta)}}{\partial \kappa_{ia}^{(\beta)*}} = \frac{1}{T} \int_0^T dt \Big[\langle \phi_a | \hat{h} + \hat{v}^{\text{HXC}} - \varepsilon_{ii} - i\frac{\partial}{\partial t} | \varphi_i^{(\alpha)} \rangle + \langle \phi_a | \bar{\rho}(x_1) | \phi_i \rangle e^{-i\omega_\alpha t} \Big] + \sum_{pq} f_{pq,ia}^{\text{HXC}} \rho_{pq}^{(\alpha)} = 0$
Leads to

$$\kappa_{ia}^{(\alpha)} = X_{ia} e^{-\mathrm{i}\omega_{\alpha}t}$$

$$\kappa_{ia}^{(-\alpha)} = Y_{ia} e^{\mathrm{i}\omega_{\alpha}t}$$

Х

TDDFT linear response (skipping derivation)

Response operator

$$\mathbf{\Pi}_{\mathrm{TDDFT}}^{(2)}(\omega) = \begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} - \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \end{bmatrix}^{-1} \\ \begin{pmatrix} \mathbf{X}^{(\alpha)} \\ \mathbf{Y}^{(\alpha)} \end{pmatrix} = -\mathbf{\Pi}_{\mathrm{TDDFT}}^{(2)}(\omega) \begin{pmatrix} \mathbf{P}^{(\alpha)} \\ \mathbf{Q}^{(\alpha)} \end{pmatrix}$$

Linear Response Function

 $(\mathbf{P}^{(\beta)})$ $\mathcal{A}^{(\alpha\beta)} = -\left(\begin{array}{c} \mathbf{I} \\ \mathbf{Q}^{(\beta)} \end{array} \right)$

$$\begin{pmatrix} \beta \\ \beta \end{pmatrix}^T \begin{pmatrix} \mathbf{X}^{(\alpha)} \\ \mathbf{Y}^{(\alpha)} \end{pmatrix}$$

$$\int^{T} \mathbf{\Pi}_{\mathrm{TDDFT}}^{(2)}(\omega) \begin{pmatrix} \mathbf{P}^{(\alpha)} \\ \mathbf{Q}^{(\alpha)} \end{pmatrix}$$

TDDFT quadratic response (abbreviated)

Response function

$$\Pi^{(3)}(\omega_{\alpha},\omega_{\beta}) = \left[\operatorname{tr}(\mathbf{K}^{(\alpha\beta)}\mathbf{v}^{(\gamma)}) + \begin{pmatrix} \mathbf{P}^{(\gamma)} \\ \mathbf{Q}^{(\gamma)} \end{pmatrix}^{T} \Pi^{(2)}_{\mathrm{TDDFT}}(\omega_{\alpha} + \omega_{\beta}) \begin{pmatrix} \mathbf{P}^{(\alpha\beta)} \\ \mathbf{Q}^{(\alpha\beta)} \end{pmatrix} \right]$$

Product of first-order densities

RHS involves hyperkernel

$$g^{\mathrm{XC\pm}}[\rho](x_1, x_2, x_3) \approx \left. \frac{\delta^3 E^{\mathrm{XC}}[\rho]}{\delta \rho^{\pm}(x_1) \delta \rho(x_2) \delta \rho(x_3)} \right|_{\mathrm{ref}}$$

$$f_{ia}^{(\beta)} + X_{ja}^{(\beta)} Y_{ia}^{(\alpha)}$$

$$^{)} + X_{ia}^{(\beta)}Y_{ib}^{(\alpha)}$$

TDDFT quadratic response (abbreviated)

$$\begin{split} (P+Q)_{ia}^{(\alpha\beta)} &= -\frac{1}{2} \sum_{j} \mathcal{P}^{(\alpha\beta)} \left[(X+Y)_{ja}^{(\beta)} U_{ji}^{+(\alpha)} - (X-Y)_{ja}^{(\beta)} U_{ji}^{-(\alpha)} \right] \\ &+ \frac{1}{2} \sum_{b} \mathcal{P}^{(\alpha\beta)} \left[(X+Y)_{ib}^{(\beta)} U_{ab}^{+(\alpha)} - (X-Y)_{ib}^{(\beta)} U_{ab}^{-(\alpha)} \right] \\ &+ H_{ai}^{+} [\mathbf{K}^{(\alpha\beta)}] + 2g_{ai}^{\mathrm{HXC+}} [\rho^{(\alpha)}, \rho^{(\beta)}] , \\ (P-Q)_{ia}^{(\alpha\beta)} &= -\frac{1}{2} \sum_{j} \mathcal{P}^{(\alpha\beta)} \left[(X-Y)_{ja}^{(\beta)} U_{ji}^{+(\alpha)} - (X+Y)_{ja}^{(\beta)} U_{ji}^{-(\alpha)} \right] \\ &+ \frac{1}{2} \sum_{b} \mathcal{P}^{(\alpha\beta)} \left[(X-Y)_{ib}^{(\beta)} U_{ab}^{+(\alpha)} - (X+Y)_{ib}^{(\beta)} U_{ab}^{-(\alpha)} \right] \\ &- H_{ia}^{-} [\mathbf{K}^{(\alpha\beta)}] + 2g_{ai}^{\mathrm{HXC-}} [\rho^{(\alpha)}, \rho^{(\beta)}] \end{split}$$

Hyperkernel

 $g^{\mathrm{XC}\pm}[\rho](x_1, x_2, x_3) \approx \frac{1}{\delta_1}$

$$\frac{\delta^3 E^{\rm XC}[\rho]}{\delta \rho^{\pm}(x_1) \delta \rho(x_2) \delta \rho(x_3)} \Big|_{\rm ref}$$

The requisite properties

Photochemistry of Thymine

Interpreting Excited States

Action Lagrangian

Energies, forces and couplings

Energies

$$E_n = E_0 + \Omega_n$$
$$\begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} - \Omega_n \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}$$

Forces

$$\nabla E_n = \nabla E_0 + \nabla \Omega_n \neq$$

State-to-state properties $\langle \Psi_n | \hat{v} | \Psi_m \rangle$

Derivative couplings $\langle \Phi_n | \nabla \Phi_m \rangle$

Energies: iterative diagonalization

Storage unfeasible for even medium molecules ~ 400 GB for calix[4]arene

Matrix-vector products

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix}$$

 $D_{\mu\nu} = C_{\mu i} x_{ia} C_{\nu a} + C_{\mu a} y_{ia} C_{\nu i}$

Compare to Fock-build

$$\Lambda_{\mu\nu}[\mathbf{D}] = \sum_{\kappa\lambda} \left\{ 2(\mu\nu|\kappa\lambda) + 2f^{xc}_{\mu\nu\kappa\lambda} + c_x [(\mu\kappa|\nu\lambda) - (\mu\lambda|\kappa\nu)] \right\} D_{\kappa\lambda}$$

$$F_{\mu\nu}[\mathbf{D}] = \sum_{\kappa\lambda} [2(\mu\nu|\kappa\lambda) - (\mu\kappa|\nu\lambda)]D_{\kappa\lambda} + v_{\mu\nu}^{XC}[\mathbf{D}]$$

V.

Forces: orbital response

Excitation energies not stationary w.r.t. orbitals

$$\frac{\mathrm{d}E_0}{d\mathbf{C}} \propto \mathbf{F}^{\mathrm{ov}} = 0$$

Brute force (old school) way: compute orbital response $\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}R} = \mathbf{C}\mathbf{U}^R$

Better way: Lagrangian

 $\frac{\mathrm{d}E}{\mathrm{d}\mathbf{R}} = \frac{\mathrm{d}E}{\mathrm{d}\mathbf{C}}\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}\mathbf{R}} + \dots$

$$\frac{d\Omega_n}{d\mathbf{C}} \neq 0$$

 $\mathbf{\Lambda}\mathbf{U}^{R}=\mathbf{Q}$

$\mathbf{P}^T \mathbf{U}^R = \mathbf{P}^T \mathbf{\Lambda}^{-1} \mathbf{Q} = \mathbf{Z} \mathbf{Q}$

Handy, N. C.; Schaefer, H. F. J. Chem. Phys. 1984, 81 (11), 5031.

Forces: Lagrangian

excitation energy $L = \begin{pmatrix} \mathbf{X}^n \\ \mathbf{Y}^n \end{pmatrix}^T \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X}^n \\ \mathbf{Y}^n \end{pmatrix}$

KS orbitals

Stationarity w.r.t. orbitals

$$e.g.$$

$$L_{pq} = \sum_{\mu} \frac{\partial L}{\partial C_{\mu p}} C_{\mu q} = 0 \qquad \longrightarrow \qquad \mathbf{D}^{n} = \begin{pmatrix} \mathbf{T}^{o} \\ \mathbf{Z}^{T} \\ (\mathbf{A} + \mathbf{B})\mathbf{Z} = \end{pmatrix}$$

$$After some work$$

$$\frac{\mathrm{d}\Omega_{n}}{\mathrm{d}R} = \frac{\partial L}{\partial R} = \langle \mathbf{h}^{(R)}\mathbf{D}^{n} \rangle + \langle \mathbf{S}^{(R)}\mathbf{W} \rangle + \langle \mathbf{V}^{(R)}\mathbf{\Gamma} \rangle$$

normalized excitation

orthonormal orbitals \mathbf{Z} \mathbf{T}^{v} $= -\mathbf{R}$

Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117 (16), 7433.

Force Lagrangian: Right-hand-side

$$\Omega_n = \begin{pmatrix} \mathbf{X}^n \\ \mathbf{Y}^n \end{pmatrix}^T \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X}^n \\ \mathbf{Y}^n \end{pmatrix} = \frac{1}{4}$$

$$Q_{kp}^{\pm} = \sum_{\mu} \frac{\partial}{\partial C_{\mu k}} C_{\mu p} \frac{1}{4} \sum_{iajb} (X$$

$$Q_{kp} = \frac{1}{2} \sum_{a} (X + Y)_{ka}^{n} H_{pa}^{+} [X + Y]_{ka}^{n} [X + Y]_{ka}$$

 $\left[(\mathbf{X}^n + \mathbf{Y}^n)^T (\mathbf{A} + \mathbf{B}) (\mathbf{X}^n + \mathbf{Y}^n) \right]$ $+ (\mathbf{X}^n - \mathbf{Y}^n)^T (\mathbf{A} - \mathbf{B}) (\mathbf{X}^n - \mathbf{Y}^n)$

 $(\pm Y)_{ia}^n (A \pm B)_{iajb} (X \pm Y)_{jb}^n$

 $(A \pm B)_{iajb} = (\epsilon_a - \epsilon_i)\delta_{ij}\delta_{ab} + \sum C_{\mu i}C_{\nu a}C_{\kappa j}C_{\lambda b}f^{\mathrm{HXC}\pm}_{\mu\nu\kappa\lambda}$ $\mu\nu\kappa\lambda$

 $(+Y]^{n} + \frac{1}{2}\sum_{k=1}^{\infty} (X-Y)^{n}_{ka}H^{-}_{pa}[X-Y]^{n}$ a

Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117 (16), 7433.

Х

State-to-state properties

Double residue of
$$\Pi^{(3)}_{\omega_{\alpha}, \omega_{\beta} \to -\Omega_{n}, \Omega_{m}} \longrightarrow \rho^{0n}(x_{1})\bar{\rho}^{nm}(x_{3})\rho^{m0}(x_{2})$$

Defines $\rho_{nm} = \begin{pmatrix} \mathbf{K}_{\text{occ}}^{nm} & \mathbf{X}^{nm} \\ (\mathbf{Y}^{nm})^{T} & \mathbf{K}_{\text{virt}}^{nm} \end{pmatrix}$
 $K_{ij}^{nm} = -\sum_{a} X_{ja}^{m} X_{ia}^{n} + Y_{ja}^{n} Y_{ia}^{m} \quad K_{ab}^{nm} = \sum_{i} X_{ia}^{m} X_{ib}^{n} + Y_{ia}^{n} Y_{ib}^{m}$
 $\begin{pmatrix} \mathbf{X}^{nm} \\ \mathbf{Y}^{nm} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} - (\Omega_{m} - \Omega_{n}) \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{P}^{nm} \\ \mathbf{Q}^{nm} \end{pmatrix}$

ouble residue of
$$\Pi^{(3)}_{\omega_{\alpha}, \omega_{\beta} \to -\Omega_{n}, \Omega_{m}} \longrightarrow \rho^{0n}(x_{1})\bar{\rho}^{nm}(x_{3})\rho^{m0}(x_{2})$$

refines $\rho_{nm} = \begin{pmatrix} \mathbf{K}_{\text{occ}}^{nm} & \mathbf{X}^{nm} \\ (\mathbf{Y}^{nm})^{T} & \mathbf{K}_{\text{virt}}^{nm} \end{pmatrix}$
 $p_{j}^{m} = -\sum_{a} X_{ja}^{m} X_{ia}^{n} + Y_{ja}^{n} Y_{ia}^{m} \quad K_{ab}^{nm} = \sum_{i} X_{ia}^{m} X_{ib}^{n} + Y_{ia}^{n} Y_{ib}^{m}$
 $\begin{pmatrix} \mathbf{X}^{nm} \\ \mathbf{Y}^{nm} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} - (\Omega_{m} - \Omega_{n}) \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{P}^{nm} \\ \mathbf{Q}^{nm} \end{pmatrix}$

Total cost ~2 TDDFT calculations

- 1 diagonalization per excited state ●
- 1 polarizability-like solve per amplitude

Derivative coupling: Chernyak-Mukamel

$$\mathcal{A}^{(\alpha\beta)} = \sum_{ia} \langle \phi_i | \hat{v} | \phi_a \rangle X_{ia}^{(\alpha)} + \\ = \langle \Psi_0 | \hat{v} | \Psi^{(\alpha)} \rangle + \langle \Psi_0 |$$

$$|\Psi^{(\alpha)}\rangle = -\sum_{n} \frac{|\Phi_{n}\rangle v_{n0}}{\Omega_{n} - \omega} \longrightarrow \lim_{\omega \to \Omega_{n}} (\omega - \Omega_{n}) |\Psi^{(\alpha)}\rangle$$
$$\langle \Phi_{0} |\nabla \Phi_{n}\rangle = -\sum_{n} (X - Y)^{n}_{ia} \langle \phi_{i} |\nabla \phi_{a}\rangle$$

$$\mathbf{x} \ v^{(R)}(\mathbf{x})\rho^{nm}(\mathbf{x})$$

Hellman-Feyman invalid; back to response theory!

- $\langle \phi_i | \hat{v}^{\dagger} | \phi_a \rangle Y_{ia}^{(\alpha)}$ **TDDFT**
- $|\hat{v}^{\dagger}|\Psi^{(-\alpha)}\rangle$ exact

$$\lim_{\omega \to \Omega_n} (\omega - \Omega_n) |\Psi^{(\alpha)}\rangle = |\Phi_n\rangle v_{n0}$$

ia

Chernyak, V.; Mukamel, S. J. Chem. Phys. 2000, 112 (8), 3572. 21

Derivative couplings efficiently

 $(\mathbf{A} + \mathbf{B})\mathbf{Z} =$ **Z-vector**

 $(\mathbf{A} + \mathbf{B})(\mathbf{X}^n + \mathbf{Y}^n) = \Omega_n(\mathbf{X}^n - \mathbf{Y}^n)$

Final expression

 $d_{0n}^R = \langle \mathbf{h}^{(R)} \mathbf{P} \rangle -$

 $\langle \Phi_0 | \nabla \Phi_n \rangle = -\sum (X - Y)_{ia}^n \langle \phi_i | \nabla \phi_a \rangle$ **Becomes** $d_{0n}^R = -\langle (\mathbf{X} - \mathbf{Y})(\mathbf{U}^R + \frac{1}{2}(\mathbf{S}^{(R)} + \mathbf{T}^{(R)})) \rangle$ $(\mathbf{A} + \mathbf{B})\mathbf{U}^R = -\mathbf{h}^R$

$$= (\mathbf{X}^n - \mathbf{Y}^n)$$

$$\langle \mathbf{S}^{(R)}\mathbf{W}
angle + \langle \mathbf{V}^{(R)}\mathbf{\Gamma}
angle$$

Send, R.; Furche, F. J. Chem. Phys. 2010, 132 (4), 044107.

Arbitrary derivative couplings

Make a Lagrangian

$$L^{nm} = \sum_{pq} \rho_{pq}^{nm} \langle \phi_p(R_0) | \phi_q(R) \rangle$$

Make stationary

$$d_{nm}^{R} = \frac{\partial L^{nm}}{\partial R} = \left\langle \frac{\partial \mathbf{h}}{\partial R} \boldsymbol{\rho}^{nm} \right\rangle + \left\langle \frac{\partial \mathbf{S}}{\partial R} \mathbf{W}^{nm} \right\rangle + \left\langle \frac{\partial \mathbf{V}}{\partial R} \boldsymbol{\Gamma}^{nm} \right\rangle$$

 $\langle \Phi_n | \nabla \Phi_m \rangle = \sum \rho_{pq}^{nm} \langle \phi_p | \nabla \phi_q \rangle$ pq

KS orbitals $\langle D \rangle + \sum Z_{ia} F_{ia} - \sum W_{pq} (S_{pq} - \delta_{pq})$ iapqorthonormal orbitals

Send, R.; Furche, F. J. Chem. Phys. 2010, 132 (4), 044107. Li, Z.; Liu, W. J. Chem. Phys. 2014, 141 (1), 014110.

Х

Successes: properties reliable when KS TDDFT is sensible

Derivative couplings

- correct topology for state-to-state •
- "useful" accuracy

State-to-state conical intersections

Acc. Chem. Res. 2015, 48, 1340–1350 J. Chem. Phys. 142, 064109 (2015)

Challenges: non-real instabilities

Magnetic orbital rotation Hessian

 $(A - B)_{ia,jb} = \varepsilon_{ab}\delta_{ij} - \varepsilon_{ij}\delta_{ab} + c_x[(ib|ja) - (ij|ab)],$

If **A** - **B** has any negative eigenvalues, the system is said to be "non-real unstable"

$$(\mathbf{A} - \mathbf{B})^{\frac{1}{2}} (\mathbf{A} + \mathbf{B}) (\mathbf{A} - \mathbf{B})^{\frac{1}{2}} \mathbf{Z} = \Omega_n^2 \mathbf{Z}$$

- hard to guarantee real eigenvalues
- what do imaginary energies mean?

Solution: Tamm-Dancoff Approximation

- $AX = X\Omega$

Normally okay because for semilocal XC, can only happen with non-Aufbau occupation

Becomes problematic during dynamics because orbital gaps collapse

eigenvalues of Hermitian matrix -> real negative even allowed (and okay!)

R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 **1977**

Challenges: ground-to-excited conical intersections

SA-CASSCF

Unstable properties

but dynamics may not be terribly sensitive to topology . . .

GDV ca. BLA

GDV ca. BLA

dx.doi.org/10.1021/ct500154k | J. Chem. Theory Comput. 2014, 10, 3074–3084 25

Challenges: quadratic response failures hurt state-to-state

$$\Omega_m - \Omega_n \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{P}^{nm} \\ \mathbf{Q}^{nm} \end{pmatrix}$$

but there is a workaround: pseudowavefunction

Properties and couplings: Summary

Success/Failure	Consequence	Can we avoid?	Can we fix?
Tend to work when (TD)DFT works	Already know a lot about where (TD)DFT works	All useful tricks from (TD)DFT	All useful tricks from (TD)DFT
Nonreal instabilities	Imaginary energies?	TDA	Maybe, but not clear
Improper dimensionality of conical intersections	Ground and excited states artificially decoupled	May not have a big effect on dynamics	Need an ensemble grou state
Degenerate ground state	Properties can diverge near degeneracy	In dynamics, hop while we still have a gap	Need an ensemble grou state
Spurious poles in quadratic response	Unphysical divergences in state-to-state coupling	Pseudowavefunction approximation	Memory kernel?

The requisite properties

Photochemistry of Thymine

Interpreting Excited States

Action Lagrangian

Excited-state deactivation of thymine

Kang, H.; Lee, K. T.; Jung, B.; Ko, Y. J.; Kim, S. K. J. Am. Chem. Soc. 2002, 124 (44), 12958–12959. Stojanović, L.; Bai, S.; Nagesh, J.; Izmaylov, A.; Crespo-Otero, R.; Lischka, H.; Barbatti, M. Molecules 2016, 21 (11), 1603. Parker, S. M.; Roy, S.; Furche, F. PCCP. 2019, 21 (35), 18999–19010. https://doi.org/10.1039/C9CP03127H. 30

Thymine: S_1 is dark n- π^* , S_2 is bright π - π^*

Dominant NTOs isovals chosen such that ~25%, 50% of total orbital probability density

Prior results: fs pump-probe transient ionization

Signal	Timescale
Prompt	100-200 fs
Fast	5-7 ps
Slow	>1 ns

Parker, S. M.; Roy, S.; Furche, F. PCCP. 2019, 21 (35), 18999–19010. https://doi.org/10.1039/C9CP03127H.

Kang et al J. Am. Chem. Soc. 2002 124, 12958-12959

Prior results: photochemistry simulations

No qualitative or quantitative agreement on simulated timescales or mechanisms

Parker, S. M.; Roy, S.; Furche, F. PCCP. 2019, 21 (35), 18999–19010. https://doi.org/10.1039/C9CP03127H.

Electron correlation often discussed in terms of dynamic/static

Static: important for degenerate ground states (strong correlation)

Dynamic: important for correct state orderings weak correlation)

static

Computed excited-state energies

Method PBE0/def2-SVP PBE0/def2-SVPD $ADC(2)^{52}$ MS-CASPT2⁵⁰ MS-CASPT2⁴² CASSCF⁵⁰

EEL spectroscopy

Parker, S. M.; Roy, S.; Furche, F. *PCCP*. **2019**, *21* (35), 18999–19010. <u>https://doi.org/10.1039/C9CP03127H</u>.

S ₁ (eV)	S₂ (eV)
4.85	5.44
4.83	5.24
4.56	5.06
5.09	5.09
5.23	5.44
5.31	7.12
	$4.95^{64}, 4.9^{65}, 4.96^{66}$

Representative dynamics

Parker, S. M.; Roy, S.; Furche, F. PCCP. **2019**, 21 (35), 18999–19010. <u>https://doi.org/10.1039/C9CP03127H</u>. 34

PBE0-D3/def2-SVP

Averaged population dynamics

Parker, S. M.; Roy, S.; Furche, F. PCCP. 2019, 21 (35), 18999–19010. https://doi.org/10.1039/C9CP03127H. 35

PBE0-D3/def2-SVP

Thymine: structural dynamics

Only SH-TDDFT simulations consistent with experiment

	Method	prompt	assignment	fast	assignment
	Semiempirical[1]	17 fs	$S_2 \rightarrow S_1$	420 fs	$S_1 \longrightarrow S_0$
\rightarrow	CASSCF[2]	100 - 200 fs	$S_{2,FC} \longrightarrow S_{1,min}$	2.6 - 5 ps	$S_{2,min} \longrightarrow S_1$
	ADC(2)[3]	150 - 158 fs	$S_2 \longrightarrow S_1$	420 fs	$S_1 \longrightarrow S_0$
	FSSH+PBE0 (this)	140 - 200 fs	$S_2 \rightarrow S_1$	7 - 15 ps	$S_1 \rightarrow S_0$

Parker, S. M.; Roy, S.; Furche, F. PCCP. 2019, 21 (35), 18999–19010. https://doi.org/10.1039/C9CP03127H. 36

Balanced correlation?

Static: important for degenerate ground states (strong correlation)

Dynamic: important for correct state orderings (weak correlation)

static

dynamic

The requisite properties

Photochemistry of Thymine

Interpreting Excited States

Action Lagrangian

So you ran some TDDFT calculations. Now what?

TD-DFT EXCITED STATES (SINGLETS)

the weight of the individual excitations are printed if larger than 0.01

STATE 1: 144a ->	E= 145a	0.049870 au : 0.987173	1.357	eV
STATE 2: 144a ->	E= 146a	0.080777 au : 0.982008	2.198	eV
STATE 3: 142a -> 143a ->	E= 145a 145a	0.082054 au : 0.032110 : 0.950022	2.233	eV

But what if it is more complicated?

STATE 3:	E=	0.136	6955 au
143a ->	145a	:	0.012034
144a ->	146a	:	0.248933
144a ->	147a	:	0.678902
144a ->	150a	:	0.017086

occupied

virtual

3.727 eV 30058.2 cm**-1 <S**2> = 0.000000

Natural Transition Orbitals

Transition vector includes transitions from every possible occupied to every possible virtual

But how relevant are Kohn-Sham orbitals to excited states?

41

Natural Transition Orbitals

STATE	3:	E=	0.136	955 au	3.727	еV
143a	->	145a	:	0.012034		
144a	->	146a	:	0.248933		
144a	->	147a	:	0.678902		
144a	->	150a	:	0.017086		

E= 0.136	6955 au		3.727 eV	30058.2	cm**-1
144a ->	145a :	n=	0.96425590		
143a –>	146a :	n=	0.02428133		
142a ->	147a :	n=	0.00948078		
141a ->	148a :	n=	0.00197224		
140a ->	149a :	n=	0.00130794		
139a ->	150a :	n=	0.00100346		

Key takeaways

- Action Lagrangian conveniently defines properties
- Response functions are formal tools that can be used to define properties • Cost of excited-state calculations similar to ground state
- Generally, nonlinear properties are accurate when (TD)DFT is accurate
- Use TDA to avoid non-real instabilities
- Beware ground-to-excited conical intersections
- Use pseudowavefunction approach for state-to-state properties
 - True for nonlinear spectra as well, like excited-state absorption
- Despite misgivings, SH-TDDFT performs excellently for photochemistry (so far)

