Evolution of entanglement in an analogue preheating experiment

Analogue Gravity in Benasque - 2023

A. Micheli and S. Robertson, Phys. Rev. B 106, 214528 (2022).

Amaury Micheli

IJCLab, Orsay IAP, Paris

Experimental Team: Victor Gondret Charlie Leprince Quentin Marolleau Clothilde Lamirault Denis Boiron Chris Westbrook

Theory: Amaury Micheli Scott Robertson Renaud Parentani

31st May 2023

Introduction: Preheating

1. L. Kofman, A. Linde, and A. Starobinsky, *Towards the Theory of Reheating After Inflation*, PRD (1997).

Inflation: a single field ϕ and its perturbations $\delta\hat{\phi}$

- Particles $\hat{\chi}$ produced during reheating via: - Decay of inflaton $\phi \rightarrow \chi$
- Preheating¹: parametric creation out of the vacuum.
- <u>Several stages</u>: initial growth, saturation, redistribution, thermalisation.
 - Analogue of preheating?

Analogue preheating with 1D Bose gas - I

2. Jaskula et al. Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate, PRL (2012). Bose Condensates, PRD (2018).

- Gas of cold He atoms whose trap is modulated² e.g. $\omega_{\perp}^{2}(t) = \omega_{\perp,0}^{2} \left[1 + A \cos\left(\omega_{m} t\right) \right]$
 - effectively modulating speed of sound c(t)
- Parametric creation of phonons $n_{\pm k}$ at $2\omega_k = \omega_m$

 - Signature of vacuum origin: pairs are entangled!
- This talk: focus on initial pair creation and (early-times) dissipative processes³
- 3. S. Robertson, F. Michel, and R. Parentani, Nonlinearities Induced by Parametric Resonance in Effectively 1D Atomic

Analogue preheating with 1D Bose gas - II

How to experimentally access entanglement?

$$g_{(k,-k)}^{(2)} = \frac{\langle \hat{n}_k \hat{n}_{-k} \rangle}{\langle \hat{n}_k \rangle \langle \hat{n}_{-k} \rangle} > 2$$

Original experiment failed to witness it². Why?

A sufficient degree of interaction could explain the absence of entanglement³.

Modeling quasi-particle interactions in 1D Bose gas

2. Jaskula et al. Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate, PRL (2012). 3. X. Busch, R. Parentani, and S. Robertson, Quantum Entanglement Due to Modulated Dynamical Casimir Effect, PRA (2014).

Table of Contents

Modeling 1D Bose Gas
 Free quasi-particles
 Quasi-particle interactions
 Conclusion & Future Directions

I - Modeling 1D Bose Gas

Modeling evolution of quasi-particles

1D Bose gas time-dependent interaction g(t), related to $\omega_{\perp}(t)$

Write in Madelung form $\longrightarrow \hat{H} :$ $\hat{\Psi} = e^{i\hat{\theta}}\sqrt{\hat{\rho}}$ (up to commutators...)

Homogeneous stationary background: $\hat{\rho}$

Expand Hamiltonian $\hat{H}(t)$

Defines quasi-pa

$$\hat{H} = \int_{0}^{L} \left[\frac{\hbar^{2}}{2m} \partial_{x} \hat{\Psi}^{\dagger} \partial_{x} \hat{\Psi} + \frac{g(t)}{2} \hat{\Psi}^{\dagger 2} \hat{\Psi}^{2} \right]$$

$$= \int_{0}^{L} \left[\frac{\hbar^{2}}{2m} \frac{\partial \hat{\theta}}{\partial x} \hat{\rho} \frac{\partial \hat{\theta}}{\partial x} + \frac{\hbar^{2}}{8m\hat{\rho}} \left(\frac{\partial \hat{\rho}}{\partial x} \right)^{2} + \frac{g}{2} \hat{\rho}^{2} \right]$$

$$\hat{\rho} = \rho_{0} \left(1 + \frac{\delta \hat{\rho}}{\rho_{0}} \right) \text{ and } \hat{\theta} = -g\rho_{0}t/\hbar + \frac{1}{2} = E_{0}(t) + \hat{H}_{2}(t) + \hat{H}_{3} + \dots$$
articles
Interaction of quasi-particle

II - Free quasi-particles

Quadratic evolution of quasi-particles - I

$$\hat{H}_{2} = \int_{0}^{L} \left[\frac{\hbar^{2} \rho_{0}}{2m} \left(\frac{\partial \hat{\delta \theta}}{\partial x} \right)^{2} + \frac{\hbar^{2}}{8m\rho_{0}} \left(\frac{\partial \delta \hat{\rho}}{\partial x} \right)^{2} + \frac{g(t)}{2} \delta \hat{\rho}^{2} \right] dx \quad \text{Quadratic Hamiltonian}$$
For $g = \text{cst.}$ it is diagonalised by defining quasi-particles
$$\hat{b}_{k} = \frac{1}{\sqrt{2}} \left(C_{k}^{-1} \delta \hat{\rho}_{k} + i C_{k} \delta \hat{\theta}_{k} \right)$$

$$\hat{H}_2 = \sum_{k \neq 0} \hbar \omega_k \hat{b}_k^{\dagger} \hat{b}_k \quad \text{with} \quad \omega_k^2 = c^2 k^2 + \frac{\hbar^2 k^4}{4m^2} \quad \text{and} \ c = \sqrt{\frac{g\rho_0}{m}}$$
$$\longrightarrow \quad \hat{b}_k(t) = e^{-i\omega_k t} \hat{b}_k(0) \quad \text{Free evolution}$$

Quadratic evolution of quasi-particles - II

Make g(t) time-dependent³

Mixing of creation / annihilation — Quasi-particle creation

Assume initial state to be thermal & linear evolution: state remains Gaussian homogeneous and isotropic.

- Quasi-particles are completely described by their number
- Entanglement of the pairs is equivalent to $|c_k| > n_k$

3. X. Busch, R. Parentani, and S. Robertson, *Quantum Entanglement Due to Modulated Dynamical Casimir Effect*, PRA (2014).

Quadratic evolution of quasi-particles - III

Modulating speed of sound $c^2(t) = c_0^2 \left[1 + A \sin(\omega_m t)\right] \longrightarrow$ Parametric resonance

Exponential growth³ at $2\omega_k = \omega_m$

Create pairs, which are entangled $|c_k| > n_k$

Can interactions change that?

3. X. Busch, R. Parentani, and S. Robertson, Quantum Entanglement Due to Modulated Dynamical Casimir Effect, PRA (2014).

III - Quasi-particle interactions

Non-linear evolution of quasi-particles

- TWA simulations of evolution from an initial entangled state in absence of modulation
 - \rightarrow $|c_k|$ and n_k decrease exponentially.
 - During resonance expect a competition between decay and parametric growth

Can we explain it by considering \hat{H}_3 ?

$$\hat{H}_{3} = \frac{1}{\sqrt{\rho_{0}L}} \sum_{\substack{p,q \neq 0 \\ p+q \neq 0}} H_{3}(p,q) \left\{ \hat{b}_{p}^{\dagger} \hat{b}_{q}^{\dagger} \hat{b}_{p+q} - \frac{1}{p+q} \right\}$$

Non-linear evolution of n_k - I

4. A. Micheli and S. Robertson, *Phonon Decay in 1D BEC via Beliaev-Landau Damping*, PRB (2022)

Non-linear evolution of n_k - II

local conservation number of phonons⁴.

Non-linear evolution of $|c_k|$ (Preliminary results)

3. X. Busch, R. Parentani, and S. Robertson, *Quantum Entanglement Due to Modulated Dynamical Casimir Effect*, PRA (2014).

Seems you can repeat the computation for $|c_k|$ and get same result!

$$\Gamma_{\pm} (k) \propto \frac{k_B T}{mc^2} \frac{1}{\rho_0 \xi}$$

Using the same parameters as [3] we find $\Gamma_k/\omega_k \sim 5\%$ larger than the threshold of $\Gamma_k/\omega_k \ge 4.2\%$ to explain the absence of entanglement!

Conclusion & Future Directions

- Described general processes leading to particle n_k and correlation decay |c_k| probably sufficient to explain absence of entanglement.
 Guide to tune experiment to observe entanglement!
- Application of these processes to the preheating scenario for most recent experimental data cf. Quentin's talk.
- Study of other stages of the analogue preheating.

Thank you for your attention!

- 1. L. Kofman, A. Linde, and A. Starobinsky, *Towards the Theory of Reheating After Inflation*, PRD (1997).
- 2. Jaskula et al. Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate, PRL (2012).
- Bose Condensates, PRD (2018).
- 4. A. Micheli and S. Robertson, Phonon Decay in 1D BEC via Beliaev-Landau Damping, PRB (2022)

3. S. Robertson, F. Michel, and R. Parentani, Nonlinearities Induced by Parametric Resonance in Effectively 1D Atomic

