Probing the Vacuum with Continuous Unruh Detectors

Cisco Gooding

University of Nottingham, UK

June 2nd, 2023

THE UNIVERSITY OF BRITISH COLUMBIA

A Cold-Atom Vacuum
The Unruh Effect

- A Cold-Atom Vacuum
 The Unruh Effect
- Entanglement
 Harvesting

- A Cold-Atom Vacuum
- The Unruh Effect
- Entanglement Harvesting
- Outlook

'Pancake' Bose-Einstein condensate serves as scalar field in vacuum state

'Pancake' Bose-Einstein condensate serves as scalar field in vacuum state

'Pancake' Bose-Einstein condensate serves as scalar field in vacuum state

(2+1) BEC Lagrangian, confined to the (x, y) plane:

$$\mathcal{L}_{BEC} = i\hbar\Phi\partial_t\Phi^* + rac{\hbar^2}{2m}\left|
abla\Phi\right|^2 + rac{g_{2d}}{2}\left|\Phi\right|^4$$

Free electromagnetic field Lagrangian:

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\text{int}} = \frac{\alpha_0}{2} \left(\partial_t A \right)^2 |\Phi|^2 ,$$

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\mathrm{int}} = \frac{lpha_0}{2} \left(\partial_t A \right)^2 \left| \Phi \right|^2 \,,$$

which implies the EOM

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\text{int}} = \frac{\alpha_0}{2} \left(\partial_t A \right)^2 |\Phi|^2 ,$$

which implies the EOM

$$\partial_t \left(\left(\varepsilon_0 + \alpha_0 |\Phi|^2 \right) \partial_t A_x \right) - \frac{1}{\mu_0} \partial_{zz} A_x = 0$$

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\text{int}} = \frac{\alpha_0}{2} \left(\partial_t A \right)^2 |\Phi|^2 ,$$

which implies the EOM

$$\partial_t \left(\left(\varepsilon_0 + \alpha_0 |\Phi|^2 \right) \partial_t A_x \right) - \frac{1}{\mu_0} \partial_{zz} A_x = 0$$

To lowest order, the effective propagation speed is

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\text{int}} = \frac{\alpha_0}{2} \left(\partial_t A \right)^2 |\Phi|^2 ,$$

which implies the EOM

$$\partial_t \left(\left(\varepsilon_0 + \alpha_0 |\Phi|^2 \right) \partial_t A_x \right) - \frac{1}{\mu_0} \partial_{zz} A_x = 0$$

To lowest order, the effective propagation speed is

$$c_{eff} = \frac{1}{\sqrt{\mu_0(\varepsilon_0 + \alpha_0 |\Phi_0|^2)}}$$

Free electromagnetic field Lagrangian:

$$\mathcal{L}_{em} = \frac{\varepsilon_0}{2} \left(\partial_t A_x(t,z) \right)^2 - \frac{1}{2\mu_0} \left(\partial_z A_x(t,z) \right)^2$$

The interaction Lagrangian is

$$\mathcal{L}_{\text{int}} = \frac{\alpha_0}{2} \left(\partial_t A \right)^2 |\Phi|^2 ,$$

which implies the EOM

$$\partial_t \left(\left(\varepsilon_0 + \alpha_0 |\Phi|^2 \right) \partial_t A_x \right) - \frac{1}{\mu_0} \partial_{zz} A_x = 0$$

To lowest order, the effective propagation speed is

$$c_{eff} = \frac{1}{\sqrt{\mu_0(\varepsilon_0 + \alpha_0 |\Phi_0|^2)}}$$

At the next order, BEC density fluctuations get transduced into the laser phase.

The Unruh Effect

Vacuum appears hot to accelerated observers!

Vacuum appears hot to accelerated observers!

(Credit: arXiv:1911.06002)

Interferometric Unruh Detectors for BECs

Experimental proposal: use a circularly-moving interaction point between a laser and a 2*d* BEC to probe the "vacuum" along an accelerated trajectory [C. Gooding et al. **PhysRevLett.125.213603(2020)**].

Common Mode and Difference Signal

Unruh Detection Scheme:

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer"

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer" Relevant modes:

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer" Relevant modes: Common mode $z(t) = \frac{1}{\sqrt{2}} (a_+(t) + a_-(t))$,

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer" Relevant modes: Common mode $z(t) = \frac{1}{\sqrt{2}} (a_+(t) + a_-(t))$, Difference mode $Z(t) = \frac{1}{\sqrt{2}} (a_+(t) - a_-(t))$.

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer" Relevant modes: Common mode $z(t) = \frac{1}{\sqrt{2}} (a_+(t) + a_-(t))$, Difference mode $Z(t) = \frac{1}{\sqrt{2}} (a_+(t) - a_-(t))$. Then $Z_{\nu} = X_{\nu} \Theta(\nu) + Y_{-\nu} \Theta(-\nu)$,

Unruh Detection Scheme: No need for spatial interferometry - sidebands can produce effective "frequency-space interferometer" Relevant modes: Common mode $z(t) = \frac{1}{\sqrt{2}} (a_+(t) + a_-(t))$, Difference mode $Z(t) = \frac{1}{\sqrt{2}} (a_+(t) - a_-(t))$. Then $Z_{\nu} = X_{\nu}\Theta(\nu) + Y_{-\nu}\Theta(-\nu)$, and one can define conjugate rotated operators from correlated two-photon modes:

$$Z^{arphi}_{
u} = rac{1}{\sqrt{2}} \left(e^{-iarphi} Z_{
u} + e^{iarphi} Z^{\dagger}_{-
u}
ight)$$

$$\Pi^{arphi}_{
u} = rac{1}{i\sqrt{2}} \left(e^{-iarphi} Z_{
u} - e^{iarphi} Z^{\dagger}_{-
u}
ight)$$

obeying the commutation relation $[Z^{\varphi}_{\nu}, \Pi^{\varphi\dagger}_{\nu'}] = i \cdot 2\pi \delta[\nu - \nu'].$

The photon fluctuations can be expressed as

$$\frac{\delta \tilde{n}(t)}{2\alpha} = z^{\varphi}(t) + \frac{1}{2} \left[e^{-2i(\omega_{M}t + \psi_{0})} \left(z^{\varphi}(t) + i \tilde{\Pi}^{\varphi}(t) \right) + h.c. \right]$$

The photon fluctuations can be expressed as

$$rac{\delta ilde{n}(t)}{2lpha} = z^{arphi}(t) + rac{1}{2} \left[e^{-2i(\omega_M t + \psi_0)} \left(z^{arphi}(t) + i ilde{\mathsf{\Pi}}^{arphi}(t)
ight) + h.c.
ight]$$

It is convenient to decompose fluctuations in the photon flux such that

$$\delta \tilde{n}(t) = \delta n(t) + \Delta n(t)$$

where $\delta n(t)$ is the noninteracting fluctuation and $\Delta n(t)$ is the perturbation caused by interaction with the BEC.

$$S_{nn}[\omega] = \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \langle \delta \tilde{n}(t) \delta \tilde{n}(0) \rangle = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \langle \delta \tilde{n}[\omega]^{\dagger} \delta \tilde{n}[\omega'] \rangle$$

$$S_{nn}[\omega] = \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \langle \delta \tilde{n}(t) \delta \tilde{n}(0) \rangle = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \langle \delta \tilde{n}[\omega]^{\dagger} \delta \tilde{n}[\omega'] \rangle$$

 $S_{nn}[\omega]$ can be decomposed into four parts:

$$S_{nn}[\omega] = S_{nn}^{0}[\omega] + S_{\Delta n}[\omega] + S_{n\Delta}[\omega] + S_{\Delta\Delta}[\omega]$$
$$\equiv \left(S_{nn}^{0} + S_{\Delta n} + S_{n\Delta} + S_{\Delta\Delta}\right)[\omega]$$

$$S_{nn}[\omega] = \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \langle \delta \tilde{n}(t) \delta \tilde{n}(0) \rangle = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \langle \delta \tilde{n}[\omega]^{\dagger} \delta \tilde{n}[\omega'] \rangle$$

 $S_{nn}[\omega]$ can be decomposed into four parts:

$$S_{nn}[\omega] = S_{nn}^{0}[\omega] + S_{\Delta n}[\omega] + S_{n\Delta}[\omega] + S_{\Delta\Delta}[\omega]$$
$$\equiv \left(S_{nn}^{0} + S_{\Delta n} + S_{n\Delta} + S_{\Delta\Delta}\right)[\omega]$$

The shot-noise floor for frequencies near $2\omega_M$ is given by $S_{nn}^0[\pm 2\omega_M] = \alpha^2$.

$$S_{nn}[\omega] = \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \langle \delta \tilde{n}(t) \delta \tilde{n}(0) \rangle = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \langle \delta \tilde{n}[\omega]^{\dagger} \delta \tilde{n}[\omega'] \rangle$$

 $S_{nn}[\omega]$ can be decomposed into four parts:

$$S_{nn}[\omega] = S_{nn}^{0}[\omega] + S_{\Delta n}[\omega] + S_{n\Delta}[\omega] + S_{\Delta\Delta}[\omega]$$
$$\equiv \left(S_{nn}^{0} + S_{\Delta n} + S_{n\Delta} + S_{\Delta\Delta}\right)[\omega]$$

The shot-noise floor for frequencies near $2\omega_M$ is given by $S_{nn}^0[\pm 2\omega_M] = \alpha^2$. Detector Response function:

$$S_{nn}[\omega] = \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \langle \delta \tilde{n}(t) \delta \tilde{n}(0) \rangle = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \langle \delta \tilde{n}[\omega]^{\dagger} \delta \tilde{n}[\omega'] \rangle$$

 $S_{nn}[\omega]$ can be decomposed into four parts:

$$S_{nn}[\omega] = S_{nn}^{0}[\omega] + S_{\Delta n}[\omega] + S_{n\Delta}[\omega] + S_{\Delta\Delta}[\omega]$$
$$\equiv (S_{nn}^{0} + S_{\Delta n} + S_{n\Delta} + S_{\Delta\Delta}) [\omega]$$

The shot-noise floor for frequencies near $2\omega_M$ is given by $S_{nn}^0[\pm 2\omega_M] = \alpha^2$. Detector Response function:

$$S_{\Delta\Delta}[2\omega_M + \nu] = -4i\mu^2 \alpha^2 e^{2i\psi_0} \sin 2\psi_0 S_{\phi_r \phi_r}[\nu]$$

Outlook - Vacuum Excitation (Unruh effect)
• Difficult to achieve $T_{Unruh} \sim T_{ambient}$.

• Difficult to achieve

 $T_{Unruh} \sim T_{ambient}$. Incorporate thermal initial state? Use superfluid He^4 ?

• Difficult to achieve

 $T_{Unruh} \sim T_{ambient}$. Incorporate thermal initial state? Use superfluid He^4 ?

• Signal extraction ambiguities.

• Difficult to achieve

 $T_{Unruh} \sim T_{ambient}$. Incorporate thermal initial state? Use superfluid He^4 ?

 Signal extraction ambiguities. More rigorous analysis? Extra optical processing?

Idea: steal entanglement from the vacuum!

 Unruh-DeWitt model First consider a pair of two-level detectors interacting with a scalar field φ̂ in (2+1)-dimensional spacetime (j = A, B):

A Pair of Detectors

 Unruh-DeWitt model First consider a pair of two-level detectors interacting with a scalar field φ̂ in (2+1)-dimensional spacetime (j = A, B):

$$\hat{H}(t) = \sum_{j} \lambda \chi \left(\frac{t}{T}\right) \hat{m}_{j}(t) \int d^{2} \mathbf{x} F\left(\frac{\mathbf{x} - \mathbf{x}_{j}}{\sigma}\right) \hat{\phi}(\mathbf{x}, t)$$

A Pair of Detectors

 Unruh-DeWitt model First consider a pair of two-level detectors interacting with a scalar field φ̂ in (2+1)-dimensional spacetime (j = A, B):

$$\hat{H}(t) = \sum_{j} \lambda \chi \left(\frac{t}{T}\right) \hat{m}_{j}(t) \int d^{2} \mathbf{x} F\left(\frac{\mathbf{x} - \mathbf{x}_{j}}{\sigma}\right) \hat{\phi}(\mathbf{x}, t)$$

• Here, λ is the coupling, χ is the switching function, F is the smearing, and \hat{m}_j is the detector monopole moment:

A Pair of Detectors

Unruh-DeWitt model First consider a pair of two-level detectors interacting with a scalar field φ̂ in (2+1)-dimensional spacetime (j = A, B):

$$\hat{H}(t) = \sum_{j} \lambda \, \chi \left(\frac{t}{T} \right) \, \hat{m}_{j}(t) \int d^{2} \mathbf{x} \, F \left(\frac{\mathbf{x} - \mathbf{x}_{j}}{\sigma} \right) \, \hat{\phi}(\mathbf{x}, t)$$

• Here, λ is the coupling, χ is the switching function, F is the smearing, and \hat{m}_j is the detector monopole moment:

$$\hat{m}_j(t) = e^{i\Omega t}\sigma_j^+ + e^{-i\Omega t}\sigma_j^-$$

$$\mathcal{N} = \max\left[|\mathcal{M}| - \mathcal{L}, 0
ight] + \mathcal{O}(\lambda^3)$$

$$\mathcal{N} = \max\left[|\mathcal{M}| - \mathcal{L}, 0
ight] + \mathcal{O}(\lambda^3)$$

Here, \mathcal{L} is the vacuum excitation and \mathcal{M} is related to virtual particle exchange between the detectors, mediated by $\hat{\phi}$:

$$\mathcal{N} = \max\left[|\mathcal{M}| - \mathcal{L}, 0
ight] + \mathcal{O}(\lambda^3)$$

Here, \mathcal{L} is the vacuum excitation and \mathcal{M} is related to virtual particle exchange between the detectors, mediated by $\hat{\phi}$:

$$\frac{\lambda^2 T^2}{2} \int_0^\infty d|\boldsymbol{k}| \left(\frac{|\boldsymbol{k}|\widetilde{F}[|\boldsymbol{k}|\sigma]^2}{2\omega_{\boldsymbol{k}}} \right) \cdot G_{\mathcal{L}/\mathcal{M}}(\boldsymbol{k})$$

$$\mathcal{N} = \max\left[|\mathcal{M}| - \mathcal{L}, 0
ight] + \mathcal{O}(\lambda^3)$$

Here, \mathcal{L} is the vacuum excitation and \mathcal{M} is related to virtual particle exchange between the detectors, mediated by $\hat{\phi}$:

$$\frac{\lambda^2 T^2}{2} \int_0^\infty d|\boldsymbol{k}| \left(\frac{|\boldsymbol{k}|\widetilde{F}[|\boldsymbol{k}|\sigma]^2}{2\omega_{\boldsymbol{k}}}\right) \cdot G_{\mathcal{L}/\mathcal{M}}(\boldsymbol{k})$$

with $G_{\mathcal{L}}(\boldsymbol{k}) = e^{-\frac{T^2(\Omega+\omega_{\boldsymbol{k}})^2}{2}}$

$$\mathcal{N} = \max\left[|\mathcal{M}| - \mathcal{L}, 0
ight] + \mathcal{O}(\lambda^3)$$

Here, \mathcal{L} is the vacuum excitation and \mathcal{M} is related to virtual particle exchange between the detectors, mediated by $\hat{\phi}$:

$$\frac{\lambda^2 T^2}{2} \int_0^\infty d|\boldsymbol{k}| \left(\frac{|\boldsymbol{k}|\widetilde{F}[|\boldsymbol{k}|\sigma]^2}{2\omega_{\boldsymbol{k}}} \right) \cdot G_{\mathcal{L}/\mathcal{M}}(\boldsymbol{k})$$

with $\mathcal{G}_{\mathcal{L}}(oldsymbol{k})=e^{-rac{ au^2(\Omega+\omega_{oldsymbol{k}})^2}{2}}$ and

$$G_{\mathcal{M}}(\boldsymbol{k}) = -J_0(|\boldsymbol{k}|\Delta \boldsymbol{x})e^{-\frac{\tau^2(\Omega^2+\omega_{\boldsymbol{k}}^2)}{2}} \cdot \left[1 + i \operatorname{erfi}\left(\frac{T\omega_{\boldsymbol{k}}}{\sqrt{2}}\right)\right]$$

Negativity and Parameter Optimization

Cisco Gooding Probing the Vacuum

• Maximal harvest: $T \sim 1/\Omega$

- Maximal harvest: $T \sim 1/\Omega$
- Detector entanglement verified by repeated harvests

- Maximal harvest: $T \sim 1/\Omega$
- Detector entanglement verified by repeated harvests (we know how to characterize qubits)

- Maximal harvest: $T \sim 1/\Omega$
- Detector entanglement verified by repeated harvests (we know how to characterize qubits)
- UDW detectors couple only to $\hat{\phi}$, and not to its conjugate momentum

Pair of modulated detector beams

- Pair of modulated detector beams
- Spacelike interaction with 2d BEC

- Pair of modulated detector beams
- Spacelike
 - interaction with 2d BEC
- Phase-referenced demodulation

Inseparability of Joint Detector State

Common (+ subscript) and difference (- subscript) mode quadratures can be defined for both the amplitude \hat{q} and phase \hat{p} .

Inseparability of Joint Detector State

Common (+ subscript) and difference (- subscript) mode quadratures can be defined for both the amplitude \hat{q} and phase \hat{p} . The DGCZ condition (Duan, Giedke, Cirac, Zoller) can be expressed in terms of the **inseparability** \mathcal{I} as

Inseparability of Joint Detector State

Common (+ subscript) and difference (- subscript) mode quadratures can be defined for both the amplitude \hat{q} and phase \hat{p} . The DGCZ condition (Duan, Giedke, Cirac, Zoller) can be expressed in terms of the inseparability \mathcal{I} as

$${\cal I}=V(\hat{q}_\pm)+V(\hat{p}_\mp)<1$$

Demodulated finite-time spectral response:

Demodulated finite-time spectral response:

$$\hat{O}(\Omega, T) \equiv rac{1}{\sqrt{T}} \int_{T_0-T/2}^{T_0+T/2} dt \, e^{i\Omega t} \hat{O}(t) \, .$$

Demodulated finite-time spectral response:

$$\hat{O}(\Omega, T) \equiv rac{1}{\sqrt{T}} \int_{T_0-T/2}^{T_0+T/2} dt \, e^{i\Omega t} \hat{O}(t) \, .$$

Finite-time joint variables:

Demodulated finite-time spectral response:

$$\hat{O}(\Omega, T) \equiv rac{1}{\sqrt{T}} \int_{T_0-T/2}^{T_0+T/2} dt \, e^{i\Omega t} \hat{O}(t) \, .$$

Finite-time joint variables:

$$\hat{q}_{\pm}(\Omega, T) = rac{1}{\sqrt{2}} \left(\hat{z}_{A}^{arphi_{A}}(\Omega, T) \pm \hat{z}_{B}^{arphi_{B}}(\Omega, T)
ight)
onumber \ \hat{p}_{\pm}(\Omega, T) = rac{1}{\sqrt{2}} \left(\hat{\Pi}_{A}^{arphi_{A}}(\Omega, T) \pm \hat{\Pi}_{B}^{arphi_{B}}(\Omega, T)
ight)$$

Demodulated finite-time spectral response:

$$\hat{O}(\Omega, T) \equiv rac{1}{\sqrt{T}} \int_{T_0-T/2}^{T_0+T/2} dt \, e^{i\Omega t} \hat{O}(t) \, .$$

Finite-time joint variables:

$$egin{aligned} \hat{q}_{\pm}(\Omega,\,T) &= rac{1}{\sqrt{2}} \left(\hat{z}^{arphi_A}_A(\Omega,\,T) \pm \hat{z}^{arphi_B}_B(\Omega,\,T)
ight) \ \hat{p}_{\pm}(\Omega,\,T) &= rac{1}{\sqrt{2}} \left(\hat{\Pi}^{arphi_A}_A(\Omega,\,T) \pm \hat{\Pi}^{arphi_B}_B(\Omega,\,T)
ight) \end{aligned}$$

• Inseparability condition:

Demodulated finite-time spectral response:

$$\hat{O}(\Omega, T) \equiv rac{1}{\sqrt{T}} \int_{T_0-T/2}^{T_0+T/2} dt \, e^{i\Omega t} \hat{O}(t) \, .$$

Finite-time joint variables:

$$egin{aligned} \hat{q}_{\pm}(\Omega,\,T) &= rac{1}{\sqrt{2}} \left(\hat{z}^{arphi_A}_A(\Omega,\,T) \pm \hat{z}^{arphi_B}_B(\Omega,\,T)
ight) \ \hat{p}_{\pm}(\Omega,\,T) &= rac{1}{\sqrt{2}} \left(\hat{\Pi}^{arphi_A}_A(\Omega,\,T) \pm \hat{\Pi}^{arphi_B}_B(\Omega,\,T)
ight) \end{aligned}$$

• Inseparability condition:

$$\mathcal{I}(\Omega,\,T) = V(\hat{q}_+(\Omega,\,T)) + V(\hat{p}_-(\Omega,\,T)) < 1$$

An operator $\hat{O}(\Omega, T)$ contains multiple spectral modes:

An operator $\hat{O}(\Omega, T)$ contains multiple spectral modes:

$$\hat{O}(\Omega, T) = \sqrt{T} \int_{-\Delta}^{\Delta} \frac{d\omega}{2\pi} e^{i(\Omega-\omega)T_0} \operatorname{sinc}\left(\frac{(\Omega-\omega)T}{2}\right) \hat{O}_{\omega}$$
An operator $\hat{O}(\Omega, T)$ contains multiple spectral modes:

$$\hat{O}(\Omega, T) = \sqrt{T} \int_{-\Delta}^{\Delta} \frac{d\omega}{2\pi} e^{i(\Omega-\omega)T_0} \operatorname{sinc}\left(\frac{(\Omega-\omega)T}{2}\right) \hat{O}_{\omega}$$

Hence, for $T \leq \Omega^{-1}$, there will be effective detector gaps throughout the measurement band: $\omega \in (-\Delta, \Delta)$. An operator $\hat{O}(\Omega, T)$ contains multiple spectral modes:

$$\hat{O}(\Omega, T) = \sqrt{T} \int_{-\Delta}^{\Delta} \frac{d\omega}{2\pi} e^{i(\Omega-\omega)T_0} \operatorname{sinc}\left(\frac{(\Omega-\omega)T}{2}\right) \hat{O}_{\omega}$$

Hence, for $T \leq \Omega^{-1}$, there will be effective detector gaps throughout the measurement band: $\omega \in (-\Delta, \Delta)$. However, the operator $\hat{O}(\Omega, T)$ still has largest contribution from $\omega = \Omega$.

$$V(\hat{O})\equivrac{1}{2}{
m Tr}\left(\hat{
ho}_{\scriptscriptstyle
m AB}\{\hat{O}^{\dagger},\hat{O}\}
ight)$$

$$V(\hat{O})\equivrac{1}{2}{
m Tr}\left(\hat{
ho}_{\scriptscriptstyle
m AB}\{\hat{O}^{\dagger},\hat{O}\}
ight)$$

For our joint operator $\hat{p}_{-}(\Omega, T)$, the inseparability condition reduces to

$$V(\hat{O})\equivrac{1}{2}{
m Tr}\left(\hat{
ho}_{\scriptscriptstyle
m AB}\{\hat{O}^{\dagger},\hat{O}\}
ight)$$

For our joint operator $\hat{p}_{-}(\Omega, T)$, the inseparability condition reduces to

$$V(\hat{p}_{-}(\Omega, T)) < \frac{1}{2}$$

The reduced density operator is

The reduced density operator is

$$\hat{\rho}_{\text{AB}} = \mathsf{Tr}_{\phi}\left(\ket{\Psi_{f}} \bra{\Psi_{f}}\right) = \sum_{n,m} \int d\mu \, \bra{\mu} \left(\ket{\Psi_{f}^{(n)}} \bra{\Psi_{f}^{(m)}}\right) \ket{\mu}$$

The reduced density operator is

$$\hat{\rho}_{\rm AB} = \mathsf{Tr}_{\phi}\left(\ket{\Psi_{f}} \bra{\Psi_{f}}\right) = \sum_{n,m} \int d\mu \, \bra{\mu} \left(\ket{\Psi_{f}^{(n)}} \bra{\Psi_{f}^{(m)}}\right) \ket{\mu}$$

where $|\mu\rangle$ is an element of the Fock basis for the Hilbert space associated with $\hat{\phi}$. Explicitly, $|\Psi^{(0)}\rangle - |\Psi\rangle - |0\rangle\rangle |0\rangle = |00\rangle |0\rangle$

$$|\Psi_{f}^{(0)}\rangle = |\Psi\rangle = |0_{\mathrm{A}}\rangle |0_{\mathrm{B}}\rangle |0\rangle \equiv |00\rangle |0\rangle,$$

The reduced density operator is

$$\hat{\rho}_{\rm AB} = \mathsf{Tr}_{\phi}\left(\ket{\Psi_{f}}\bra{\Psi_{f}}\right) = \sum_{n,m} \int d\mu \, \bra{\mu} \left(\ket{\Psi_{f}^{(n)}}\bra{\Psi_{f}^{(m)}}\right) \ket{\mu}$$

where $|\mu\rangle$ is an element of the Fock basis for the Hilbert space associated with $\hat{\phi}.$ Explicitly,

$$|\Psi_{f}^{(0)}
angle = |\Psi
angle = |0_{\mathrm{A}}
angle |0_{\mathrm{B}}
angle |0
angle \equiv |00
angle |0
angle,$$

$$|\Psi_{f}^{(1)}
angle=-i\int_{-\infty}^{\infty}dt\,\hat{H}(t)\,|\Psi
angle$$

The reduced density operator is

$$\hat{\rho}_{\rm AB} = \mathsf{Tr}_{\phi}\left(\ket{\Psi_{f}}\bra{\Psi_{f}}\right) = \sum_{n,m} \int d\mu \, \bra{\mu} \left(\ket{\Psi_{f}^{(n)}}\bra{\Psi_{f}^{(m)}}\right) \ket{\mu}$$

where $|\mu\rangle$ is an element of the Fock basis for the Hilbert space associated with $\hat{\phi}.$ Explicitly,

$$|\Psi_{f}^{(0)}
angle = |\Psi
angle = |0_{\mathrm{A}}
angle |0_{\mathrm{B}}
angle |0
angle \equiv |00
angle |0
angle,$$

$$|\Psi_{f}^{(1)}
angle=-i\int_{-\infty}^{\infty}dt\,\hat{H}(t)\,|\Psi
angle$$

$$|\Psi_{f}^{(2)}
angle=-\int_{-\infty}^{\infty}dt\,\int_{-\infty}^{t}dt^{\prime}\,\hat{H}(t)\hat{H}(t^{\prime})\,|\Psi
angle$$

The reduced density operator is

$$\hat{\rho}_{\rm AB} = \mathsf{Tr}_{\phi}\left(\ket{\Psi_{f}} \bra{\Psi_{f}}\right) = \sum_{n,m} \int d\mu \, \bra{\mu} \left(\ket{\Psi_{f}^{(n)}} \bra{\Psi_{f}^{(m)}}\right) \ket{\mu}$$

where $|\mu\rangle$ is an element of the Fock basis for the Hilbert space associated with $\hat{\phi}.$ Explicitly,

$$|\Psi_{f}^{(0)}
angle = |\Psi
angle = |0_{\mathrm{A}}
angle |0_{\mathrm{B}}
angle |0
angle \equiv |00
angle |0
angle,$$

$$|\Psi_{f}^{(1)}
angle=-i\int_{-\infty}^{\infty}dt\,\hat{H}(t)\,|\Psi
angle$$

$$|\Psi_{f}^{(2)}
angle=-\int_{-\infty}^{\infty}dt\,\int_{-\infty}^{t}dt^{\prime}\,\hat{H}(t)\hat{H}(t^{\prime})\,|\Psi
angle$$

with $\hat{H}(t)=\hat{H}_{\rm\scriptscriptstyle A}(t)+\hat{H}_{\rm\scriptscriptstyle B}(t)$ and $\hat{H}_i(t)\equivarepsilon(t)\hat{\phi}_i(t)\hat{\psi}_i'(t)$

The relevant Wightman functions for $\hat{\phi}$ are

The relevant Wightman functions for $\hat{\phi}$ are

$$W_{\scriptscriptstyle ext{A}}(t,t') = W_{\scriptscriptstyle ext{B}}(t,t') = \int \! \mathrm{d} |m{k}| rac{|m{k}| e^{-\mathrm{i}\omega_{m{k}}(t-t')}}{2(2\pi)\omega_{m{k}}}$$

The relevant Wightman functions for $\hat{\phi}$ are

$$W_{\mathrm{A}}(t,t') = W_{\mathrm{B}}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}|e^{-\mathrm{i}\omega_{m{k}}(t-t')}}{2(2\pi)\omega_{m{k}}}$$

and

$$W_{\scriptscriptstyle AB}(t,t') = W_{\scriptscriptstyle BA}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}| J_0(|m{k}|\Delta x)}{2(2\pi)\omega_{m{k}}} e^{-\mathrm{i}\omega_{m{k}}(t-t')}$$

The relevant Wightman functions for $\hat{\phi}$ are

$$W_{\mathrm{A}}(t,t') = W_{\mathrm{B}}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}|e^{-\mathrm{i}\omega_{m{k}}(t-t')}}{2(2\pi)\omega_{m{k}}}$$

and

$$W_{\scriptscriptstyle AB}(t,t') = W_{\scriptscriptstyle BA}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}| J_0(|m{k}|\Delta x)}{2(2\pi)\omega_{m{k}}} e^{-\mathrm{i}\omega_{m{k}}(t-t')}$$

Leading-order reduced state space for detectors has projector

The relevant Wightman functions for $\hat{\phi}$ are

$$W_{ ext{A}}(t,t') = W_{ ext{B}}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}|e^{-\mathrm{i}\omega_{m{k}}(t-t')}}{2(2\pi)\omega_{m{k}}}$$

and

$$W_{\scriptscriptstyle AB}(t,t') = W_{\scriptscriptstyle BA}(t,t') = \int \mathrm{d}|m{k}| rac{|m{k}| J_0(|m{k}| \Delta x)}{2(2\pi) \omega_{m{k}}} e^{-\mathrm{i}\omega_{m{k}}(t-t')}$$

Leading-order reduced state space for detectors has projector

$$egin{aligned} \hat{1} &= \ket{00}ig\langle 00
vert + \int rac{dK}{2\pi(2\Omega_{K})} \left(\ket{1_{K}0}ig\langle 1_{K}0
vert + \ket{01_{K}}ig\langle 01_{K}
vert
ight) \ &+ \int rac{dK}{2\pi(2\Omega_{K})}\int rac{dK'}{2\pi(2\Omega_{K'})}\ket{1_{K}1_{K'}}ig\langle 1_{K}1_{K'}
vert \end{aligned}$$

Connection to Qubit UDW Case

The reduced density matrix (for K = K') is of the form

The reduced density matrix (for K = K') is of the form

$$ho_{
m AB} = egin{pmatrix} 1 - \mathcal{L}_{
m AA} - \mathcal{L}_{
m BB} & 0 & 0 & \mathcal{M} \ 0 & \mathcal{L}_{
m AA} & \mathcal{L}_{
m AB} & 0 \ 0 & \mathcal{L}_{
m BA} & \mathcal{L}_{
m BB} & 0 \ \mathcal{M}^* & 0 & 0 & 0 \end{pmatrix}$$

The reduced density matrix (for K = K') is of the form

$$ho_{
m AB} = egin{pmatrix} 1 - \mathcal{L}_{
m AA} - \mathcal{L}_{
m BB} & 0 & 0 & \mathcal{M} \ 0 & \mathcal{L}_{
m AA} & \mathcal{L}_{
m AB} & 0 \ 0 & \mathcal{L}_{
m BA} & \mathcal{L}_{
m BB} & 0 \ \mathcal{M}^* & 0 & 0 & 0 \end{pmatrix}$$

The inseparability then parallels the usual UDW negativity.

Outlook - Vacuum Entanglement (Harvesting)

Need more detailed analysis of thermal noise (à la Dmitrios?)

Need more detailed analysis of thermal noise (à la Dmitrios?)
Better way to isolate one UDW energy gap?

- Need more detailed analysis of thermal noise (à la Dmitrios?)
- Better way to isolate one UDW energy gap? Possible with state preparation?

Acknowledgements

Thanks for listening!

(Silke's Gravity Lab team, 2020.)

Cisco Gooding

Probing the Vacuum