Many-body Perturbation Theory II. Bethe-Salpeter equation: electron-hole excitations and optical spectra

Ilya Tokatly

European Theoretical Spectroscopy Facility (ETSF)
University of the Basque Country - UPV/EHU San Sebastián - Spain IKERBASQUE, Basque Foundation for Science - Bilbao - Spain
ilya.tokatly@ehu.es
TDDFT school - Benasque 2022

Basque Foundation for Science

European Theoretical
Spectroscopy Facility

Outline

(1) Optics and two-particle dynamics: Why BSE?
(2) The Bethe-Salpeter equation: Pictorial derivation
(3) Macroscopic response and the Bethe-Salpeter equation

4 The Bethe-Salpeter equation in practice

Outline

(1) Optics and two-particle dynamics: Why BSE?
(2) The Bethe-Salpeter equation: Pictorial derivation
(3) Macroscopic response and the Bethe-Salpeter equation

4 The Bethe-Salpeter equation in practice

Optical absorption: Experiment and Phenomenology

Light is absorbed: $I=I_{0} e^{-\alpha(\omega) x}$

Classical electrodynamics

$$
\begin{gathered}
E=E_{0} e^{-i(\omega t-q x)}, \quad q^{2}=\frac{\omega^{2}}{c^{2}} \epsilon_{M}(\omega) \\
\epsilon_{M}(\omega)=\epsilon_{M}^{\prime}(\omega)+i \epsilon_{M}^{\prime \prime}(\omega)
\end{gathered}
$$

$$
q \approx \frac{\omega}{c} \sqrt{\epsilon_{M}^{\prime}}+i \frac{\omega}{2 c \sqrt{\epsilon_{M}^{\prime}}} \epsilon_{M}^{\prime \prime}
$$

$$
\sqrt{\epsilon_{M}^{\prime}}=n_{r}-\text { index of refraction }
$$

$$
\begin{aligned}
I \sim|E|^{2} & =\left|E_{0}\right|^{2} e^{-\alpha(\omega) x} \\
\alpha(\omega) & =\frac{\omega}{c n_{r}} \epsilon_{M}^{\prime \prime}(\omega)
\end{aligned}
$$

$\epsilon_{M}^{\prime \prime}(\omega) \sim$ absorption rate
Exp. at 30 K from: P. Lautenschlager et al., Phys. Rev. B 36, 4821 (1987).

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair Representation by Feynman diagrams:

- photon creates an e-h pair
a the nair nronagatos froely

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair Representation by Feynman diagrams:

- photon creates an e-h pair
- the pair propagates freely
- it recombines and recreates a photon

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair Representation by Feynman diagrams:

- photon creates an e-h pair
- the pair propagates freely
- it recombines and recreates a photon

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair Representation by Feynman diagrams:

- photon creates an e-h pair
- the pair propagates freely
- it recombines and recreates a photon

Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair Representation by Feynman diagrams:

- photon creates an e-h pair
- the pair propagates freely
- it recombines and recreates a photon

Absorption rate is given by an imaginary part of the polarization loop

$$
\left.W=\frac{2 \pi}{\hbar} \sum_{i, j}\left|\left\langle\varphi_{i}\right| \mathbf{e} \cdot \hat{\mathbf{v}}\right| \varphi_{j}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{j}-\varepsilon_{i}-\hbar \omega\right) \sim \operatorname{Im} \epsilon(\omega)
$$

Absorption by independent Kohn-Sham particles

Independent transitions:

$$
\left.\epsilon^{\prime \prime}(\omega)=\frac{8 \pi^{2}}{\omega^{2}} \sum_{i j}\left|\left\langle\varphi_{j}\right| \mathbf{e} \cdot \hat{\mathbf{v}}\right| \varphi_{i}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{j}-\varepsilon_{i}-\omega\right)
$$

Absorption by independent Kohn-Sham particles

Independent transitions:
$\left.\epsilon^{\prime \prime}(\omega)=\frac{8 \pi^{2}}{\omega^{2}} \sum_{i j}\left|\left\langle\varphi_{j}\right| \mathbf{e} \cdot \hat{\mathbf{v}}\right| \varphi_{i}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{j}-\varepsilon_{i}-\omega\right)$

Particles are interacting!

Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system, but do not touch each other

Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system, but do not touch each other

Absorption by "dressed" particles

Bare propagator G_{0} is replaced by the full propagator $G=G_{0}+G_{0} \Sigma G$

$$
\left[\omega-\hat{h}_{0}(\mathbf{r})\right] G\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)+\int d \mathbf{r}_{1} \Sigma\left(\mathbf{r}, \mathbf{r}_{1}, \omega\right) G\left(\mathbf{r}_{1}, \mathbf{r}^{\prime}, \omega\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

Self-energy corrections

Perturbative GW corrections

$$
\begin{array}{r}
\hat{h}_{0}(\mathbf{r}) \varphi_{i}(\mathbf{r})+V_{x c}(\mathbf{r}) \varphi_{i}(r)=\epsilon_{i} \varphi_{i}(\mathbf{r}) \\
\hat{h}_{0}(\mathbf{r}) \phi_{i}(\mathbf{r})+\int d \mathbf{r}^{\prime} \Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega=E_{i}\right) \phi_{i}\left(\mathbf{r}^{\prime}\right)=E_{i} \phi_{i}(\mathbf{r})
\end{array}
$$

First-order perturbative corrections with $\Sigma=G W$:

$$
E_{i}-\epsilon_{i}=\left\langle\varphi_{i}\right| \Sigma-V_{x c}\left|\varphi_{i}\right\rangle
$$

Hybersten and Louie, PRB 34 (1986);
Godby, Schlüter and Sham, PRB 37 (1988)

Optical absorption: Independent quasiparticles

Independent transitions:
$\left.\epsilon^{\prime \prime}(\omega)=\frac{8 \pi^{2}}{\omega^{2}} \sum_{i j}\left|\left\langle\varphi_{j}\right| \mathbf{e} \cdot \hat{\mathbf{v}}\right| \varphi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{j}-E_{i}-\omega\right)$

Silicon
Optical Absorption

Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole created by a photon

Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole created by a photon

Summing up all such interaction processes we get:

Empty polarization loop is replaced by the full two-particle propagator $L\left(\mathbf{r}_{1} t_{1} ; \mathbf{r}_{2} t_{2} ; \mathbf{r}_{3} t_{3} ; \mathbf{r}_{4} t_{4}\right)=L(1234)$ with joined ends

Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole created by a photon

Summing up all such interaction processes we get:

Empty polarization loop is replaced by the full two-particle propagator $L\left(\mathbf{r}_{1} t_{1} ; \mathbf{r}_{2} t_{2} ; \mathbf{r}_{3} t_{3} ; \mathbf{r}_{4} t_{4}\right)=L(1234)$ with joined ends

Absorption

Neutral excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Absorption

Neutral excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Absorption

Neutral excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Outline

(1) Optics and two-particle dynamics: Why BSE?

(2) The Bethe-Salpeter equation: Pictorial derivation
(3) Macroscopic response and the Bethe-Salpeter equation

4 The Bethe-Salpeter equation in practice

Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

- Solid lines stand for bare one-particle Green's functions

$$
G_{0}(12)=G_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t_{1}-t_{2}\right)
$$

- Wiggled lines correspond to the interaction (Coulomb) potential

$$
v(12)=v\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \delta\left(t_{1}-t_{2}\right)=\frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \delta\left(t_{1}-t_{2}\right)
$$

- Integration over space-time coordinates of all intermediate points in each graph is assumed

Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

1st step: Dressing one-particle propagators

Self-energy Σ is a sum of all 1-particle irreducible diagrams

$$
-(5)=\sqrt{n}+\sqrt{\sqrt{3} 3}+\sqrt{3}+\ldots
$$

Full 1-particle Green's function satisfies the Dyson equation

$$
\Longrightarrow=\cdots+\cdots \longrightarrow
$$

000000000

Derivation of the Bethe-Salpeter equation (2)

Propagation of dressed interacting electron and hole:

2nd step: Classification of scattering processes

At this stage we identify two-particle irreducible blocks

$$
\sqrt{\theta}=\gg-\sqrt{Y /}
$$

where $\gamma(1234)$ of the electron-hole stattering amplitude

Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

The result is the Bethe-Salpeter equation

且-xur - 田

Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

The result is the Bethe-Salpeter equation

Analytic form of the Bethe-Salpeter equation $\left(j=\left\{\mathbf{r}_{j}, t_{j}\right\}\right)$

$$
\begin{aligned}
L(1234)= & L_{0}(1234)+ \\
& \int L_{0}(1256)[v(57) \delta(56) \delta(78)-\gamma(5678)] L(7834) d 5 d 6 d 7 d 8
\end{aligned}
$$

Closed set of equations in a diagrammatic form

- 1-particle Green's function $G(12)$ satisfies the Dyson equation

- $\Sigma(12)$ is a sum of all 1-particle irreducible diagrams

$$
-(5)-=\underbrace{m}+\sqrt{3 \sqrt{3} 3}+\ldots
$$

- $\gamma(1234)$ - sum of all e-h and interaction irreducible diagrams

Outline

(1) Optics and two-particle dynamics: Why BSE?
(2) The Bethe-Salpeter equation: Pictorial derivation
(3) Macroscopic response and the Bethe-Salpeter equation
(4) The Bethe-Salpeter equation in practice

Response to external potential

$$
V^{e x t} \longmapsto n^{i n d} \longmapsto V^{i n d}(\mathbf{r})=\int d \mathbf{r}^{\prime} v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) n^{i n d}\left(\mathbf{r}^{\prime}\right)=v n^{i n d}
$$

Total field acting on particles in the system : $\quad V^{t o t}=V^{e x t}+V^{\text {ind }}$

Linear response theory: Definition of the dielectric function

$$
n^{i n d}(1)=\int d 2 \chi(12) V^{e x t}(2) \quad \longmapsto \quad V^{t o t}=(1+v \chi) V^{e x t} \equiv \epsilon^{-1} V^{e x t}
$$

The density response function $\chi(12)$ is related to the e-h propagator L

$$
n^{i n d}=\left\langle L \sim V^{e x t}\right.
$$

$$
\chi(12)=\chi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t_{1}-t_{2}\right)=L(1122)=L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, t_{1}-t_{2}\right)
$$

Macroscopic response in solids

Optical absorption is determined by $\operatorname{Im} \epsilon_{M}(\omega)$. How we calculate it?

$$
V^{e x t}(\mathbf{r}, t)=V^{e x t}(\mathbf{q}) e^{-i(\omega t-\mathbf{q r})}, \quad q \ll G
$$

In a periodic system $V^{\text {ind }}$ contains all components with $\mathbf{k}=\mathbf{q}+\mathbf{G}$

$$
V^{i n d}(\mathbf{r}, t)=e^{-i \omega t} \sum_{\mathbf{G}} V_{\mathbf{G}}^{i n d}(\mathbf{q}) e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}}
$$

Fourier component of the total potential in a solid:

$$
V_{\mathbf{G}}^{t o t}(\mathbf{q})=\delta_{\mathbf{G}, 0} V^{\text {ext }}(\mathbf{q})+V_{\mathbf{G}}^{\text {ind }}(\mathbf{q})=\left[\delta_{\mathbf{G}, 0}+v_{\mathbf{G}}(\mathbf{q}) \chi_{\mathbf{G}, 0}(\mathbf{q}, \omega)\right] V^{e x t}(\mathbf{q})
$$

Macroscopic field and macroscopic dielectric function

- Macroscopic (averaged) potential: $V_{M}^{\text {tot }}(\mathbf{q})=V_{\mathbf{G}=0}^{\text {tot }}(\mathbf{q})$
- Macroscopic dielectric function: $V^{\text {ext }}(\mathbf{q})=\epsilon_{M}(\mathbf{q}, \omega) V_{M}^{\text {tot }}(\mathbf{q})$

$$
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{1+v_{\mathbf{G}=0}(\mathbf{q}) \chi_{0,0}(\mathbf{q}, \omega)}
$$

Macroscopic dielectric function from BSE (1)

1st possibility:

- Calculate $L(1234)$ by solving the Bethe-Salpeter equation

$$
L=L_{0}+L_{0}(v-\gamma) L
$$

- Join electron-hole ends and perform a Fourier transform in time

$$
L(1122)=L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, t_{1}-t_{2}\right) \mapsto L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right)=\chi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega\right)
$$

- Go to the momentum representation

$$
\chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=\int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}_{1}} L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right) e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}_{2}}
$$

- The "head" of $\chi_{\mathbf{G}, \mathbf{G}^{\prime}}$ (element with $\mathbf{G}=\mathbf{G}^{\prime}=0$) determines ϵ_{M}

Macroscopic dielectric function from BSE (1)

1st possibility:

- Calculate $L(1234)$ by solving the Bethe-Salpeter equation

$$
L=L_{0}+L_{0}(v-\gamma) L
$$

- Join electron-hole ends and perform a Fourier transform in time

$$
L(1122)=L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, t_{1}-t_{2}\right) \mapsto L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right)=\chi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega\right)
$$

- Go to the momentum representation

$$
\chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=\int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}_{1}} L\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right) e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}_{2}}
$$

- The "head" of $\chi_{\mathbf{G}, \mathbf{G}^{\prime}}\left(\right.$ element with $\mathbf{G}=\mathbf{G}^{\prime}=0$) determines ϵ_{M}

Macroscopic dielectric function and the absorption rate

$$
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{1+v_{\mathbf{G}=0}(\mathbf{q}) \chi_{0,0}(\mathbf{q}, \omega)} ; \quad \operatorname{Abs}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \epsilon_{M}^{\prime \prime}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function from BSE (2)

2nd possibility:

Define a "long-range part" v_{0} of the interaction potential

$$
\begin{gathered}
v_{\mathbf{G}}(\mathbf{q})=v_{\mathbf{G}=0}(\mathbf{q}) \delta_{\mathbf{G}, 0}+\bar{v}_{\mathbf{G}}(\mathbf{q}) \\
v(r)=\int_{B Z} d \mathbf{q} \sum_{\mathbf{G}} e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}_{v_{\mathbf{G}}}(\mathbf{q})=v_{0}(\mathbf{r})+\bar{v}(\mathbf{r})}
\end{gathered}
$$

Bethe-Salpeter equation for a "proper" e-h propagator $\bar{L}(1234)$ (replace $v \mapsto \bar{v}$ in the full BSE)

$$
\bar{L}=L_{0}+L_{0}(\bar{v}-\gamma) \bar{L}
$$

The full L-function and the density response function $\chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)$

$$
L=\bar{L}+\bar{L} v_{0} L \quad \Rightarrow \quad \chi=\bar{\chi}+\bar{\chi} v_{0} \chi
$$

Macroscopic dielectric function from BSE (2)

$$
L=\bar{L}+\bar{L} v_{0} L \quad \Rightarrow \quad \chi(12)=\bar{\chi}(12)+\bar{\chi}(13) v_{0}(34) \chi(42)
$$

In the momentum representation $v_{0} \mapsto v_{\mathbf{G}=0}(\mathbf{q}) \delta_{\mathbf{G}, 0}$
$\chi_{\mathbf{G}, \mathbf{G}^{\prime}}=\bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}+\bar{\chi}_{\mathbf{G}, 0} v_{\mathbf{G}=0} \chi_{0, \mathbf{G}^{\prime}} \quad \Rightarrow \quad \chi_{0,0}(\mathbf{q}, \omega)=\frac{\bar{\chi}_{0,0}(\mathbf{q}, \omega)}{1-v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi}_{0,0}(\mathbf{q}, \omega)}$

Macroscopic dielectric function in terms of proper polarizability

$$
\begin{gathered}
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{1+v_{\mathbf{G}=0}(\mathbf{q}) \chi_{0,0}(\mathbf{q}, \omega)}=1-v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi}_{0,0}(\mathbf{q}, \omega) \\
\bar{\chi}_{0,0}(\mathbf{q}, \omega)=\int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{i \mathbf{q}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right)
\end{gathered}
$$

Macroscopic dielectric function from BSE (2)

Optical response from the Bethe-Salpeter equation

- Solve the reduced Bethe-Salpeter equation for $\bar{L}(1234)$

$$
\bar{L}=L_{0}+L_{0}(\bar{v}-\gamma) \bar{L}
$$

- Calculate the macroscopic dielectric function from $\bar{L}(1122)$

$$
\epsilon_{M}(\mathbf{q}, \omega)=1-v_{\mathbf{G}=0}(\mathbf{q}) \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{i \mathbf{q}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}, \omega\right)
$$

- Calculate the absorption rate from the imaginary part of $\epsilon_{M}(\mathbf{q}, \omega)$

$$
\operatorname{Abs}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \epsilon_{M}^{\prime \prime}(\mathbf{q}, \omega)
$$

By setting $\bar{v}=0$ we neglect local field effects - the difference between the macroscopic field $V_{M}^{t o t}(\mathbf{r})$ and the actual field $V^{t o t}(\mathbf{r})$

Outline

(1) Optics and two-particle dynamics: Why BSE?
(2) The Bethe-Salpeter equation: Pictorial derivation
(3) Macroscopic response and the Bethe-Salpeter equation

4 The Bethe-Salpeter equation in practice

The Bethe-Salpeter equation: Approximations

Reminder

BSE determines 2-particle propagator L (1234), provided 1-particle self-energy $\Sigma(12)$ and e-h scattering amplitude $\gamma(1234)$ are given.

Standard approximations:

- Appriximating Σ by GW diagram: $\Sigma(12)=G(12) W(12)$

- Approximating γ by W : $\gamma(1234)=W(12) \delta(13) \delta(24)$

$$
\sqrt{Y}=\mathbb{3}
$$

The Bethe-Salpeter equation: Approximations

Approximate Bethe-Salpeter equation

Analytic form of the approximate Bethe-Salpeter equation

$$
\begin{aligned}
& L(1234)=L_{0}(1234)+\int L_{0}(1256)[v(57) \delta(56) \delta(78)- \\
& W(56) \delta(57) \delta(68)] L(7834) d 5 d 6 d 7 d 8
\end{aligned}
$$

$L_{0}(1234)=G(12) G(43)$ and $W(12)$ come out of the GW calculations

The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

$$
\begin{aligned}
L(1234)= & L_{0}(1234)+\int d 5 d 6 d 7 d 8 L_{0}(1256) \times \\
& \times[v(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] L(7834)
\end{aligned}
$$

The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

$$
\begin{aligned}
\bar{L}(1234)= & L_{0}(1234)+\int d 5 d 6 d 7 d 8 L_{0}(1256) \times \\
& \times[\bar{v}(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] \bar{L}(7834)
\end{aligned}
$$

Further simplifications: Static W

The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

$$
\begin{aligned}
\bar{L}(1234)= & L_{0}(1234)+\int d 5 d 6 d 7 d 8 L_{0}(1256) \times \\
& \times[\bar{v}(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] \bar{L}(7834)
\end{aligned}
$$

Further simplifications: Static W
Assumption of the static screening:

$$
\begin{gathered}
W\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t_{1}-t_{2}\right) \Rightarrow W\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \delta\left(t_{1}-t_{2}\right) \\
\bar{L}(1234) \Rightarrow \bar{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, t-t^{\prime}\right) \Rightarrow \bar{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, \omega\right)
\end{gathered}
$$

Optical response in practice

Calculation of the macroscopic dielectric function

$$
\begin{gathered}
\bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)=L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)+\int d \mathbf{r}_{5} d \mathbf{r}_{6} d \mathbf{r}_{7} d \mathbf{r}_{8} L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{5} \mathbf{r}_{6} \omega\right) \times \\
\times\left[\bar{v}\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{7} \mathbf{r}_{8}\right)-W\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{6} \mathbf{r}_{8}\right)\right] \bar{L}\left(\mathbf{r}_{7} \mathbf{r}_{8} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right) \\
\epsilon_{M}(\omega)=1-\lim _{\mathbf{q} \rightarrow 0}\left[v_{\mathbf{G}=0}(\mathbf{q}) \int d \mathbf{r} d \mathbf{r}^{\prime} e^{i \mathbf{q}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \bar{L}\left(\mathbf{r}, \mathbf{r}, \mathbf{r}^{\prime}, \mathbf{r}^{\prime}, \omega\right)\right]
\end{gathered}
$$

$$
L_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, \omega\right)=\sum_{i j}\left(f_{j}-f_{i}\right) \frac{\phi_{i}^{*}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{i}\left(\mathbf{r}_{3}\right) \phi_{j}^{*}\left(\mathbf{r}_{4}\right)}{\omega-\left(E_{i}-E_{j}\right)}
$$

BSE calculations

A three-step method

- LDA calculation
\Rightarrow Kohn-Sham wavefunctions φ_{i}
(2) GW calculation
\Rightarrow GW energies E_{i} and screened Coulomb interaction W
(3) BSE calculation
solution of $\bar{L}=L_{0}+L_{0}(\bar{v}-\gamma) \bar{L}$
\Rightarrow proper e-h propagator $\bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)$
\Rightarrow spectra $\epsilon_{M}(\omega)$

Results: Continuum excitons (Si)

Bulk silicon

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

Results: Bound excitons (solid Ar)

Solid argon

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).

References

Review articles:
EGiovanni Onida, Lucia Reining, and Angel Rubio Rev. Mod. Phys. 74, 601 (2002).
圊 G. Strinati
Rivista del Nuovo Cimento 11, (12)1 (1988).
围 S. Botti, A. Schindlmayr, R. Del Sole, and L. Reining Rep. Progr. Phys. 70, 357 (2007).

PhD thesises:
Q Francesco Sottile
PhD thesis, Ecole Polytechnique (2003)
http://etsf.polytechnique.fr/system/files/users/
francesco/Tesi_dot.pdf
Q Fabien Bruneval
PhD thesis, Ecole Polytechnique (2005)
http://theory.polytechnique.fr/people/bruneval/
bruneval_these.pdf

