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A Cold-Atom Vacuum

‘Pancake’ Bose-Einstein condensate serves as scalar field in
vacuum state

(2 + 1) BEC Lagrangian, confined to the (x , y) plane:

LBEC = i~Φ∂tΦ∗ +
~2

2m
|∇Φ|2 +

g2d

2
|Φ|4
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Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



Lasers and Bose-Einstein Condensates

Free electromagnetic field Lagrangian:

Lem =
ε0

2
(∂tAx (t, z))2 − 1

2µ0
(∂zAx (t, z))2

The interaction Lagrangian is

Lint =
α0

2
(∂tA)2 |Φ|2 ,

which implies the EOM

∂t

((
ε0 + α0|Φ|2

)
∂tAx

)
− 1

µ0
∂zzAx = 0

To lowest order, the effective propagation speed is

ceff =
1√

µ0(ε0 + α0|Φ0|2)

At the next order, BEC density fluctuations get transduced into
the laser phase.

Cisco Gooding Probing the Vacuum



The Unruh Effect

Vacuum appears hot to accelerated observers!

(Credit: arXiv:1911.06002)
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Interferometric Unruh Detectors for BECs

Experimental proposal: use a circularly-moving interaction point
between a laser and a 2d BEC to probe the “vacuum” along an
accelerated trajectory [C. Gooding et al.
PhysRevLett.125.213603(2020)].
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Common Mode and Difference Signal

Unruh Detection Scheme:

No need for spatial interferometry -
sidebands can produce effective “frequency-space interferometer”
Relevant modes: Common mode z(t) = 1√

2
(a+(t) + a−(t)),

Difference mode Z (t) = 1√
2

(a+(t)− a−(t)). Then

Zν = XνΘ(ν) + Y−νΘ(−ν), and one can define conjugate rotated
operators from correlated two-photon modes:

Zϕν =
1√
2

(
e−iϕZν + e iϕZ †−ν

)

Πϕ
ν =

1

i
√

2

(
e−iϕZν − e iϕZ †−ν

)
obeying the commutation relation [Zϕν ,Π

ϕ†
ν′ ] = i · 2πδ[ν − ν ′].
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Fluctuations in the Photon Flux

The photon fluctuations can be expressed as

δñ(t)

2α
= zϕ(t) +

1

2

[
e−2i(ωM t+ψ0)

(
zϕ(t) + iΠ̃ϕ(t)

)
+ h.c .

]

It is convenient to decompose fluctuations in the photon flux
such that

δñ(t) = δn(t) + ∆n(t)

where δn(t) is the noninteracting fluctuation and ∆n(t) is the
perturbation caused by interaction with the BEC.
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Power Spectra

The interaction between the BEC and the laser field leads to
photon flux fluctuations δñ(t) with power spectrum

Snn[ω] =

∫ ∞
−∞

dt e−iωt〈δñ(t)δñ(0)〉 =

∫ ∞
−∞

dω′

2π
〈δñ[ω]†δñ[ω′]〉

Snn[ω] can be decomposed into four parts:

Snn[ω] =S0
nn[ω] + S∆n[ω] + Sn∆[ω] + S∆∆[ω]

≡
(
S0

nn + S∆n + Sn∆ + S∆∆

)
[ω]

The shot-noise floor for frequencies near 2ωM is given by
S0

nn[±2ωM ] = α2. Detector Response function:

S∆∆[2ωM + ν] = −4iµ2α2e2iψ0 sin 2ψ0 Sφrφr [ν]
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∫ ∞
−∞

dω′

2π
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Snn[ω] =

∫ ∞
−∞

dt e−iωt〈δñ(t)δñ(0)〉 =
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Outlook - Vacuum Excitation (Unruh effect)

Difficult to achieve
TUnruh ∼ Tambient. Incorporate
thermal initial state? Use
superfluid He4?

Signal extraction ambiguities.
More rigorous analysis? Extra
optical processing?
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Entanglement Harvesting

Idea: steal entanglement from the
vacuum!
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A Pair of Detectors

Unruh-DeWitt model First consider a pair of
two-level detectors interacting with a scalar field
φ̂ in (2 + 1)-dimensional spacetime (j = A,B):

Ĥ(t) =
∑

j

λχ
( t

T

)
m̂j (t)

∫
d2

x F

(
x − xj

σ

)
φ̂(x , t)

Here, λ is the coupling, χ is the switching
function, F is the smearing, and m̂j is the
detector monopole moment:

m̂j (t) = e iΩtσ+
j + e−iΩtσ−j
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Ĥ(t) =
∑

j

λχ
( t

T

)
m̂j (t)

∫
d2

x F

(
x − xj

σ

)
φ̂(x , t)

Here, λ is the coupling, χ is the switching
function, F is the smearing, and m̂j is the
detector monopole moment:

m̂j (t) = e iΩtσ+
j + e−iΩtσ−j

Cisco Gooding Probing the Vacuum



Entanglement Measure

The negativity for our pair of identical Unruh-DeWitt detectors is:

N = max [|M| − L, 0] +O(λ3)

Here, L is the vacuum excitation and M is related to virtual
particle exchange between the detectors, mediated by φ̂:

λ2T 2

2

∫ ∞
0

d |k |

(
|k |F̃ [|k |σ]2

2ωk

)
· GL/M(k)

with GL(k) = e−
T 2(Ω+ω

k
)2

2 and

GM(k) = −J0(|k |∆x)e−
T 2(Ω2+ω2

k
)

2 ·
[

1 + ierfi

(
Tωk√

2

)]
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particle exchange between the detectors, mediated by φ̂:
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Negativity and Parameter Optimization

0

0.0025

0.0050

0.0075

0.0100
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Takeaways

Maximal harvest: T ∼ 1/Ω

Detector entanglement verified by
repeated harvests (we know how
to characterize qubits)

UDW detectors couple only to φ̂,
and not to its conjugate
momentum
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Analogue Implementation

Pair of modulated
detector beams

Spacelike
interaction with
2d BEC

Phase-referenced
demodulation
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Inseparability of Joint Detector State

Common (+ subscript) and difference
(− subscript) mode quadratures can
be defined for both the amplitude q̂
and phase p̂.

The DGCZ condition
(Duan, Giedke, Cirac, Zoller) can be
expressed in terms of the
inseparability I as

I = V (q̂±) + V (p̂∓) < 1
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Identifying EPR-like Variables

Demodulated finite-time spectral response:

Ô(Ω,T ) ≡ 1√
T

∫ T0+T/2

T0−T/2

dt e iΩtÔ(t) .

Finite-time joint variables:

q̂±(Ω,T ) =
1√
2

(ẑϕA

A (Ω,T )± ẑϕB

B (Ω,T ))

p̂±(Ω,T ) =
1√
2

(
Π̂ϕA

A (Ω,T )± Π̂ϕB

B (Ω,T )
)

Inseparability condition:

I(Ω,T ) = V (q̂+(Ω,T )) + V (p̂−(Ω,T )) < 1
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Comments on Finite-time Spectral Response

An operator Ô(Ω,T ) contains multiple spectral
modes:

Ô(Ω,T ) =
√
T

∫ ∆

−∆

dω

2π
e i(Ω−ω)T0sinc

(
(Ω− ω)T

2

)
Ôω

Hence, for T . Ω−1, there will be effective detector
gaps throughout the measurement band:
ω ∈ (−∆,∆). However, the operator Ô(Ω,T )
still has largest contribution from ω = Ω.
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Ô(Ω,T ) =
√
T

∫ ∆

−∆

dω

2π
e i(Ω−ω)T0sinc

(
(Ω− ω)T

2

)
Ôω
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Ô(Ω,T ) =
√
T

∫ ∆

−∆

dω

2π
e i(Ω−ω)T0sinc

(
(Ω− ω)T

2

)
Ôω
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Interaction-picture Joint Variances

Arbitrary noise operator Ô in the joint detector
Hilbert space (after demodulation), given the
reduced density operator ρ̂ab:

V (Ô) ≡ 1

2
Tr
(
ρ̂ab{Ô†, Ô}

)
For our joint operator p̂−(Ω,T ), the inseparability
condition reduces to

V (p̂−(Ω,T )) <
1

2
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)

For our joint operator p̂−(Ω,T ), the inseparability
condition reduces to

V (p̂−(Ω,T )) <
1

2

Cisco Gooding Probing the Vacuum



Interaction-picture Joint Variances

Arbitrary noise operator Ô in the joint detector
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Reduced Density Operator

The reduced density operator is

ρ̂ab = Trφ (|Ψf 〉 〈Ψf |) =
∑
n,m

∫
dµ 〈µ|

(
|Ψ(n)

f 〉 〈Ψ
(m)
f |
)
|µ〉

where |µ〉 is an element of the Fock basis for the Hilbert space
associated with φ̂. Explicitly,

|Ψ(0)
f 〉 = |Ψ〉 = |0a〉 |0b〉 |0〉 ≡ |00〉 |0〉,

|Ψ(1)
f 〉 = −i

∫ ∞
−∞

dt Ĥ(t) |Ψ〉

|Ψ(2)
f 〉 = −

∫ ∞
−∞

dt

∫ t

−∞
dt ′ Ĥ(t)Ĥ(t ′) |Ψ〉

with Ĥ(t) = Ĥa(t) + Ĥb(t) and Ĥi (t) ≡ ε(t)φ̂i (t)ψ̂′i (t)

Cisco Gooding Probing the Vacuum



Reduced Density Operator

The reduced density operator is

ρ̂ab = Trφ (|Ψf 〉 〈Ψf |) =
∑
n,m

∫
dµ 〈µ|

(
|Ψ(n)

f 〉 〈Ψ
(m)
f |
)
|µ〉

where |µ〉 is an element of the Fock basis for the Hilbert space
associated with φ̂. Explicitly,

|Ψ(0)
f 〉 = |Ψ〉 = |0a〉 |0b〉 |0〉 ≡ |00〉 |0〉,

|Ψ(1)
f 〉 = −i

∫ ∞
−∞
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dt ′ Ĥ(t)Ĥ(t ′) |Ψ〉
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dt Ĥ(t) |Ψ〉

|Ψ(2)
f 〉 = −

∫ ∞
−∞

dt

∫ t

−∞
dt ′ Ĥ(t)Ĥ(t ′) |Ψ〉
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Wightmans, Reduced Hilbert space Projector

The relevant Wightman functions for φ̂ are

Wa(t, t ′) = Wb(t, t ′) =

∫
d|k | |k |e

−iωk (t−t′)

2(2π)ωk

and

Wab(t, t ′) = Wba(t, t ′) =

∫
d|k | |k |J0(|k |∆x)

2(2π)ωk
e−iωk (t−t′)

Leading-order reduced state space for detectors has projector

1̂ = |00〉 〈00|+
∫

dK

2π(2ΩK )
(|1K 0〉 〈1K 0|+ |01K 〉 〈01K |)

+

∫
dK

2π(2ΩK )

∫
dK ′

2π(2ΩK ′)
|1K 1K ′〉 〈1K 1K ′ |
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Connection to Qubit UDW Case

The reduced density matrix (for K = K ′) is of the
form

ρab =


1− Laa − Lbb 0 0 M

0 Laa Lab 0
0 Lba Lbb 0
M∗ 0 0 0


The inseparability then parallels the usual UDW
negativity.
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Outlook - Vacuum Entanglement (Harvesting)

Need more detailed analysis of
thermal noise (à la Dmitrios?)

Better way to isolate one UDW
energy gap? Possible with state
preparation?
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