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Goals

• Advertise simple yet powerful tools from the quantum information theory of contin-

uous variable systems and Gaussian states to quantify the amount of entanglement

produced in the Hawking effect.

• Study the quantum aspects of the stimulated Hawking process.

Main references:

— I. Agullo, A. J. Brady, and D. Kranas, Phys. Rev. Lett. (2022)

— A. J. Brady, I. Agullo, and D. Kranas, Phys. Rev. D 106 (2022)
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Elements of quantum information theory of Gaussian states

Reference: A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (2017)

• Consider a system of N quantum bosonic degrees of freedom (harmonic oscillators):

R̂ = (x̂1, p̂1, ..., x̂N , p̂N).

Commutation relations: [x̂ , p̂] = iℏ → [R̂ i , R̂ j ] = iℏΩij , Ωij =
⊕(

0 1

−1 0

)

• Gaussian state ρ̂: Completely characterized by the first and secnond moments.

→ µi ≡ Tr
[
ρ̂R̂ i
]

→ σij ≡ Tr
[
ρ̂{(R̂ i − µi ), (R̂ j − µj)}

]
• The properties of the system can be derived in an elegant manner from µi and σij .

→ σij + iΩij ≥ 0

→ ρ̂: pure iff eigen{σikΩkj} = ±i

→ ⟨n̂⟩ = 1
4σ

i
i +

1
2µ

iµi − N/2
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Sometimes, it is more illuminating to write down expressions in terms of annihilation

and creation operators. Let us, therefore define the vector Â = (â1, â
†
1, ...âN , â

†
N).

âI =
1√
2
(x̂I + i p̂I ) , â†I =

1√
2
(x̂I − i p̂I ) , I = 1, ..,N

We can jump between Â and R̂ via

Â = UR̂, U =
N⊕

k=1

(
1 i

1 −i

)

R̂ = VÂ, V = U−1 =
N⊕

k=1

1√
2

(
1 1

−i i

)
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Elements of quantum information theory of Gaussian states

Examples of Gaussian States

→ Vacuum state: µ = 02N , σ = I2N
→ Coherent state: µ ̸= 02N , σ = I2N

→ Single-mode squeezed state: µ = 02N , σ ̸= I2N

→ Thermal state: µ = 02N , σ = ⊕N
i (2n̄i + 1)I2

5
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Evolution

For quadratic Hamiltonians, Gaussian states evolve to Gaussian states

(µin,σin) −→ (µout,σout)

µout = Sµin, σout = SσinST, S ·Ω · ST = Ω

Forget about Schrödinger equation, infinite by infinite density matrices, etc. The evo-

lution of Gaussian states is implemented by simple matrix multiplications of finitely

dimensional matrices.
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Entanglement
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Logarithmic Negativity

To quantify entanglement of quantum states, including mixed ones, we will use

Logarithmic Negativity LN, associated to the PPT criterion.

• Can be used to quantify the entanglement of mixed states.

• Based on the Positivity of Partial Transposition (PPT) criterion.

• For Gaussian states where either subsystem is made of a single degree of freedom,

LN is a faithful entanglement quantifier.

• Can be computed from σ.

• Measures entanglement in units of Bell states. For an operational interpretation

look at [X. Wang, M. M. Wilde, Phys. Rev. Lett. 125, 040502 (2020)].
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Two-mode squeezing

âout1 = cosh r âin1 + e iφ sinh r â†2
in,

âout2 = e iφ sinh r â†1
in + cosh r âin2

9



Two-mode squeezing for vacuum input

• State before squeezing:

µin = (0, 0, 0, 0), σin = I4

• Two-mode squeezing S-matrix:

S2sq =


cosh r 0 cosϕ sinh r sinϕ sinh r

0 cosh r sinϕ sinh r − cosϕ sinh r

cosϕ sinh r sinϕ sinh r cosh r 0

sinϕ sinh r − cosϕ sinh r 0 cosh r


• State after squeezing:

µout = S2sqµ
in, σout = S2sqσ

inST
2sq
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Two-mode squeezing for vacuum input

• State after squeezing:

µout = (0, 0, 0, 0), σout =


cosh 2r 0 cosϕ sinh 2r sinϕ sinh 2r

0 cosh 2r sinϕ sinh 2r − cosϕ sinh 2r

cosϕ sinh 2r sinϕ sinh 2r cosh 2r 0

sinϕ sinh 2r − cosϕ sinh 2r 0 cosh 2r



⟨n̂1⟩ = 1
4
Tr[σ1]+

1
2
µ1 ·µ1− 1

2
= sinh2 r

• Entanglement:

LN(r) = max{0,− log2 e
−2r} =

2

ln 2
r ≃ 2.89 r
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Two-mode squeezing for vacuum input

Entanglement vs squeezing amplitude
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Cauchy-Schwarz inequality

Entanglement witness [X. Busch, I. Carusotto, and R. Parentani (2014)], [X. Busch and R.

Parentani, (2014)].

∆ = ⟨â†1â1⟩+ ⟨â†2â2⟩ − |⟨â1â2⟩|2

∆ < 0 is a sufficient condition for entanglement. Only for some states ∆ is a sufficient

and necessary condition [X. Busch and R. Parentani, (2014)].

• Advantages: It can be computed by measuring a few observables.

• Disadvantages: It does not quantify entanglement.

13



Cauchy-Schwarz inequality

Entanglement witness [X. Busch, I. Carusotto, and R. Parentani (2014)], [X. Busch and R.

Parentani, (2014)].
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Cauchy-Schwarz inequality and two-mode squeezing

∆ vs squeezing amplitude
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Two-mode squeezing for displaced input

• State before two-mode squeezing:

µin =
√
2(Re[α], Im[α],Re[α], Im[α]), σ = I4

• Two-mode squeezing S-matrix: S2sq same matrix as before.

• State after two-mode squeezing squeezing:

µout = S2sqµ
in, σout = S2sqσ

inST
2sq = σout

vac

• ⟨n̂i ⟩ = |α|2︸︷︷︸
initial

+ sinh2 r︸ ︷︷ ︸
spontaneous

+ |α|2sinh2 r︸ ︷︷ ︸
stimulated

• Entanglement: LN=2.89 r

The amount of entanglement produced is the same as in the case of vacuum input.
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Two-mode squeezing for thermal input

• State before squeezing:

µin = (0, 0, 0, 0), σ = (2n + 1)I4

• State after squeezing:

µout = S2sqµ
in = (0, 0, 0, 0), σout = S2sqσ

inST
2sq = (2n + 1)σout

vac

• ⟨n̂i ⟩ = n︸︷︷︸
initial

+ sinh2 r︸ ︷︷ ︸
spontaneous

+2n sinh2 r︸ ︷︷ ︸
stimulated

• Entanglement:

LN = max{0,− log2[(2n + 1)e2r ]}

The state is entangled only if r > 1
2
ln (2n + 1)
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Two-mode squeezing for thermal input

Messages: 1) Entanglement decreases with thermal noise. 2) LN measures correctly the amount of

entanglement but ∆ does not; it only tells us when the state is entangled,
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Two-mode squeezing for thermal-single-mode squeezed (ϕ = 0) input

• State before two-mode squeezing:

µin = (0, 0, 0, 0), σ = (2n + 1)


e−ξ 0 0 0

0 −eξ 0 0

0 0 1 0

0 0 0 1



• State after two-mode squeezing squeezing:

µout = S2sqµ
in = (0, 0, 0, 0), σout = S2sqσ

inST
2sq

Whether the state is entangled or not, as well as the amount of entanglement it may contain

depends on the combination of r , n, ξ.
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Two-mode squeezing for thermal-single-mode squeezed (ϕ = 0) input

Entanglement vs initial squeezing amplitude

Message: One can amplify the amount of entanglement produced by the two-mode squeezer by tuning

appropriately the input state.
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Two-mode squeezing for thermal-single-mode squeezed (ϕ = 0) input

Entanglement vs noise

Messages: 1) Entanglement increases with the amount of initial squeezing. 2) ∆ does not capture correctly the

entanglement,
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Hawking effect in optical analogue white-black

holes

21



Modes and emergent causal structure

• Kerr effect: neff (ω, x , t) = n(ω) + δn(x , t), δn(x , t) = αE 2
s (x , t).

• In the comoving frame (χ, τ) w.r.t to the strong pulse, the system admits static

solutions → Conservation of frequency.
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Modes and emergent causal structure

Each horizon behaves as a two-mode squeezer producing entangled Hawking

pairs!!
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Experimental status

• Observing the spontaneous Hawking effect, even in highly controllable analog

gravity platforms, has proven to be an extremely challenging task.

• Only one group has claimed observation of the spontaneous Hawking process in

the BEC [J. Steinhauer (2016)] .

• Further confirmation needed!!
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A promising avenue

Let’s stimulate particle creation by illuminating the

horizons!!! [S. Weinfurtner et al (2011)], [Drori et al (2019)]

• Coherent state: µ ̸= 0, σ = I .

— Increase intensity of the Hawking radiation? !

— Enhances the generated entanglement? %

• Single-mode squeezed state: µ = 0, σ ̸= I .

— Increase intensity of the Hawking radiation? !

— Enhances the generated entanglement? !
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Entanglement, noise, and single-mode squeezed input

• We consider the ingoing k3 mode to be in a single-mode squeezed state.

• Single-mode squeezed inputs enhance the entanglement generated by the

horizons.
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Take-home messages

• We have leveraged sharp tools from quantum information theory to quantify the amount of entan-

glement generated in the Hawking effect.

• Stimulated Hawking effect: Entanglement is tunable. We can use this to our advantage to

increase not only the classical but also the quantum aspects of the process.

These results open a promising avenue for the detection of the Hawking effect and its

quantum origin in the lab.
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Additional Slides

28



Thermal noise and detector losses

To make contact with a realistic situation, we studied how noisy environments (i.e. thermal

fluctuations) and detector losses affect the entanglement produced in the Hawking process.

Take-home message: Environment noise and detector inefficiencies reduce the amount of entanglement

and can, even, make it completely vanish. 29



Bloch–Messiah decomposition: Any symplectic transformation can be decom-

posed to a set of squeezers, beam splitters, and phase shifters.

Let us for concreteness consider a system of two d.o.f.s Â = (â1, â
†
1, â2, â

†
2)

• Phase shifters

ˆ̃a1 = e−ıϕ1 â1, ˆ̃a2 = e−iϕ2 â2

• Beam splitter

ˆ̃a1 = cos θ â1 + sin θ â2, ˆ̃a2 = − sin θ â1 + cos θ â2

• Single-mode squeezing

ˆ̃a1 = cosh r1 â1 − e iφ1 sinh r1 â
†
1,

ˆ̃a2 = cosh r2 â2 − e iφ2 sinh r2 â
†
2
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†
1, â2, â
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†
2)

• Phase shifters
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ˆ̃a1 = cosh r1 â1 − e iφ1 sinh r1 â
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Two-mode squeezing

ˆ̃a1 = cosh r â1 − e iφ sinh r â†2,

ˆ̃a2 = −e iφ sinh r â†1 + cosh r â2

The production of entangled quanta in the Hawking effect is a two-mode

squeezing process.
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Separability and entanglement

Let us consider a composite system that can be split into two subsystems A and B. Let ρ̂A ∈
D(HA) and ρ̂B ∈ D(HB) be the density operators describing A and B, respectively. The

composite system is characterized by ρ̂ ∈ D(HA

⊗
HB).

The quantum state ρ̂ is said to be separable if and only if it can be written as

ρ̂ =
m∑
j=1

pj ρ̂A,j ⊗ ρ̂B,j ,

where ρ̂A,j ∈ D(HA), ρ̂B,j ∈ D(BA), 0 ≤ pj ≤ 1 for ∀ j = 1, ..,m and
∑m

j=1 pj = 1.

A quantum state ρ̂ is said to be entangled if it is not separable.
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Entanglement: von Neumann entropy

Standard entanglement quantifier: entanglement entropy → von Neumann entropy

of one of the subsystems.

Let ρ̂A = TrB [ ˆρAB ] be the state describing subsystem A. The entanglement entropy is

given by

E [ρ̂A] = −Tr[ρ̂A log2(ρ̂A)] = −Σj λA,j log2(λA,j), λA,j ≡ eigen{ρ̂A}

For Gaussian states

E =
n∑

j=1

h(νAi ), h(νAi ) =
νAi + 1

2
log2

(
νAi + 1

2

)
−
νAi − 1

2
log2

(
νAi − 1

2

)
,

where {νAi }, for i = 1, ...,N, is the set of symplectic eigenvalues of σA, i.e.

|eigen{ΩσA}|.
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Entanglement: von Neumann entropy

• For a pure state: E = 0.

• For a mixed state: E > 0.

• von Neuman entropy measures the degree of ”mixedness” of a state.

• If the total state ρ̂AB is pure and the reduced states ρ̂A and ρ̂B are mixed, then

von Neumann entropy quantifies the entanglement between ρ̂A and ρ̂B .

• But if the total state ρ̂ is mixed, E [ρ̂A] could be positive even if ρ̂AB = ρ̂A ⊗ ρ̂B .

• von Neumann entropy cannot be used to quantify entanglement in mixed states.
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PPT criterion

To study the entanglement of quantum states, including mixed ones, we will use the well-known

positivity of the partial transposition (PPT) criterion [A. Peres (1996), P. Horodecki (1997)].

Let {|i⟩A} and {|i⟩B} be orthornormal basis of the HA and HB , respectively.

ρ̂AB =
∑
i,j,k,ℓ

pi,j,k,ℓ |i⟩ ⟨j |A ⊗ |k⟩ ⟨ℓ|B .

The partial transposition with respect to B is given by

ρ̂PT = IA ⊗ TB(ρ̂AB) =
∑
i,j,k,ℓ

pi,j,k,ℓ |i⟩ ⟨j |A ⊗ |ℓ⟩ ⟨k|B =
∑
i,j,k,ℓ

pi,j,ℓ,k |i⟩ ⟨j |A ⊗ |k⟩ ⟨ℓ|B .

Let {λPT
i } be the set of eigenvalues of ρ̂PT.

• If ρ̂AB is separable, then λPT
i > 0 ∀ i .

• If ∃ λPT
i < 0, then ρ̂AB is entangled.
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PPT for Gaussian states

• For Gaussian states, all statements about correlations, separability, and entanglement can

be extracted solely from the covariance matrix σ.

• The operation of partial transposition of a system of M + K = N d.o.f.s, partitioned as

(M − d.o.f.s|K − d.o.f.s), is implemented by

σPT = TσT, T = I2M
⊕

Σ2K , Σ2K =
K⊕
i=1

σz

Let {νPTi } be the set of symplectic eigenvalues of σPT.

• If ρ̂AB is separable, then νPTi > 1 ∀ i .

• If ∃ νPTi < 1, then ρ̂AB is entangled.
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Two-mode squeezing for vacuum input

• Logarithmic Negativity

LN(r) = max{0,− log2 ν
PT
min} =

2

ln 2
r ≃ 2.89 r

• Entanglement entropy

E =
νA + 1

2
log2

(
νA + 1

2

)
− νA − 1

2
log2

(
νA − 1

2

)
,

where νA = cosh 2r .
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Two-mode squeezing for vacuum input

Both E and LN increase monotonically with r and capture the entanglement produced by the

squeezing.
38



Logarithmic Negativity

— For Gaussian states of a system of M + K = N d.o.f.s, partitioned as

(M − d.o.f.s|K − d.o.f.s), LN is computed by

LN =
M+K∑

j

max

{
0,− log2

(
νPTj

)}

— For the particular case where of Gaussian systems partitioned as

(1− d.o.f.s|M − d.o.f.s) (which are most of the situations we are interested in),

LN is given by

LN = max{0,− log2 ν
PT
min},

where νPTmin is the lowest symplectic eigenvalue of σPT.
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Two-mode squeezing for thermal input

• State before squeezing:

µin = (0, 0, 0, 0), σ = (2n + 1)I4

• Two-mode squeezing S-matrix: S2sq same matrix as before.

• State after squeezing:

µout = S2sqµ
in = (0, 0, 0, 0), σout = S2sqσ

inST
2sq = (2n + 1)σout

vac

• Partial transpose

(σout)PT = (σout
vac)

PT

• Symplectic eigenvalues

• ν = {1, 1, 1, 1}
• νPT = {(2n + 1)e−2r , (2n + 1)e−2r , (2n + 1)e2r , (2n + 1)e2r}

The state is entangled only if νPT
min < 1 ⇒ r > 1

2
ln (2n + 1)
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Two-mode squeezing for thermal input

Message: Entanglement increases with r and decreases with n.
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Two-mode squeezing for thermal input

Message: Entanglement increases with r and decreases with n. 41



Let us compare LN and von Neumann entropy E and mutual information I.

Mutual information: I = EA + EB − EAB

• Mutual information encodes the total amount of correlation in the state, both

classical and quantum.

• For pure states (EAB = 0): I = 2EA = 2EB
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Two-mode squeezing for thermal input

Message: The quantum state contains correlations even when entanglement disappears.
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Two-mode squeezing for thermal input

Message: The quantum state contains correlations even when entanglement disappears.
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Two-mode squeezing for thermal-single-mode squeezed (ϕ = 0) input

• State before two-mode squeezing:

µin = (0, 0, 0, 0), σ = (2n + 1)


e−ξ 0 0 0

0 −eξ 0 0

0 0 1 0

0 0 0 1



• Two-mode squeezing S-matrix: S2sq same matrix as before.

• State after two-mode squeezing squeezing:

µout = S2sqµ
in = (0, 0, 0, 0), σout = S2sqσ

inST
2sq

Whether the state is entangled or not, as well as the amount of entanglement it may contain

depends on the combination of r , n, ξ.
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Two-mode squeezing for thermal-single-mode squeezed (ϕ = 0) input

Message: One can amplify the amount of entanglement produced by the two-mode squeezer by tuning

appropriately the input state.
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Hawking effect

Hawking effect: Spontaneous creation of entangled particle pairs by

black hole event horizons.

[S. W. Hawking (1974)]
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Hawking process in a nutshell

• Ingredients: Black hole horizon + a

quantum field.

• Thermal radiation emitted from the

exterior of black holes.

• Hawking temperature:

TH = ℏc3
8πGkBM

• Carries a quantum signature:

Entanglement
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One of the main contributions of this work is the incorporation of quantum information

tools of Gaussian states into the physics of field theory to reformulate the Hawking

process in a simple yet efficient manner.

Goal: Quantify the amount of entanglement generated in the Hawking process.
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From ∞ to 3

• QFT: Infinitely-many degrees of freedom.

• Wald (1975): Found the progenitors of the Hawking modes → evolution

diagonalizes to interactions among sets of three modes.
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Hawking process as symplectic transformations

The scattering process at the black hole can be modeled via a two-mode squeezer followed by a beam splitter.

Squeezer

âout1 = cosh rω âin1 + e iϕ sinh rω (âin2 )
†

âup2 = e iϕ sinh rω (âin1 )
† + cosh rω âin2

Beam splitter

âout2 = Tω âup2 − Rω âin3

âout3 = Rω âup2 + Tω âin3
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Hawking process as symplectic transformations



âout1

(âout1 )†

âout2

(âout2 )†

âout3

(âout3 )†


=



cosh rω 0 e iϕ sinh rω 0 0 0

0 cosh rω 0 e−iϕ sinh rω 0 0

0 e iϕTω sinh r Tω cosh r 0 −Rω 0

e−iϕTω sinh rω 0 0 Tω cosh rω 0 −Rω

0 e iϕRω sinh rω Rω cosh rω 0 Tω 0

e−iϕRω sinh rω 0 0 Rω cosh rω 0 Tω





âin1
(âin1 )

†

âin2
(âin2 )

†

âin3
(âin3 )

†


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Hawking process as symplectic transformations

Number of emitted quanta:

⟨0| (âout2 )†âout2 |0⟩in = Tω sinh2 rω = Tω

(
eℏω/kBTH − 1

)−1

.
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Entanglement produced by black holes

Let us compute the entanglement between Hawking radiation and the modes falling inside the

black hole.
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Entanglement in the Hawking effect

• At low ω, Γω → 0: the gravitational barrier becomes fully reflective → No Hawking quanta escape.

• At high ω, Γω → 1: the gravitational barrier becomes fully transparent → All Hawking quanta escape.

• The number of Hawking quanta produced at the horizon decreases monotonically with ω (since it follows

a Bose-Einstein distribution).

• The competition of the last two functional forms results in a maximum value of LN at ω = 0.228M−1. 54



Entanglement for BHs in a thermal bath

Main message: Thermal baths (mixed input quantum states) reduce the amount of entangle-

ment produced in the Hawking process. In some cases, they can make entanglement completely

vanish.
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Observations?

• Entanglement: Impossible as it would require extracting information from the interior of

the black hole.

• Hawking radiation: Potentially...But, for ”standard” black holes the resulting signal is

extremely weak. Recall

TH =
ℏc3

8πGkBM
.

For M = M⊙ → TH = 61.7 nK. On the other hand, TCMB = 2.7K

Conclusion: Hawking radiation emitted by BHs of a typical mass is extremely weak and, thus,

will be buried under other cosmic signals (e.g. CMB).
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Hawking effect in a nutshell

• The Hawking process is a 3-mode interaction of a field (for

concreteness we consider a masssless field).

• We associate (âi , â
†
i ), i = 1, 2, 3 to the three modes.

• At I−, the field is in the vacuum state |0⟩in, i.e. â
in
i |0⟩in = 0,

∀ i .No quanta initially: ⟨0| n̂in
i |0⟩in = ⟨0| (âini )†âini |0⟩in = 0.

• At I+, a detector would measure

⟨0| n̂out
2 |0⟩in = ⟨0| (âout2 )†âout2 |0⟩in = Γω

(
e

ℏω
kBTH − 1

)−1

.

• Black holes radiate as blackbodies of temperature

TH = ℏc3
8πGkBM

.

• The Hawking mode W out
2 is entangled with the interior

modes W out
1 and W out

3 .
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Entanglement in the Hawking effect

Let us compute the entanglement between Hawking radiation and the modes falling inside the

black hole.

• Entanglement is directly produced in modes W out
2 and W out

1 by the two-mode squeezer.

• Due to the gravitational barrier (modeled by a beam splitter), some of the Hawking quanta

are backscattered and follow into the black hole via the mode W out
3 . Hence, this mode will

also be entangled with the W out
1 . 58



Elements of quantum information theory of Gaussian states

We work with the family Gaussian states, where all the information about the quantum state is encoded in the

first moments µ = ⟨Â⟩ and the covariance matrix σ = ⟨{Â−µ, Â−µ}⟩, where Â = (â1, â
†
1 , â2, â

†
2 , ..., âN , â

†
N)

T .

Examples of Gaussian States: Let us, for illustration purposes, consider a single degree of freedom Â = (â, â†).

→ Vacuum state

|0⟩ : â |0⟩ = 0. Moments: µ = (0, 0), σ = σx =

(
0 1

1 0

)
.

→ Coherent state

|coh⟩ = exp
(
αâ† − α∗â

)
|0⟩. Moments: µ = (α, α∗), σ = σx .

→ Single-mode squeezed state

|SMSV ⟩ = exp
[
1
2
ξ
(
â† 2 − â2

)]
|0⟩. Moments: µ = (0, 0), σ =

(
sinh 2ξ cosh 2ξ

cosh 2ξ sinh 2ξ

)
.

→ Thermal state

ρ ∝ Σne
−ω

T
(n+ 1

2
) |n⟩ ⟨n|. Moments: µ = (0, 0), σ = (2n̄ + 1)σx , n̄ = (eω/T − 1)−1.
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Summary of our main results for the spontaneous Hawking effect (i.e. vacuum input)

• We constructed a numerical code to solve the scattering problem and construct the scattering

matrix relating the in and out modes (annihilation and creation operators).

• From the scattering matrix, we compute the number of quanta created in each mode and their

entanglement.

• We extract the Hawking temperature and study its dependence on the model parameters. The

Hawking temperature and, consequently, the number of quanta and the amount of entanglement,

are higher for stronger and narrower pulses. For reasonable optical parameters, we find TH as high

as 20K.

• We study the energy scale (frequency) where effects of dispersion become important and the

Hawking particle creation loses its thermal character.
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Elements of quantum information theory of Gaussian states

• We work with the family Gaussian states, where all the information about the quantum state is

encoded in the first moments µ = ⟨Â⟩ and the covariance matrix σ = ⟨{Â − µ, Â − µ}⟩, where
Â = (â1, â

†
1 , â2, â

†
2 , â3, â

†
3)

T .

• The evolution of the state is given by: Âout = S · Âin, µout = S · µin, σout = S · σin · ST .

• We use Logarithmic negativity (LN), a well-known entanglement monotone in quantum information

theory, to study and quantify the entanglement produced in the Hawking process. LN can be

easily computed from the covariance matrix. [A. Serafini, Quantum Continuous Variables: A Primer

of Theoretical Methods (2017)], [X. Wang, M. M. Wilde, Phys. Rev. Lett. 125, 040502 (2020).]

• LN will allow us to extend previous calculations in the literature based on entanglement entropy,

e.g. [D. N. Page (2013)], to study more realistic scenarios, for instance, when the initial quantum

state is mixed.
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Black holes immersed in a thermal bath

→ The previous calculations were made for black holes in isolation. What about black holes

immersed in a thermal bath of photons (such as the CMB)?

→ Does the thermal bath affect particle production and generation of entanglement?

• The initial quantum state of the field is not the vacuum anymore, but rather a mixed state.

• The covariance matrix of each mode is (2nenv,i + 1)I2. But, modes W in
1 and W in

2 have

an ultra-high frequency and therefore nenv,1 = nenv,2 ≈ 0. For W in
3 , nenv,3 ≡ nenv =(

e−ω/Tenv − 1
)−1

. The initial state is µin = (0, 0), σ = I4⊕(2nenv+1)I2.(I should probably

remove this last bullet as it is technical and doesn’t offer much in the global discussion.)
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Entanglement in the Hawking effect

Let us compute the entanglement between Hawking radiation and the modes falling inside the

black hole.

• Entanglement is directly produced in modes W out
2 and W out

1 by the two-mode squeezer.

• Due to the gravitational barrier (modeled by a beam splitter), some of the Hawking quanta

are backscattered and follow into the black hole via the mode W out
3 . Hence, this mode will

also be entangled with the W out
1 . 63



Entanglement in the Hawking effect

• At low ω, Γω → 0: the gravitational barrier becomes fully reflective → No Hawking quanta escape.

• At high ω, Γω → 1: the gravitational barrier becomes fully transparent → All Hawking quanta escape.

• The number of Hawking quanta produced at the horizon decreases monotonically with ω (since it follows

a Bose-Einstein distribution).

• The competition of the last two functional forms results in a maximum value of LN at ω = 0.228M−1. 64



Black holes immersed in a thermal bath

→ The previous calculations were made for black holes in isolation. What about black holes

immersed in a thermal bath of photons (such as the CMB)?

→ The initial quantum state of the field is not the vacuum anymore, but rather a mixed state.

→ Does the thermal bath affect particle production and generation of entanglement?
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Experimental status

– T. G. Philbin et al, (2008), Science 319, 1367.

– J. Drori et al, (2019), Phys. Rev. Lett. 122, 010404.

Successes

• Generation of horizons.

• Particle production via the stimulated process.

Open questions

• Observation of a blackbody spectrum (dispersion the main obstacle and absence

of perfect horizons).

• Generation of entanglement (fragile to background thermal noise).

Conclusion: Observing the Hawking effect, even in highly controllable analog gravity

platforms, has proven to be an extremely challenging task.
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Thermal noise and detector losses

To make contact with a realistic situation, we studied how noisy environments (i.e. thermal

fluctuations) and detector losses affect the entanglement produced in the Hawking process.

Take-home message: Environment noise and detector inefficiencies reduce the amount of entanglement

and can, even, make it completely vanish. 67



The protocol to extract TH from observations

Intensities (classical signal)

• ⟨n̂3(ω)⟩ = A(ω)(eω/TH − 1)−1.

Entanglement (quantum signal)

• Theoretically, we compute the function LN1|4(ω) = f (ω;TH ,Tenv , rI ).

• Measure all mode correlations
〈
{âouti (ω), âoutj (ω)}

〉
,
〈
{âouti (ω), âout †j (ω)}

〉
,〈

{âout †i (ω), âout †j (ω)}
〉
.

• Construct LN1|4(ω).

• Obtain TH from LN1|4(ω).
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Entanglement in the laser effect subject to thermal noise and losses

• Entanglement maintains its monotonic growth as a function of the total loops N, even in the case of

inefficient detectors. However, the amount of entanglement is reduced and it saturates quickly after the

first few loops.

• Entanglement decreases with Tenv and increases with η and N. The more loop the laser operates the more

entanglement is produced and the Tenv threshold where entanglement vanishes is pushed to higher values.

• The lasing setup provides us with a mechanism to overcome spurious effects induced by noise and detector

inefficiencies. 69



Take-home messages

• The black hole causal structure can be reproduced in dispersive, inhomogeneous

media.

• Stimulating the process with a single-mode squeeze state is a promising strategy

for the detection of the Hawking effect as it enhances both the Hawking intensity

and the entanglement generated by the Hawking process.

• Connecting observations (intensities and entanglement) with the causal horizon is

essential for the experimental confirmation of the Hawking effect.
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Context

• Hawking effect: Creation of entangled pairs of particles by black hole event

horizons. S. W. Hawking, Black hole explosions, Nature 248, 30 .

• Direct observation? For typical black hole masses TH/TCMB ≪ 1 → signal

burried under CMB.

• Analog black holes: Dispersive media where propagating perturbations

experience causal horizons mimicking the structure of black hole/white hole

spacetimes. Popular analog models include: 1) Hydrodynamic systems, Bose

Einstein Condensates, Optical media, etc.
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River-analog of black holes

River metric in 1+1D:

ds2 = −u2dt2 + (dx − V (x)dt)2

Acoustic horizon condition |V (x)| = u.

ds2 = −
(
1− rs

r

)
c2dt2 +

(
1− rs

r

)−1

dr2

ds2 = −c2dt̃2 +

(
dr + c

√
rS
r
d t̃

)2

Flow velocity: V (r) = −c
√

rs
r .
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Optical black holes: The (microscopic) model

L =
1

2

[
|∂tA|2 − |∂xA|2

]
︸ ︷︷ ︸

EM field

+
1

2

[
|∂tψ|2 − Ω2ψ

]
︸ ︷︷ ︸

medium

+ gRe [ψ∂tA
∗]︸ ︷︷ ︸

linear interaction

Ω(x , t) = Ωo + αST |Es(x , t)|2︸ ︷︷ ︸
nonlinear interaction

neff (ωlab, x , t) =

√
1 +

g2

Ω2(x , t)− ω2
lab
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Wave equation

∂2t A(x , t)− ∂2xA(x , t) = −g∂tψ(x , t)

∂2t ψ(x , t) + Ω2(x , t)ψ(x , t) = g∂tA(x , t)

{(
∂2χ + ω2

) [
γ2 (u∂χ + iω)2 +Ω2(χ)

]
− γ2g2

(
u∂2χ + iω

)2}
ψω(χ) = 0
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Dispersion relation in the comoving frame

γ(ω + uk) = ±Ω(χ)

√
1 +

g2

ω2 − k2 − g2

figures/wavepackets_in_and_out.jpg
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Particle creation: a simple example

Consider a time-dependent quantum harmonic oscillator.

Ĥ =
1

2
p̂ +

1

2
ω2(t)x̂2 → d2x̂

dt2
+ ω(t)x̂ = 0

[x̂ , p̂] = i , [â, â†] = 1

For t ≪ 0 :

• ω(t) = ω1 → x̂(t) = 1√
2ω1

(
â1e

−i ω1 t + â†1e
+i ω1 t

)
• â1 |0⟩1 = 0, ⟨0| â†1 â1 |0⟩1 = 0

For t ≫ 0 :

• ω(t) = ω2 → x̂(t) = 1√
2ω2

(
â2e

−i ω2 t + â†2e
+i ω2 t

)
• â2 |0⟩1 ̸= 0, ⟨0| â†2 â2 |0⟩1 ̸= 0

Time evolution:

e−i ω1 t → αe−i ω2 t + βe+i ω2 t , â1 → α∗â2 − β∗â†2 → ⟨0| â2â†2 |0⟩2 = |β|2
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Ĥ =
1

2
p̂ +

1

2
ω2(t)x̂2 → d2x̂

dt2
+ ω(t)x̂ = 0

[x̂ , p̂] = i , [â, â†] = 1

For t ≪ 0 :

• ω(t) = ω1 → x̂(t) = 1√
2ω1

(
â1e

−i ω1 t + â†1e
+i ω1 t

)
• â1 |0⟩1 = 0, ⟨0| â†1 â1 |0⟩1 = 0

For t ≫ 0 :

• ω(t) = ω2 → x̂(t) = 1√
2ω2

(
â2e

−i ω2 t + â†2e
+i ω2 t

)
• â2 |0⟩1 ̸= 0, ⟨0| â†2 â2 |0⟩1 ̸= 0

Time evolution:
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White hole-Black hole scattering

In the asymptotic regions (χ→ ±∞):

Â(χ, τ) =

∫
dω

4∑
j=1

(
âj ,ωe

ikj (ω)χe−iωτ + â†j ,ωe
−ikj (ω)χe+iωτ

)

âouti =
4∑
j

(
αij âi

in + βij âj
in †
)
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Hawking radiation

Hawking radiation is emitted via the particle creation process at the analog BH

horizon.

âout3 = β31
(
âin1
)†

+ α32 â
in
2 + α33 â

in
3 + α34 â

in
4

〈
N̂out
3

〉
= ⟨0|

(
âout3

)†
âout3 |0⟩in = |β31|2

Particle creation from quantum nothing!

|β31|2 =
1− f (ω)

eω/TH − 1
, TH =

uξ

2π

Linder, Schültzhold, Unruh, 2018
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in
2 + α33 â
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âout3

)†
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Modes and emergent causal structure

• In the comoving frame (χ, τ) w.r.t to the strong pulse, the system has time

symmetry → Conservation of frequency.

• For |χ| > χh: 4 modes (1 right-moving and 3 left-moving).

• For |χ| < χh: 2 modes (both left-moving).

• Hawking particle creation at the WH and BH horizons out of vacuum fluctuations!
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Gaussian states and Logarithmic Negativity

• We work with the family Gaussian states, where all the information about the

quantum state is encoded in the first moments µ = ⟨A⟩ and the covariance

matrix σ = ⟨{A − µ,A − µ}⟩, where A = (â1, â
†
1, â2, â

†
2, â3, â

†
3, â4, â

†
4)

T .

• The evolution of the state is given by: Aout = S · Ain, µout = S · µin,

σout = S · σin · ST .

• We use Logarithmic negativity (LN), a well-known entanglement monotone in

quantum information theory, to study and quantify the entanglement produced in

the Hawking process. LN can be easily computed from the first and second

moments.
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Entanglement structure of the analog WH-BH

• The BH and WH horizons behave as frequency-dependent two-mode squeezers generating

entanglement in the modes (kout
1 |kout

3 ) and (kout
1 |kout

4 ), respectively.

• At low frequencies: LN1|4 > LN1|3.

• At larger frequencies: LN1|4 ≈ LN1|3. 81



Generation of entanglement from vacuum fluctuations

• To study the evolution, we use Gaussian states and we quantify entanglement by means of

Logarithmic Negativity (LN).

• The BH and WH horizons behave as frequency-dependent two-mode squeezers generating

entanglement in the bipartitions (kout
1 |kout

2 ), (kout
1 |kout

3 ) and (kout
1 |kout

4 ), respectively.

• The strongest correlated couple is the WH Hawking pair of modes (kout
1 |kout

4 ).
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Observations?

– T. G. Philbin et al, (2008), Science 319, 1367.

– S. Weinfurtner et al, (2011), Phys. Rev. Lett. 106, 021302

– J. Steinhauer, (2016), Nature Phys. 12, 959-965.

– J. Drori et al, (2019), Phys. Rev. Lett. 122, 010404.

Successes

• Generation of horizons.

• Particle production via the stimulated process.

Open questions

• Observation of a blackbody spectrum (dispersion the main obstacle and absence

of perfect horizons).

• Generation of entanglement (fragile to background thermal noise).
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The protocol to extract TH from observations

Intensities (classical signal)

• ⟨n̂3(ω)⟩ = A(ω)(eω/TH − 1)−1

Entanglement (quantum signal)

LN1|4(ω) = − log2

{
1

4

[
7− 4 cosh 2r(ω) + 8 cosh 4r(ω) + 4 cosh 6r(ω) + cosh 8r(ω)

− 16 cosh2 r(ω) cosh 2r(ω)3/2 (9 + 6 cosh 2r(ω) + cosh 4r(ω))1/2 sinh r(ω)

]1/2}

• Measure all mode correlations ⟨{âi (ω)âj(ω)}⟩
• Construct LN1|4(ω)

• Obtain TH from LN1|4(ω)
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Take home messages

• The black hole causal structure can be reproduced in dispersive, inhomogeneous

media.

• Frequency conservation and dispersion single out a finite number of degrees of

freedom interacting with each other, allowing us to import theoretically rigorous

and experimentally accessible tools from quantum information theory to study the

entanglement in the Hawking process.

• Stimulating the process with a single-mode squeeze state is a promising strategy

for the detection of the Hawking effect as it enhances both the Hawking intensity

and the entanglement generated by the Hawking process.
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Optical black holes: Schematic representation
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The effect of background noise

• As input states, we restrict ourselves to the family of Gaussian quantum states and we quantify

entanglement by means of Logarithmic Negativity (LN).

• We assume that the input modes are in thermal equilibrium with a blackbody bath of

”environment” photons.

• We find that the presence of the thermal background degrades the entanglement generated in

the Hawking process.
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Hawking laser effect
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The setup

• Consider the configuration of two strong electric pulses each reproducing an analog white-black

hole.

• The BH1 horizon and the BH2 horizons exchange Hawking quanta stimulating each other.

• We numerically solve the scattering problem and compute intensities and entanglement.
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Intensity and entanglement in the optical laser setup

• The intensity of the trapped mode increases exponentially in time (manifestaton of the lasing effect). [U.

Leonhardt and T. G. Philbin (2008), S. Finazzi and R. Parentani (2010), A. Coutant and R. Parentani (2010), D. Bermudez and U.

Leonhardt (2018), H. Katayama (2021)] .

• In addition, we find that the entanglement shared between the interior and the exterior modes increases

linearly in time.

• Laser configuration behaves as an entanglement factory!!! 90



Summary

• We have leveraged sharp tools from quantum information theory to quantify the amount of entan-

glement generated both by astrophysical and optical horizons.

• We have numerically obtained the scattering matrix for the Hawking effect in an optical WH-BH

pair. From it, we extract Hawking temperatures for different parameters of the optical configuration

and study the limitations of the analogy.

• Stimulated Hawking effect: Entanglement is tunable. We can use this to our advantage to

increase not only the classical but also the quantum aspects of the process.

We conclude that our results open a promising avenue for the detection of the Hawking

effect and its quantum origin in the lab.
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Delhom, Beatriz Elizaga Navascués, Riley B Dawkins, Sage B Ducoing, Stav

Haldar, Paula A Calizaya Cabrera, Rachel L McDonald.

• Special thanks to my PhD advisor Ivan Agullo.

92



Acknowledgements

• Collaborators: Anthony Brady, Alessandro Fabbri, V. Sreenath, Riley B Dawkins,

Adrià Delhom, Patricia Ribes-Meditieri, Béatrice Bonga, Sergi Nadal-Gisbert,
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Summary

• We have leveraged sharp tools from quantum information theory to quantify the amount of entan-

glement generated both by astrophysical and optical horizons.

• Within this framework, we have found that the entanglement generated by causal horizons (both in

astrophysics and in analogue gravity) is tunable based on the input state: thermal inputs decrease

(or even destroy completely) the produced entanglement while single-mode squeezed states amplify

entanglement.

• We have numerically obtained the scattering matrix for the Hawking effect in an optical WH-BH

pair. From it, we extract Hawking temperatures for different parameters of the optical configuration

and study the limitations of the analogy.

• We extended our analysis to the case of two strong electric pulses which reproduces an effective laser

cavity. We found that not only the number of Hawking quanta increases but also the entanglement

between the interior and the exterior modes is amplified with time.

We conclude that our results open a promising avenue for the detection of the Hawking

effect and its quantum origin in the lab.
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