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Optical absorp

tion: Experiment and Phenomenology
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Exp. at 30 K from: P. Lautenschlager et al.,

Phys. Rev. B 36, 4821 (1987).

Light is absorbed: I = Iye~*(«)®
Classical electrodynamics
E = Epe "%, ¢® = —ep(w)

em(w) = ey (w) + iy (w)

w ! s w 1
~2N ey i €
17 ¢ 20y /e M

€, = n, — index of refraction

I ~ |E|2 — |E0|2€7a(w)z J

a(w) = ey (W)

ey (w) ~ absorption rate
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Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair
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Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair
Representation by Feynman diagrams:

< s

@ photon creates an e-h pair
@ the pair propagates freely
@ it recombines and recreates a photon

Absorption rate is given by an imaginary part of the polarization loop

27 R
W = ? Z |<%|e o V|(P]>|25(€] = g5 = hCU) ~ |m€(w)
,J
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Absorption by independent Kohn-Sham particles
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Absorption by independent Kohn-Sham particles
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Particles are interacting!
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Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system,
but do not touch each other
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Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system,
but do not touch each other

Absorption by “dressed” particles

Bare propagator Gy is replaced by the full propagator
G =Go+ GoXG

[w—izo(r)]G(r,r’,w)—l-/drlZ(r,rl,w)G(rl,r',w) =d(r—r')
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Self-energy corrections

Perturbative GW corrections

ho(r)i(r) + Vae(r)pi(r) = €ipi(r)
ho(e)eu(s) + [ de' 2, v 0 = B) 6i) = B i)

First-order perturbative corrections with ¥ = GW:

E; — € = (@i X — Viel|ps)

Hybersten and Louie, PRB 34 (1986);
Godby, Schliter and Sham, PRB 37 (1988)
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Optical absorption: Independent quasiparticles
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Independent transitions:
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Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole
created by a photon
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Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole
created by a photon

Summing up all such interaction processes we get:

1 3
- L > - L
2 4

Empty polarization loop is replaced by the full two-particle propagator
L(I‘ltl; roto; rats; I‘4t4) = L(1234) with joined ends

Equation for L(1234) is the Bethe-Salpeter equation! ]
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Neutral excitations — poles of two-particle Green’s function L
Excitonic effects = electron - hole interaction
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Absorption

Vv

Neutral excitations — poles of two-particle Green’s function L
Excitonic effects = electron - hole interaction
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e The Bethe-Salpeter equation: Pictorial derivation



BSE
[¢] le]e]e}

Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

v

@ Solid lines stand for bare one-particle Green’s functions
Go(12) = Go(ry,12,t1 — 1)

@ Wiggled lines correspond to the interaction (Coulomb) potential

62

1}(12) = U(I‘1 — P2)5(t1 — tg) (t1 — tz)

-
[r1 — 1o

@ Integration over space-time coordinates of all intermediate points
in each graph is assumed
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Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

v

1st step: Dressing one-particle propagators

—_—— = —— 4 —»—@—»— —+ —>—®—>—@—>— + ...
Self-energy X is a sum of all 1-particle irreducible diagrams
»-@~=IM_k +*J\fo§\1+§ § +...

Full 1-particle Green’s function satisfies the Dyson equation
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Derivation of the Bethe-Salpeter equation (2)

Propagation of dressed interacting electron and hole:

L] = +><+§+@§ .

2nd step: Classification of scattering processes

At this stage we identify two-particle irreducible blocks

H- T

where ~(1234) of the electron-hole stattering amplitude
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Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

ES
—_—

The result is the Bethe-Salpeter equation

L =:+:|L
B-><-T
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Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

ES
—_—

The result is the Bethe-Salpeter equation

Ll =  + Ll - |r||tL

Analytic form of the Bethe-Salpeter equation (j = {r;,t;})

L(1234) = Ly(1234)+

/ Lo(1256)[v(57)5(56)8(78) — v(5678)] L(7834)d5d6d7d8
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Closed set of equations in a diagrammatic form

@ X(12) is a sum of all 1-particle irreducible diagrams

@=m+%+9 ...

@ ~(1234) — sum of all e-h and interaction irreducible diagrams

<
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Q Macroscopic response and the Bethe-Salpeter equation
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Response to external potential

Veﬂct — n ’_> de /dI’ v znd( ) _ ,Unz'nd
Total field acting on particles in the system :  Vtot = yext o jind

Linear response theory: Definition of the dielectric function

w0 = [anrEe) o V= ey = ety

The density response function x(12) is related to the e-h propagator L
nind = 4} \ext

X(12) = X(I‘l, 1‘27t1 — tz) = L(1122) = L(I‘ll‘ll‘grg,tl — t2) J
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Macroscopic response in solids

Optical absorption is determined by Imej;(w). How we calculate it?
Veit(l‘ﬂf) — Vemt(q)e—i(wt—qr) , < G
In a periodic system V¢ contains all components withk = q + G

Vznd _ 7zwt Z Vznd z(quG)r

Fourier component of the total potential in a solid:

V&' (a) = 0.0V (q) + VE(a) = [0 +ve(@)xe.o(q,w)] V' (q)

Macroscopic field and macroscopic dielectric function

@ Macroscopic (averaged) potential: Vi (q) = V&L, (q)
@ Macroscopic dielectric function:  Ve**(q) = ex(q,w) V9 (q)

1

emq,w) =
M (@) = T oo (@ @)
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Macroscopic dielectric function from BSE (1)

1st possibility:
@ Calculate L(1234) by solving the Bethe-Salpeter equation
L=Ly+ Lo(v—")L
@ Join electron-hole ends and perform a Fourier transform in time
L(1122) = L(ririrars, t1 — t2) — L(ririrars,w) = x(r1,re,w)

@ Go to the momentum representation
xe.c (q,w) = /drlalrgei(‘HG)‘“L(rlrlr2r2,o.))e*i("”G/)r2

@ The “head” of xg e (element with G = G’ = 0) determines ¢
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Macroscopic dielectric function from BSE (1)

1st possibility:
@ Calculate L(1234) by solving the Bethe-Salpeter equation
L=Ly+ Lo(v—")L
@ Join electron-hole ends and perform a Fourier transform in time
L(1122) = L(ririrars, t1 — t2) — L(ririrars,w) = x(r1,re,w)

@ Go to the momentum representation
xG.a (q,w) = /drlalrgei(‘HG)‘“L(rlrlr2r2,o.))e*i("”G/)r2

@ The “head” of xg e (element with G = G’ = 0) determines ¢

Macroscopic dielectric function and the absorption rate

1
1+ vg=o(q)Xx0,0(qw)’

em(q,w) Abs(w) = lim €j/(q,w)
q—0
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Macroscopic dielectric function from BSE (2)

2nd possibility:
Define a “long-range part” vy of the interaction potential

va(aq) = va=0(q)dc 0 + vc(a)

u(r) = /BZ dqg e Iryg(q) = vo(r) + o(r)

Bethe-Salpeter equation for a “proper” e-h propagator L(1234)
(replace v — v in the full BSE)

E = Lo +L0(’D—’y)i

The full L-function and the density response function xc,a’(q,w)

L=L+Lvwl = X = X + XvoX
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Macroscopic dielectric function from BSE (2)

L=L+LvL = x(12)=x(12) + x(13)vo(34)x(42) J

In the momentum representation vy — va=o(a)dc.o

- - Xo,0(q,w
Xa,¢' = XG,¢'tXG,0vc=0X0,c0 = Xoo(qw) = 1— g 0(51)X0)0(q )

Macroscopic dielectric function in terms of proper polarizability

1
1+ vg=o(a)x0,0(q,w

e (q,w) ) =1—vg=0(q)Xo,0(q,w)

Xo,0(q,w) = /drldrgeiq(“_TQ)E(rlrlrzrg,w)
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Macroscopic dielectric function from BSE (2)

Optical response from the Bethe-Salpeter equation

@ Solve the reduced Bethe-Salpeter equation for L(1234)

L= Lo+ Lo(l_} = ’}/)E
@ Calculate the macroscopic dielectric function from L(1122)
em(q,w) =1—va=0(q) /drldrgeiQ(rl_r2)f1(r1r1r2r2,w)

@ Calculate the absorption rate from the imaginary part of e,/ (q, w)

Abs(w) = lim ¢ (q,)

By setting v = 0 we neglect local field effects — the difference
between the macroscopic field V2(r) and the actual field V**!(r)
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0 The Bethe-Salpeter equation in practice
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The Bethe-Salpeter equation: Approximations

Reminder

BSE determines 2-particle propagator L(1234), provided 1-particle
self-energy 3(12) and e-h scattering amplitude v(1234) are given.

Standard approximations:

@ Appriximating X by GW diagram: %(12) = G(12)W (12)

@ Approximating v by W: ~(1234) = W(12)6(13)d(24)

-1
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The Bethe-Salpeter equation: Approximations

Approximate Bethe-Salpeter equation

$
L| = + 1 I { ]
$

Analytic form of the approximate Bethe-Salpeter equation

L(1234) = Ly(1234) + / Lo(1256)[v(57)8(56)8(78)—
W (56)6(57)5(68)] L(7834)d5d6d7d8

Ly(1234) = G(12)G(43) and W (12) come out of the GW calculations
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The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

L(1234) = Lo(1234) + / d5d6d7d8 Lo(1256) x
x [u(57)8(56)8(78) — W (56)8(57)8(68)] L(7834)
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The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

L(1234) = Lo(1234) + / d5d6d7d8 Lo(1256) x
x [5(57)8(56)8(78) — W (56)8(57)8(68)] L(7834)

Further simplifications: Static W/

Assumption of the static screening:
W(I‘l, Iy, b1 — tg) = W(I‘l, I'g)é(tl = tg)
[_/<1234) = .Z(I'l, Iy, T3, Ty, b — t/) = I/(I'l, Iy, I'3, I'y, W)
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Optical response in practice

Calculation of the macroscopic dielectric function

L(r1r2r3r4w) = Lg (r1r2r3r4w) + /dr5dr6dr7dr8 Lo(r1r2r5r6w)x

X [’17(1'51'7)6(1‘51'6)5(1‘71'8) — W(r5r6)5(1'51'7)6(r6r8)]i(r7rgr3r4w)

ear(w) = 1 - lim [va—o(a) / drdr/ e L(r,x, v w)|
q

®7 (r1)$;(r2)ei(rs)e;(ra)
w— (B — Ej)

Lo(r1,re,13,14,0) = Z(fj = fi)

ij
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BSE calculations

A three-step method

@ LDA calculation
= Kohn-Sham wavefunctions ¢;

@ GW calculation
= GW energies E; and screened Coulomb interaction W

© BSE calculation
solution of L = Ly + Lo(v — )L
= proper e-h propagator L(riraorsriw)
= spectra e (w)
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Results: Continuum excitons (Si)

Bulk silicon

wieV)

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).
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Results: Bound excitons (solid Ar)

Solid argon

T T £ T | T | y T

. exp

—e TP R P A
= GW-RPA

e IBSE

1 12 13 14 15
w(eV)

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).
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