How Measurement Realizes Quantum Vacuum Ambiguities

Álvaro Parra-López · <u>alvaparr@ucm.es</u>

Complutense University of Madrid & IPARCOS

Based on arXiv:2303.07436

In collaboration with Álvaro Álvarez-Domínguez, José A. R. Cembranos, Luis J. Garay, Mercedes Martín-Benito, Jose M. Sánchez Velázquez

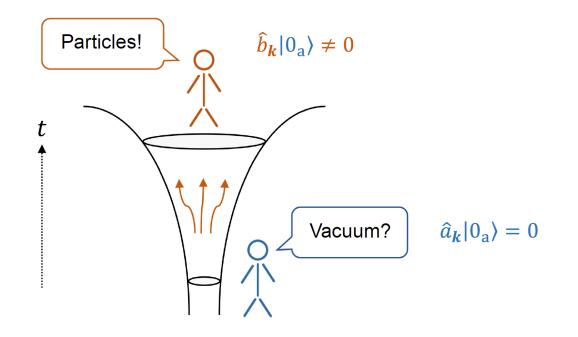
Analogue Gravity in 2023, Benasque – May 2023

Introduction

- QFT in the presence of an external, time-dependent agent
 - Particle production (even from vacuum)
 - Vacuum/particle notion is ambiguous

Introduction

- QFT in the presence of an external, time-dependent agent
 - Particle production (even from vacuum)
 - Vacuum/particle notion is ambiguous
- Some scenarios
 - Expansion of spacetime
 - Schwinger effect



In these processes, one often wonders...

How many 'particles' have been produced?

What a problematic question...

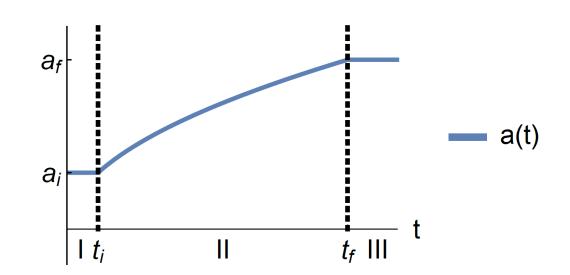
In these processes, one often wonders...

How many 'particles' have been produced?

What a problematic question...

Consider the following realization

- Preferred vacuum in I, $\hat{a}_{k}|0_{a}\rangle = 0$
- There is no preferred vacuum in II
- Preferred vacuum in III, $\hat{b}_{k}|0_{b}\rangle = 0$



In these processes, one often wonders...

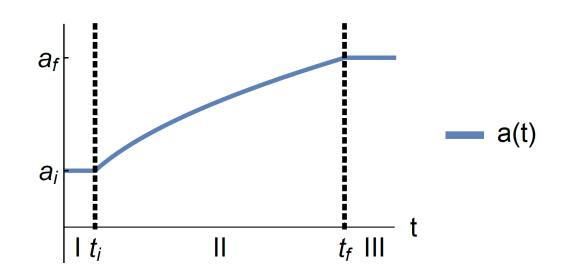
How many 'particles' have been produced?

What a problematic question...

Consider the following realization

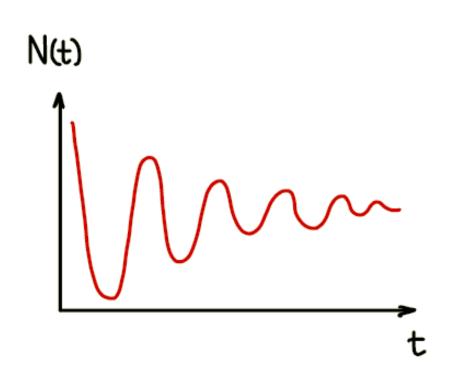
Particle production at t_f is $\langle 0_a | \hat{b}_k^+ \hat{b}_k | 0_a \rangle \neq 0$

But... How many particles are at $t < t_f$?



Depends on the choice of vacuum

• Vacua minimizing energy



Depends on the choice of vacuum

- Vacua minimizing energy
- Adiabatic vacua

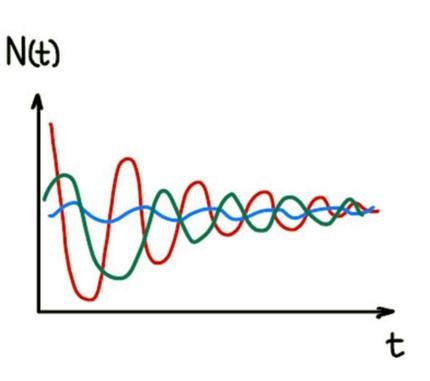
N(t) τ

Depends on the choice of vacuum

- Vacua minimizing energy
- Adiabatic vacua

• ...

• Vacua minimizing time oscillations of particle number

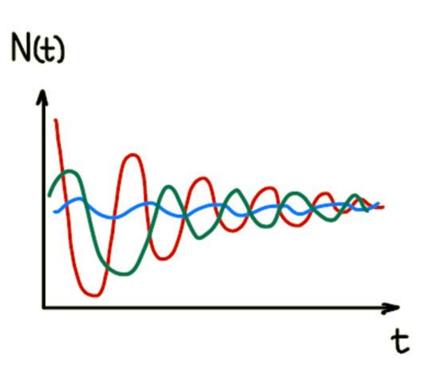


Depends on the choice of vacuum

- Vacua minimizing energy
- Adiabatic vacua

• ...

• Vacua minimizing time oscillations of particle number



Can we use the fact that we want to measure to give an operational meaning to some of these notions of 'particle'?

Schwinger effect in 1+1

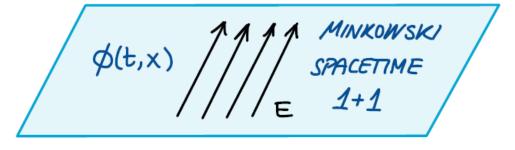
• Scalar field $\phi(t, x)$ in the presence of a homogeneous electric field E(t)

$$\phi(t,x) = \frac{1}{\sqrt{2\pi}} \int dk \ e^{ikx} \phi_k(t)$$

• EOM in *k*-space yields the mode equation

$$\ddot{\phi}_k(t) + \frac{\omega_k(t)^2 \phi_k(t)}{\downarrow} = 0$$

$$\downarrow$$
Time-dependent



Schwinger effect in 1+1

• Scalar field $\phi(t, x)$ in the presence of a homogeneous electric field E(t)

$$\phi(t,x) = \frac{1}{\sqrt{2\pi}} \int dk \ e^{ikx} \phi_k(t)$$

• EOM in k-space yields the mode equation

$$\ddot{\phi}_k(t) + \frac{\omega_k(t)^2 \phi_k(t)}{\downarrow} = 0$$

$$\downarrow$$
Time-dependent

al

MINKOWSKI SPACETIME - 1+1

 $\phi(t,x)$

• We can expand the field with each particular solution of the mode equation,

$$\phi(t,x) = \frac{1}{\sqrt{2\pi}} \int dk \left[a_k e^{ikx} \varphi_k(t) + b_k^* e^{-ikx} \varphi_k^*(t) \right]$$
$$= \frac{1}{\sqrt{2\pi}} \int dk \left[c_k e^{ikx} \zeta_k(t) + d_k^* e^{-ikx} \zeta_k^*(t) \right]$$

• We can expand the field with each particular solution of the mode equation,

$$\hat{\phi}(t,x) = \frac{1}{\sqrt{2\pi}} \int dk \left[\hat{a}_k e^{ikx} \varphi_k(t) + \hat{b}_k^+ e^{-ikx} \varphi_k^*(t) \right]$$

$$= \frac{1}{\sqrt{2\pi}} \int dk \left[\hat{c}_k e^{ikx} \zeta_k(t) + \hat{d}_k^+ e^{-ikx} \zeta_k^*(t) \right]$$
Creation and annihilation ops.

• Each solution leads to a different quantum theory, with different annihilation and creation operators, and therefore, different notions of particle and vacuum

• We can expand the field with each particular solution of the mode equation,

$$\hat{\phi}(t,x) = \frac{1}{\sqrt{2\pi}} \int dk \left[\hat{a}_k e^{ikx} \varphi_k(t) + \hat{b}_k^+ e^{-ikx} \varphi_k^*(t) \right]$$

$$= \frac{1}{\sqrt{2\pi}} \int dk \left[\hat{c}_k e^{ikx} \zeta_k(t) + \hat{d}_k^+ e^{-ikx} \zeta_k^*(t) \right]$$
Creation and annihilation ops.

- Each solution leads to a different quantum theory, with different annihilation and creation operators, and therefore, different notions of particle and vacuum
- In Minkowski, Poincarè invariance restricts the choices to plane waves,

$$\varphi_k(t) \sim e^{-i\omega_k t} \rightarrow |0_M\rangle; \ \hat{a}_k^M, \hat{b}_k^M$$

But in the presence of the electric field...

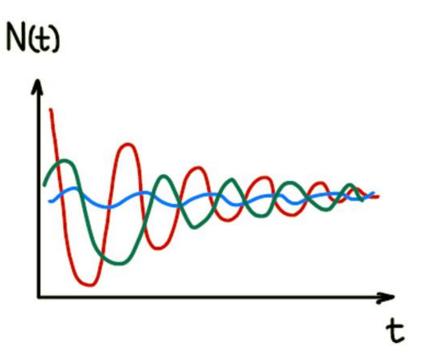
But in the presence of the electric field...

Depends on the choice of vacuum

- Vacua minimizing energy
- Adiabatic vacua

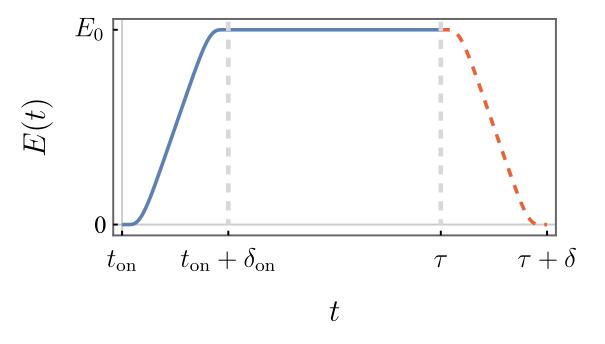
• ...

• Vacua minimizing time oscillations of particle number



IN THE 'LAB'

• Smooth switch-on and switch-off

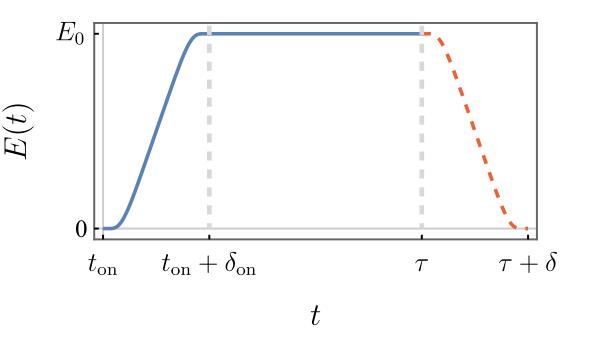


IN THE 'LAB'

- Smooth switch-on and switch-off
- Preferred notions of vacua in the asymptotic past and future

$$\varphi_k^{\text{in}}(t) \sim e^{-i\omega_k^{\text{in}}t} \Rightarrow |0_{\text{in}}\rangle$$

 $\varphi_k^{\rm out}(t) \sim e^{-i\omega_k^{\rm out}t} \Rightarrow |0_{\rm out}\rangle$

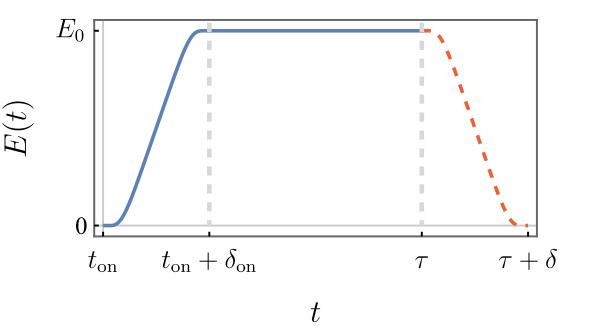


IN THE 'LAB'

- Smooth switch-on and switch-off
- Preferred notions of vacua in the asymptotic past and future

$$\varphi_k^{\rm in}(t) \sim e^{-i\omega_k^{\rm in}t} \Rightarrow |0_{\rm in}\rangle$$

 $\varphi_k^{\rm out}(t) \sim e^{-i\omega_k^{\rm out}t} \Rightarrow |0_{\rm out}\rangle$



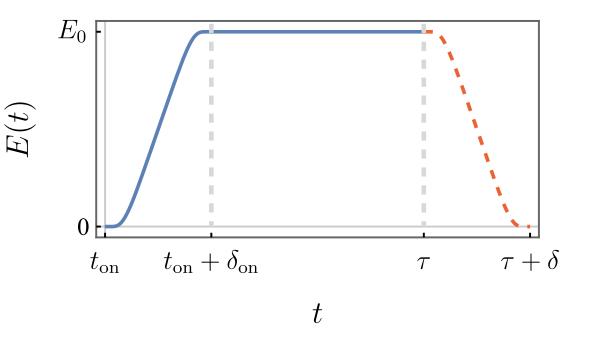
If our system is in $|0_{in}\rangle$, how many particles have been produced at $\tau + \delta$?

IN THE 'LAB'

- Smooth switch-on and switch-off
- Preferred notions of vacua in the asymptotic past and future

$$\varphi_k^{\rm in}(t) \sim e^{-i\omega_k^{\rm in}t} \Rightarrow |0_{\rm in}\rangle$$

 $\varphi_k^{\rm out}(t) \sim e^{-i\omega_k^{\rm out}t} \Rightarrow |0_{\rm out}\rangle$



If out system is in $|0_{in}\rangle$, how many particles have been produced at $\tau + \delta$?

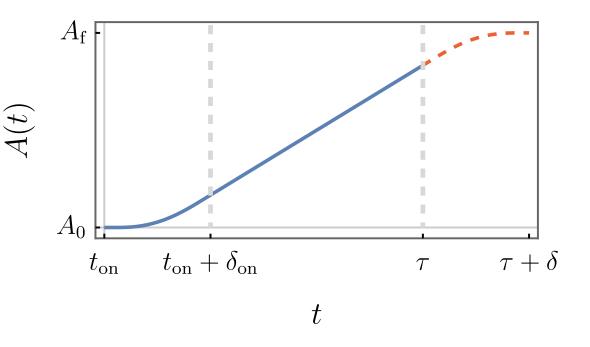
'Measured' particle number (density) $N_{\tau}^{\exp} = \langle 0_{\text{in}} | \hat{a}_{k}^{+,\text{out}} \hat{a}_{k}^{\text{out}} | 0_{\text{in}} \rangle + \langle 0_{in} | \hat{b}_{k}^{+,\text{out}} \hat{b}_{k}^{\text{out}} | 0_{\text{in}} \rangle$

IN THE 'LAB'

- Smooth switch-on and switch-off
- Preferred notions of vacua in the asymptotic past and future

$$\varphi_k^{\text{in}}(t) \sim e^{-i\omega_k^{\text{in}}t} \Rightarrow |0_{\text{in}}\rangle$$

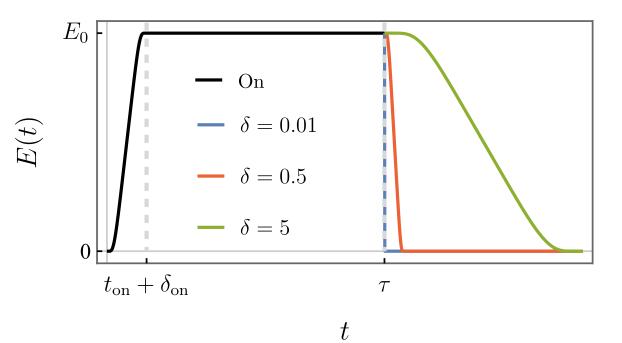
 $\varphi_k^{\rm out}(t) \sim e^{-i\omega_k^{\rm out}t} \Rightarrow |0_{\rm out}\rangle$

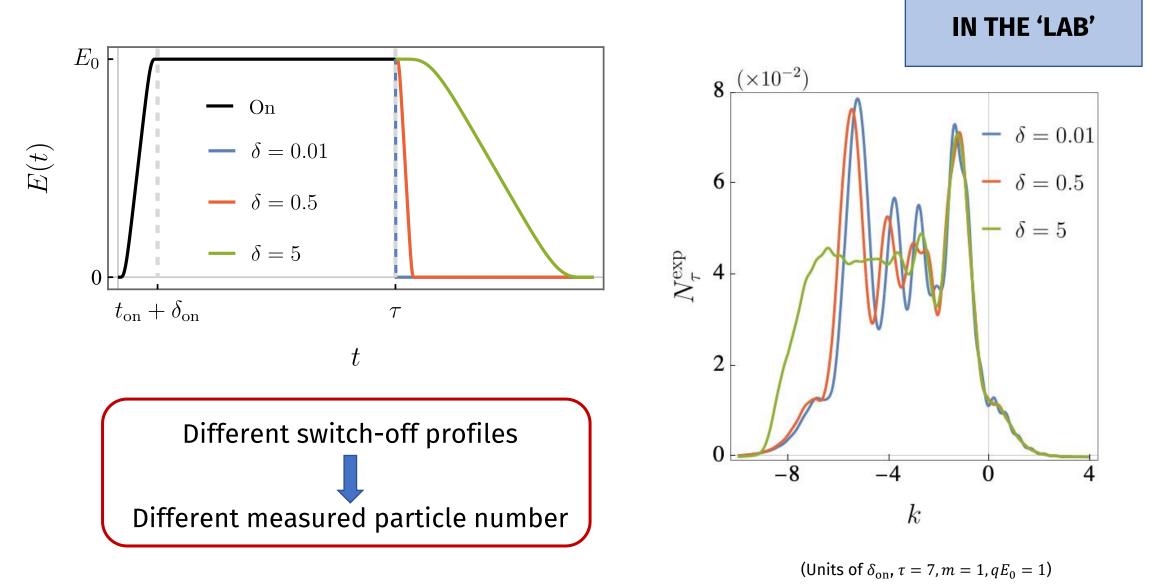


If out system is in $|0_{in}\rangle$, how many particles have been produced at $\tau + \delta$?

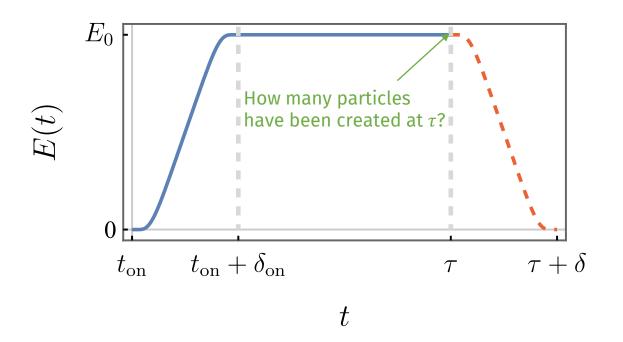
'Measured' particle number (density) $N_{\tau}^{\exp} = \langle 0_{\text{in}} | \hat{a}_{k}^{+,\text{out}} \hat{a}_{k}^{\text{out}} | 0_{\text{in}} \rangle + \langle 0_{in} | \hat{b}_{k}^{+,\text{out}} \hat{b}_{k}^{\text{out}} | 0_{\text{in}} \rangle$

IN THE 'LAB'





Theoretical particle number



Theoretical particle number

IN THE OFFICE

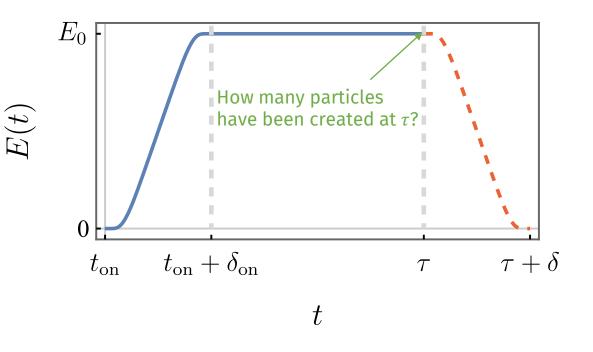
 Preferred notion of vacua in the asymptotic past

 $\varphi_k^{\rm in}(t) \sim e^{-i\omega_k^{\rm in}t} \Rightarrow |0_{\rm in}\rangle$

• We have to make a choice of φ_k^{τ}

 $\varphi_k^\tau(t) \, \Rightarrow |0_\tau\rangle$ (Initial conditions at τ but defined globally)

If out system is in $|0_{in}\rangle$, how many particles have been produced at τ ?



Theoretical particle number (density)

$$N(\tau) = \langle 0_{\rm in} | \hat{a}_k^{+,\tau} \hat{a}_k^{\tau} | 0_{\rm in} \rangle + \langle 0_{in} | \hat{b}_k^{+,\tau} \hat{b}_k^{\tau} | 0_{\rm in} \rangle$$

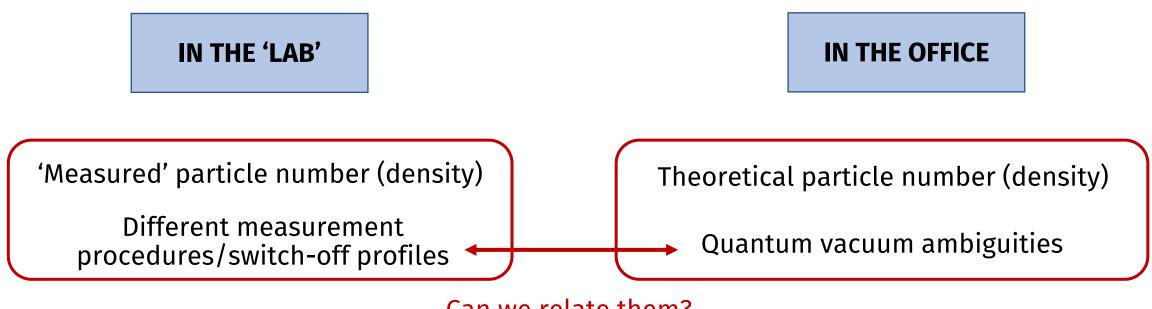
IN THE 'LAB'

IN THE OFFICE

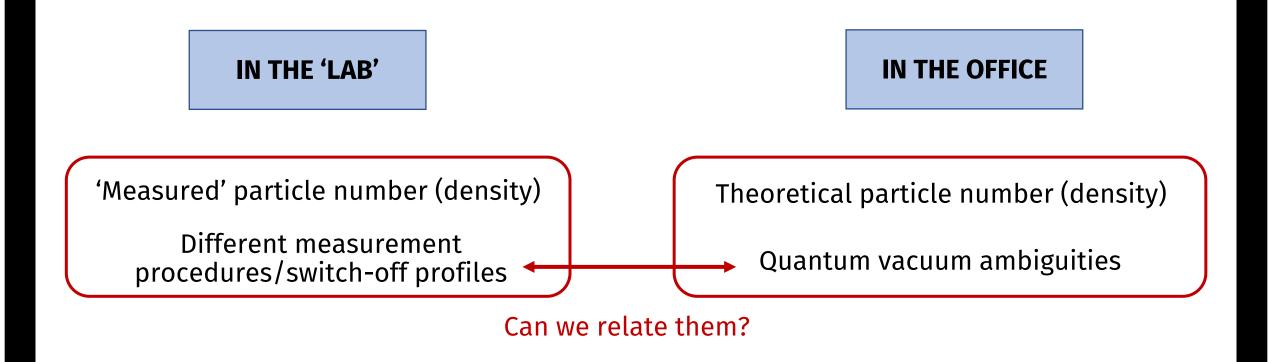
'Measured' particle number (density)

Different measurement procedures/switch-off profiles Theoretical particle number (density)

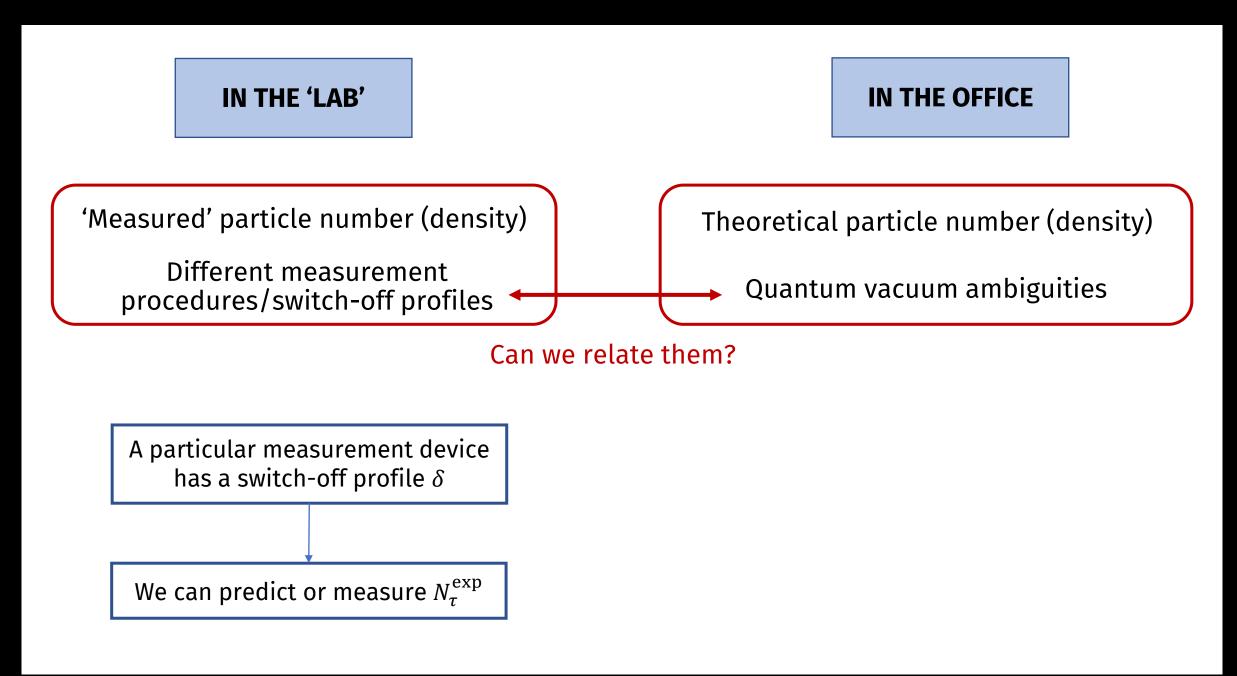
Quantum vacuum ambiguities

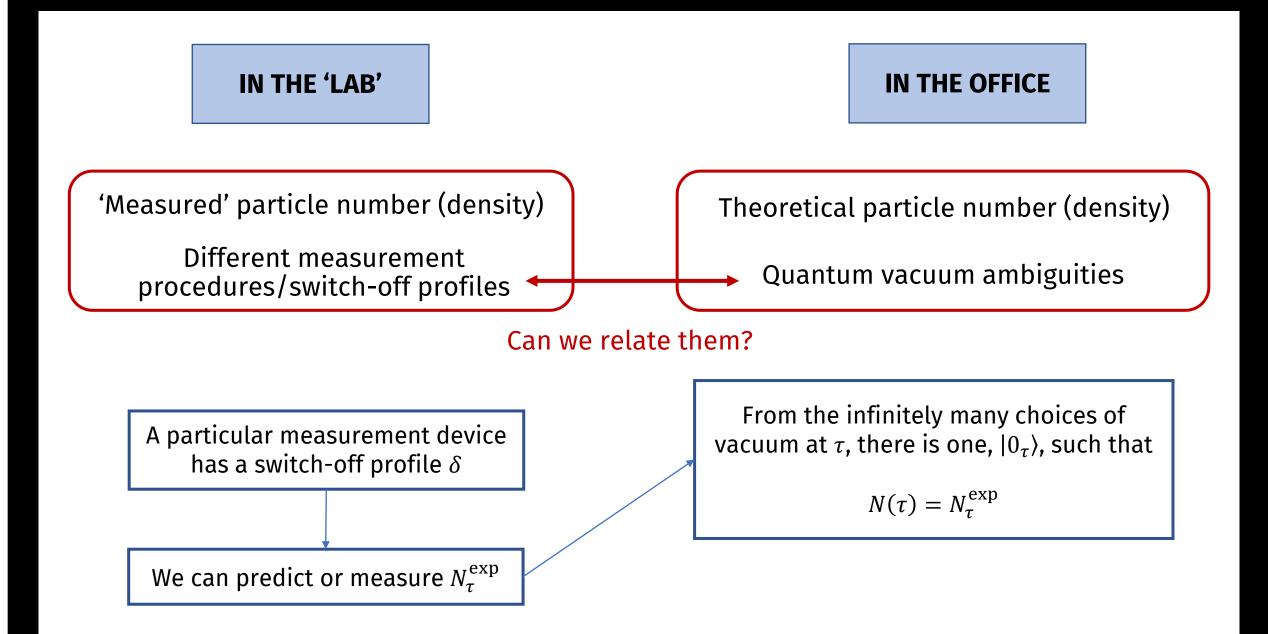


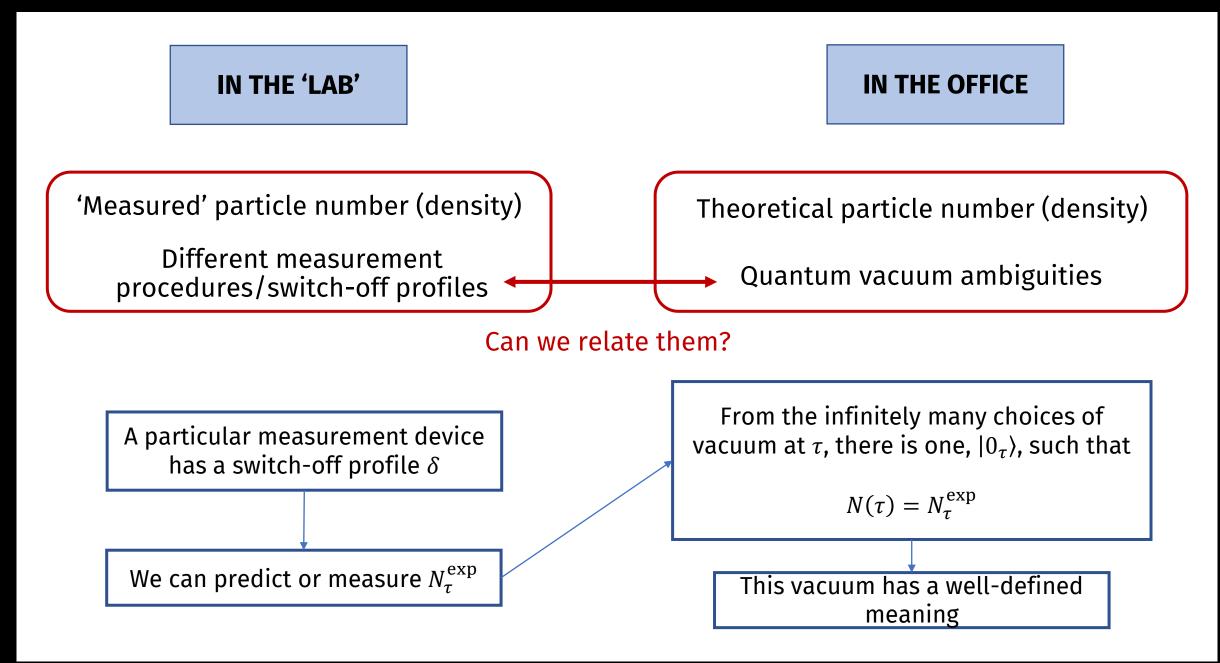
Can we relate them?



A particular measurement device has a switch-off profile δ

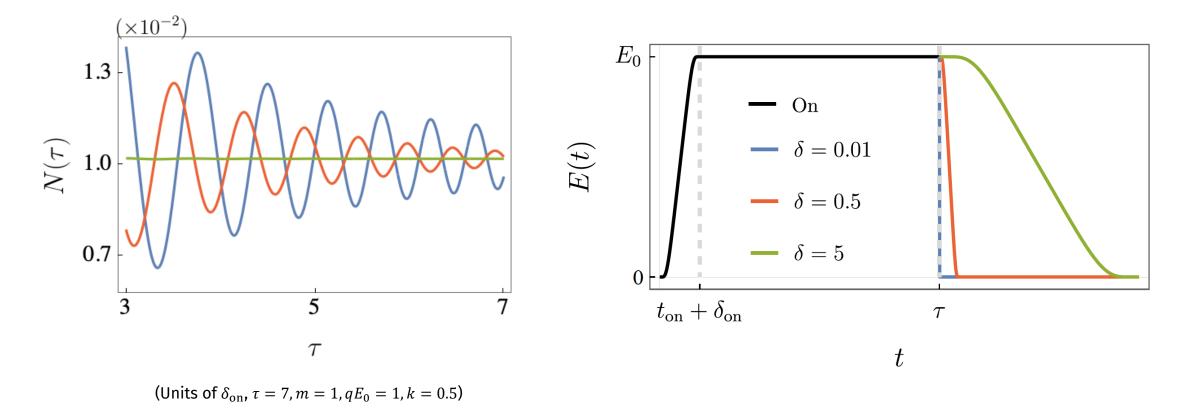






Consider we repeat this for any other $t = \tau$. Given a switch-off profile δ , I have an rule that selects a particular vacuum $|0_{t=\tau}\rangle$ such that $N(\tau)$ has a well-defined physical meaning:

 $N(\tau)$ is the number of particles that would have been measured if we had started the switch-off process at τ



Summary

- Quantum ambiguities arise in QFT in the presence of an external, time-dependent agent
- Particle number notion depends on the choice of vacuum
- Each measurement procedure/switching-off profile δ selects a vacuum $|0_{\tau}\rangle$ for which $N(\tau)$ has a well-defined physical meaning
- From the infinitely many quantizations, there is a family which accomodates information about real outcomes, i.e., they can be understood in terms of a measurement procedure
- Canonical quantum ambiguities are inherently physical: They are intimately related to the different ways of measuring

If you are still interested...

<u>arXiv:2303.07436</u>

