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Goals

- Understand the role of superradiance in the generation of entanglement.

« Quantify entanglement in evaporation of realistic BHs (CMB input, rotating).

« Apply similar techniques to rotating analogues to yield
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Entropy of
outgoing radiation

D. Page 2013

Entanglement entropy is a quantifier of Hawking-generated entanglement

Entropy of the radiation reaching infinity =  Entanglement entropy

|

Quantify generated entanglement as entropy of Hawking radiation at infinity




Entropy of
outgoing radiation

Problem:

® Entanglement entropy quantifies entanglement only if state is pure.

®  Astrophysical black holes are immersed in a thermal bath: the CMB
Known cases where thermal inputs destroy all entanglement.

Agullo, Brady, Kranas ’22

Entanglement entropy is not a quantifier for entanglement generated by realistic BHs.

Use Logarithmic Negativity



The role of ergoregions in the Hawking process



Hawking process in two steps

1- Particle creation near horizon, early times: P + d > up + dn

2-Scattering at potential barrier, late times: Up + in » out + down
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Generation of entanglement during the evaporation



Thermal input

o7 =@ (2n; + 1)



Thermal input (CMB)

‘11‘ o Vacuum input (very UV, not seeded by CMB)
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Event horizon  Barrier
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Part II: Rotating analogs with polaritons




Analogue gravity with polariton fluids

ext+a)0+g|‘{’|2—i1 Y+ FE

Driven-dissipative Gross-Pitaevskii equation: id¥ = 2—V2 +V 5 .
m

Polaritons allow a great control on velocity profile through pump (see Killian’s talk)
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Analogue gravity with polariton fluids
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Analogue gravity with polariton fluids
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CONCLUDING REMARKS

® Hawking process is two-mode squeezer + beam splitter for non-superradiant modes, and
two-mode squeezer + two-mode squeezer for superradiant modes.

@® Entanglement is what makes the Hawking effect and superradiant emission quantum.

® CMB radiation degrades the entanglement generated in the Hawking process. Tough never vanishing.

® Entanglement radiated grows with spin. Due to super radiant squeezer.

@ Subtle interplay between Horizon and ergoregion in pairwise entanglement.

@ Polariton fluids offer great opportunity to study this interplay in the lab!

@ Within experimental reach in the next years. (See Killian’s amazing data!)
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® N-dimensional quantum (bosonic) system: X1,P1;Z2,D2; " IN,DN =T

. y y 0 1
C.CRs: [, 9] = i h QY o —ax (% )

® Genericstate p: Need all (infinitely many) moments T [ 0 Pl N ] to fully characterise state.

@® Gaussian state p: Completely and uniquely determined by its first and second moments

Mi — Tr[ﬁ 7/\'2] mean

Tr[p P 7”] > oY = Tr[p ‘{(7QZ — Mi)a ("ﬂ — ,uj)}] covariance matrix
Vacuum: 1t =0 o =1Ton -
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@® Linear time evolution and restriction to a subsystem produce another Gaussian state:
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HOW TO QUANTIFY?

® Entanglement entropy quantifies mixedness. Only equivalent to entanglement if state is pure.

® lLogarithmic Negavity (based on the PPT criterion) is a convenient quantifier for use:

¢ Gaussian state and if one two subsystem is a single mode, LogNeg is a faithful quantifier.

¢ Need the full covariance matrix (full state tomography)

Example: Two-mode squeezing

Evolution:
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Active transformation: Mixing of positive and negative
norm modes. Create quanta and entanglement.



Use Wald’s Basis to simplify evolution to a 2 — 2 process.

Wald ’75 Wald’s Basis:

F (@) =N,, F0) + e f(2v, — v)]

Progenitors of the out modes: F p(a)) , I ()

Fw)=N,. FE0) + e~ 2wy, — v)]

Linear combination of positive-frequency in modes hence define the same in vacuum.




1- Particle creation near horizon, early times: P + d

2- Scattering at potential barrier, late times: UP + in

Hawking process in two steps
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Scattering circuits
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Non-Sup. evolution matrix: S, = Sgs - Sgo, Sup. evolution matrix: S, = Sgo - Ssp,

Evolution of “in” state to “out” state:  (flin, Oin) —  (fout = Stot * fin, Tout = Stot * Tin - St—(r) )




Greybody factors

® Spin0,1/2,1 and 2 perturbations are separable in Kerr spacetime: Teukolsky equation. Teukolsky *73

® Angular part determined by spin weighted spheroidal harmonics.
Eigenvalues can be computed in an expansion for small aw.  Seidel ‘89

® Choose physical boundary conditions: no outgoing mode at horizon.

® Numerical errors for radial equation can be unstable due to exciting unwanted modes.
Solution: Use a smart choice of radial functions to solve for.

® Extract greybody factors from transmission/reflection coefficients.
(Relations between mode amplitudes at asymptotic and horizon).

@® Superradiance is automatically accounted for from the computed value of the
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Vacuum Input
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Result of evolution:

['y(w)
ew/Tr — ]

(fout (w)) = T'y(w) sinh® rg(w) = We recover the correct emission rate!
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The potential barrier degrades the entanglement carried out to infinity



Analogue gravity with polariton fluids (and BECs)

Polaritons are bound states of photon-exciton pairs that occur in a semiconductor cavity when stimulated with light
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Analogue gravity with polariton fluids (and BECs)

Polaritons are bound states of photon-exciton pairs that occur in a semiconductor cavity when stimulated with light
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Analogue gravity with polariton fluids (and BECs)
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Analogue gravity with polariton fluids (and BECs)

@ +

A
r

et

Slope

Different mode structures depending on A, B and ¢,(r)

Ordinate intercept

decreasing

B Y h*
 =—1—=xc

r2 2 p\4m201%

)

""’\q
h2 f2 h2 f4 fz : m2C2 h2g2n2
e p>+ F— - —21 1 £
P 2m?c3 r? 4m2c2 r4 2 h2 m2c4
A §% . P

r-dependent mass gap

> Different analogues

Hor'\%ow

Eraoriua

e V> C

C =» o@

(““o C)
Ne ;urll‘fd;ﬂd.
(w.2)

Only superradiant modes

NS
ZB

/

Time
—
IN ouT

b — — 3

L —l D

i — — b



Analogue gravity with polariton fluids (and BECs)
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