Random tensor network states in holography \& Free probability

Based on joint works with:

- Newton Cheng, Geoff Penington, Michael Walter, Freek Witteveen (arXiv:2206.10482)
- Faedi Loulidi, Ion Nechita (in progress)

Cécilia Lancien

```
Institut Fourier Grenoble & CNRS
5th}\mathrm{ Entangle This Workshop - June 122023
```


Outline

(1) Background and motivations
2) Interlude: Free probability, random matrices and combinatorics of permutations

3 Main results

Tensor network states: construction

Underlying graph: set of vertices V, set of edges E.
We write $V=V_{0} \sqcup \partial V$, with V_{0} the set of bulk vertices and ∂V the set of boundary vertices.

$$
\longrightarrow \forall v \in V_{0}, d(v)>1 \quad \longrightarrow \forall v \in \partial V, d(v)=1
$$

We associate to each $e \in E$ a space $\mathrm{H}_{e} \equiv\left(\mathbf{C}^{D}\right)^{\otimes 2}$ and to each $v \in V$ a space $\mathrm{H}_{v} \equiv\left(\mathbf{C}^{D}\right)^{\otimes d(v)}$.
\longrightarrow We can identify $\mathrm{H}_{E}:=\bigotimes_{e \in E} \mathrm{H}_{e}$ with $\mathrm{H}_{V}:=\bigotimes_{v \in V} \mathrm{H}_{V}$, since $\mathrm{H}_{E} \equiv \mathrm{H}_{V} \equiv\left(\mathbf{c}^{D}\right)^{\otimes 2|E|}$.
For each $e \in E$, pick $\left|\psi_{e}\right\rangle \in \mathrm{H}_{e}$, and set $\left|\psi_{E}\right\rangle:=\bigotimes_{e \in E}\left|\psi_{e}\right\rangle \in \mathrm{H}_{E}$.
For each $v \in V_{0}$, pick $\left|\varphi_{v}\right\rangle \in \mathrm{H}_{v}$, and set $\left|\varphi_{V_{0}}\right\rangle:=\bigotimes_{v \in V_{0}}\left|\varphi_{v}\right\rangle \in \mathrm{H}_{V_{0}}$.
Construct $\left|\varphi_{\partial V}\right\rangle:=\left\langle\varphi_{v_{0}} \mid \psi_{E}\right\rangle \in H_{\partial V} \equiv\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$.
$\longrightarrow\left|\varphi_{\partial v}\right\rangle$ is a multipartite pure state constructed from an underlying graph (up to normalization).

$$
\left|\psi_{E}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2|E|}
$$

$$
\left|\varphi V_{0}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes(2|E|-|\partial V|)}
$$

$\left|\varphi_{\partial v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial v|}$

Tensor network states: construction

Underlying graph: set of vertices V, set of edges E.
We write $V=V_{0} \sqcup \partial V$, with V_{0} the set of bulk vertices and ∂V the set of boundary vertices.

$$
\longrightarrow \forall v \in V_{0}, d(v)>1 \quad \longrightarrow \forall v \in \partial V, d(v)=1
$$

We associate to each $e \in E$ a space $\mathrm{H}_{e} \equiv\left(\mathbf{C}^{D}\right)^{\otimes 2}$ and to each $v \in V$ a space $\mathrm{H}_{v} \equiv\left(\mathbf{C}^{D}\right)^{\otimes d(v)}$.
\longrightarrow We can identify $\mathrm{H}_{E}:=\bigotimes_{e \in E} \mathrm{H}_{e}$ with $\mathrm{H}_{V}:=\bigotimes_{v \in V} \mathrm{H}_{V}$, since $\mathrm{H}_{E} \equiv \mathrm{H}_{V} \equiv\left(\mathbf{C}^{D}\right)^{\otimes 2|E|}$.
For each $e \in E$, pick $\left|\psi_{e}\right\rangle \in \mathrm{H}_{e}$, and set $\left|\psi_{E}\right\rangle:=\bigotimes_{e \in E}\left|\psi_{e}\right\rangle \in \mathrm{H}_{E}$.
For each $v \in V_{0}$, pick $\left|\varphi_{v}\right\rangle \in \mathrm{H}_{v}$, and set $\left|\varphi_{V_{0}}\right\rangle:=\bigotimes_{v \in V_{0}}\left|\varphi_{v}\right\rangle \in \mathrm{H}_{V_{0}}$.
Construct $\left|\varphi_{\partial V}\right\rangle:=\left\langle\varphi_{v_{0}} \mid \psi_{E}\right\rangle \in H_{\partial V} \equiv\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$.
$\longrightarrow\left|\varphi_{\partial \vee}\right\rangle$ is a multipartite pure state constructed from an underlying graph (up to normalization).

$$
\left|\psi_{E}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2|E|}
$$

$$
\left|\varphi v_{0}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes(2|E|-|\partial V|)}
$$

$$
\left|\varphi_{\partial v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial v|}
$$

General problem: How is the geometry of the bulk reflected in the entanglement-related properties of the resulting boundary state?

Minimal cuts of a graph

Given $A \subset \partial V$, its min-cut $\delta(A)$ and the number of ways of achieving it $N(A)$ are

$$
\delta(A):=\min \left\{\delta(A X: \bar{A} \bar{X}), X \subset V_{0}\right\} \text { and } N(A):=\left|\left\{X \subset V_{0}, \delta(A X: \bar{A} \bar{X})=\delta(A)\right\}\right|
$$

with $\delta\left(Y: Y^{\prime}\right)$ the number of edges having one end in Y and one end in Y^{\prime}, for $Y, Y^{\prime} \subset V$ disjoint.
Assumption: Min-cuts are non-crossing. This means that, for any $A \subset \partial V$, if $N(A)>1$, then two distinct ways of achieving $\delta(A)$ have no edge in common.
\longrightarrow Min-cuts can be ordered and $V=\bigsqcup_{i=0}^{N(A)} V_{i}$, with V_{i} the vertices 'between' min-cuts i and $i+1$.

Minimal cuts of a graph

Given $A \subset \partial V$, its min-cut $\delta(A)$ and the number of ways of achieving it $N(A)$ are

$$
\delta(A):=\min \left\{\delta(A X: \bar{A} \bar{X}), X \subset V_{0}\right\} \text { and } N(A):=\left|\left\{X \subset V_{0}, \delta(A X: \bar{A} \bar{X})=\delta(A)\right\}\right|
$$

with $\delta\left(Y: Y^{\prime}\right)$ the number of edges having one end in Y and one end in Y^{\prime}, for $Y, Y^{\prime} \subset V$ disjoint.
Assumption: Min-cuts are non-crossing. This means that, for any $A \subset \partial V$, if $N(A)>1$, then two distinct ways of achieving $\delta(A)$ have no edge in common.
\longrightarrow Min-cuts can be ordered and $V=\bigsqcup_{i=0}^{N(A)} V_{i}$, with V_{i} the vertices 'between' min-cuts i and $i+1$.

Example: Graphs that define a Riemannian geometry in the continuum limit.
$\bar{A} \quad \longrightarrow$ 'Pipe' from A to \bar{A}, where distinct 'bottlenecks' are disjoint.

$$
\delta(A)=3, N(A)=2
$$

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension $d+1$ and quantum conformal field theory of dimension d.
\longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension $d+1$ and quantum conformal field theory of dimension d.
\longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Example: Holographic states are expected to satisfy an area law of entanglement (e.g. the Ryu-Takayanagi formula), which tensor network states (TNS) do by construction.
Indeed: Let $\left|\varphi_{\partial V}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$ be a TNS. Given a subset of boundary vertices $A \subset \partial V$, let ρ_{A} be the reduced state of $\left|\varphi_{\partial v}\right\rangle$ on $\left(\mathbf{C}^{D}\right)^{\otimes|A|}$, i.e. $\rho_{A}:=\operatorname{Tr}_{\bar{A}}\left(\left|\varphi_{\partial v}\right\rangle\left\langle\varphi_{\partial v}\right|\right)$.

By construction, $\operatorname{rank}\left(\rho_{A}\right) \leqslant D^{\delta(A)} \ll D^{|A|}$, i.e. $S\left(\rho_{A}\right) \leqslant \delta(A) \log D \ll|A| \log D$.
\longrightarrow Schmidt rank of $\left|\varphi_{\partial v}\right\rangle$ across the bipartition $A: \bar{A}$
\longrightarrow The entropy of ρ_{A} scales proportionally to the 'area' $\delta(A)$ and not to the 'volume' $|A|$.

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension $d+1$ and quantum conformal field theory of dimension d.
\longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Example: Holographic states are expected to satisfy an area law of entanglement (e.g. the Ryu-Takayanagi formula), which tensor network states (TNS) do by construction.
Indeed: Let $\left|\varphi_{\partial V}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$ be a TNS. Given a subset of boundary vertices $A \subset \partial V$, let ρ_{A} be the reduced state of $\left|\varphi_{\partial v}\right\rangle$ on $\left(\mathbf{C}^{D}\right)^{\otimes|A|}$, i.e. $\rho_{A}:=\operatorname{Tr}_{\bar{A}}\left(\left|\varphi_{\partial v}\right\rangle\left\langle\varphi_{\partial v}\right|\right)$.

By construction, $\operatorname{rank}\left(\rho_{A}\right) \leqslant D^{\delta(A)} \ll D^{|A|}$, i.e. $S\left(\rho_{A}\right) \leqslant \delta(A) \log D \ll|A| \log D$.
\longrightarrow Schmidt rank of $\left|\varphi_{\partial v}\right\rangle$ across the bipartition $A: \bar{A}$
\longrightarrow The entropy of ρ_{A} scales proportionally to the 'area' $\delta(A)$ and not to the 'volume' $|A|$.
Remark: TNS are useful wherever physically relevant states exhibit entanglement area law. E.g. ground states of gapped local Hamiltonians in quantum condensed matter physics (Hastings, Landau/Vazirani/Vidick).

Random tensor network states

- Edge tensors $\left|\psi_{e}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2}$ are fixed. E.g. maximally entangled states.
- Vertex tensors $\left|\varphi_{v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes d(v)}$ are picked at random. E.g. independent Gaussian tensors.
$\left|\varphi_{v}\right\rangle$ has independent complex Gaussian entries with mean 0 and variance $1 \downarrow$
\longrightarrow Resulting random boundary tensor $\left|\varphi_{\partial v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$.
Note: We can show that: $\forall \varepsilon>0, \mathbf{P}\left(\left|\left\|\varphi_{\partial v}\right\|-1\right| \leqslant \varepsilon\right) \geqslant 1-e^{-c\left|V_{0}\right|(\sqrt{D} \varepsilon)^{1 / / V_{0} \mid}}$.
\longrightarrow by a concentration inequality for polynomials in Gaussian variables
This means that $\left|\varphi_{\partial v}\right\rangle$ is typically close to having norm 1, i.e. to actually being a state.

Random tensor network states

$$
\left.\left\langle\mid \psi_{e}\right\rangle=\frac{1}{\sqrt{D}} \sum_{i=1}^{D}|i\rangle\right\rangle
$$

- Edge tensors $\left|\psi_{e}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2}$ are fixed. E.g. maximally entangled states.
- Vertex tensors $\left|\varphi_{v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes d(v)}$ are picked at random. E.g. independent Gaussian tensors.
$\left|\varphi_{v}\right\rangle$ has independent complex Gaussian entries with mean 0 and variance $1 \leftarrow$
\longrightarrow Resulting random boundary tensor $\left|\varphi_{\partial v}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes|\partial V|}$.
Note: We can show that: $\forall \varepsilon>0, \mathbf{P}\left(\left|\left\|\varphi_{\partial V}\right\|-1\right| \leqslant \varepsilon\right) \geqslant 1-e^{-c\left|V_{0}\right|(\sqrt{D} \varepsilon)^{1 / / V_{0} \mid}}$.
\longrightarrow by a concentration inequality for polynomials in Gaussian variables
This means that $\left|\varphi_{\partial v}\right\rangle$ is typically close to having norm 1 , i.e. to actually being a state.
Question: Given a subset of boundary vertices $A \subset \partial V$, what is the distribution of the random reduced state $\rho_{A}:=\operatorname{Tr}_{\bar{A}}\left(\left|\varphi_{\partial V}\right\rangle\left\langle\varphi_{\partial v}\right|\right)$?
In particular, for large D, what is typically its spectrum and hence its entropy?
Known: In the case where $N(A)=1$, for large D, ρ_{A} is expected to have close to maximal entropy, i.e. $\mathrm{E}\left(S\left(\rho_{A}\right)\right) \underset{D \rightarrow \infty}{=} \delta(A) \log D-o(1)$ (Hayden/Nezami/Qi/Thomas/Walter/Yang, Hastings).
\longrightarrow What about the case where $N(A)>1$? Is the asymptotic spectrum of ρ_{A} richer?
Motivation: Not all holographic states have a flat spectrum (only fixed-area ones).

Outline

(1) Background and motivations

(2) Interlude: Free probability, random matrices and combinatorics of permutations

(3) Main results

A few definitions from free probability

Definition (S-transform)

Given a probability distribution μ on \mathbf{R} with finite moments, its S-transform is the power series

$$
S_{\mu}(z):=\frac{1+z}{z} M_{\mu}^{-1}(z), \text { where } M_{\mu}(z):=\sum_{p=1}^{\infty} M_{\mu}^{(p)} z^{p} \text { for } M_{\mu}^{(p)}:=\mathbf{E}_{x \sim \mu}\left(x^{p}\right)
$$

Fact: One-to-one correspondence between μ compactly supported on \mathbf{R} and S_{μ}.

Definition (Free product)

Given compactly supported probability distributions μ, ν on \mathbf{R}, their free product $\mu \boxtimes v$ is the unique compactly supported probability distribution on \mathbf{R} satisfying

$$
S_{\mu \boxtimes v}(z)=S_{\mu}(z) S_{v}(z) .
$$

Convention: We write $\mu^{\boxtimes N}:=\frac{\mu \boxtimes \cdots \boxtimes \mu}{N \text { times }}$ and $\mu^{\boxtimes 0}:=\delta_{1}$ (because $\mu \boxtimes \delta_{1}=\mu$).

A few definitions from free probability

Definition (S-transform)

Given a probability distribution μ on \mathbf{R} with finite moments, its S-transform is the power series

$$
S_{\mu}(z):=\frac{1+z}{z} M_{\mu}^{-1}(z), \text { where } M_{\mu}(z):=\sum_{p=1}^{\infty} M_{\mu}^{(p)} z^{p} \text { for } M_{\mu}^{(p)}:=\mathbf{E}_{x \sim \mu}\left(x^{p}\right)
$$

Fact: One-to-one correspondence between μ compactly supported on \mathbf{R} and S_{μ}.

Definition (Free product)

Given compactly supported probability distributions μ, ν on \mathbf{R}, their free product $\mu \boxtimes v$ is the unique compactly supported probability distribution on \mathbf{R} satisfying

$$
S_{\mu \boxtimes v}(z)=S_{\mu}(z) S_{v}(z)
$$

Convention: We write $\mu^{\boxtimes N}:=\frac{\mu \boxtimes \cdots \boxtimes \mu}{N \text { times }}$ and $\mu^{\boxtimes 0}:=\delta_{1}$ (because $\mu \boxtimes \delta_{1}=\mu$).

- Marčenko-Pastur distribution $\mu_{M P}$: characterized by $S_{\mu_{M P}}(z)=\frac{1}{1+z}$.
\longrightarrow supported on $] 0,4]$, with density $d \mu_{M P}(x):=\frac{\sqrt{4 / x-1}}{2 \pi} \mathbf{1}_{\mathrm{j} 0,4]}(x) d x$
- Free product of N Marčenko-Pastur distributions $\mu_{M P}^{\boxtimes N}$: characterized by $S_{\mu_{M P}^{\boxtimes N}}(z)=\left(\frac{1}{1+z}\right)^{N}$.
\longrightarrow supported on $\left.] 0,(N+1)^{N+1} / N^{N}\right]$ (Banica/Belinschi/Capitaine/Collins, Collins/Nechita/Žyczkowski)

Connections with random matrices and combinatorics of permutations

Given a Hermitian matrix M on \mathbf{C}^{d}, denote by $\mu_{M}:=\frac{1}{d} \sum_{\lambda \in \operatorname{spec}(M)} \delta_{\lambda}$ its spectral distribution.

- Let $W_{d}=G G^{*}$ with G a $d \times d$ matrix whose entries are independent complex Gaussians with mean 0 and variance $1 / d$ (i.e. W_{d} is a normalized Wishart matrix of size and parameter d).
- Let $W_{d, N}=H H^{*}$ with $H=G_{1} \times \cdots \times G_{N}$ and G_{1}, \ldots, G_{N} independent $d \times d$ matrices whose entries are independent complex Gaussians with mean 0 and variance $1 / d$.
Fact: $\mu_{W_{d}} \underset{d \rightarrow \infty}{\longrightarrow} \mu_{M P}$ and $\mu_{W_{d, N}} \xrightarrow[d \rightarrow \infty]{\longrightarrow} \mu_{M P}^{\boxtimes N}$.

$$
\left\{\begin{array}{l}
\frac{1}{d} \mathbf{E} \operatorname{Tr}\left(W_{d}^{p}\right) \underset{d \rightarrow \infty}{\longrightarrow} M_{\mu M P}^{(p)}=\operatorname{Cat}_{p}:=\frac{1}{p+1}\binom{2 p}{p} \\
\frac{1}{d} \mathbf{E} \operatorname{Tr}\left(W_{d, N}^{p}\right) \underset{d \rightarrow \infty}{\longrightarrow} M_{\mu_{M P N}^{\otimes p}}^{(p)}=\mathrm{FCat}_{p, N}:=\frac{1}{N p+1}\binom{N p+p}{p}
\end{array}\right.
$$

\rightarrow Fuss-Catalan numbers

Connections with random matrices and combinatorics of permutations

Given a Hermitian matrix M on \mathbf{C}^{d}, denote by $\mu_{M}:=\frac{1}{d} \sum_{\lambda \in \operatorname{spec}(M)} \delta_{\lambda}$ its spectral distribution.

- Let $W_{d}=G G^{*}$ with G a $d \times d$ matrix whose entries are independent complex Gaussians with mean 0 and variance $1 / d$ (i.e. W_{d} is a normalized Wishart matrix of size and parameter d). - Let $W_{d, N}=H H^{*}$ with $H=G_{1} \times \cdots \times G_{N}$ and G_{1}, \ldots, G_{N} independent $d \times d$ matrices whose entries are independent complex Gaussians with mean 0 and variance $1 / d$.
Fact: $\mu_{W_{d}} \underset{d \rightarrow \infty}{\longrightarrow} \mu_{M P}$ and $\mu_{W_{d, N}} \xrightarrow[d \rightarrow \infty]{\longrightarrow} \mu_{M P}^{\boxtimes N}$.
\rightarrow Catalan numbers
 Fuss-Catalan numbers Remarin minimal number of transpositions needed to write $\pi_{1}^{-1} \pi_{2}$ Remark: $\left(\pi_{1}, \pi_{2}\right) \in \mathcal{S}(p) \times \mathcal{S}(p) \mapsto\left|\pi_{1}^{-1} \pi_{2}\right| \in\{0, \ldots, p-1\}$ is a distance. Hence by the triangle inequality, for any $\pi_{1}, \pi_{2}, \pi_{3} \in \mathcal{S}(p),\left|\pi_{1}^{-1} \pi_{2}\right|+\left|\pi_{2}^{-1} \pi_{3}\right| \geqslant\left|\pi_{1}^{-1} \pi_{3}\right|$, with equality iff $\pi_{1} \rightarrow \pi_{2} \rightarrow \pi_{3}$ is a geodesic.
Cat ${ }_{p}$ counts the number of $\pi \in \mathcal{S}(p)$ s.t. id $\rightarrow \pi \rightarrow \gamma$ is a geodesic.
FCat $_{p, N}$ counts the number of $\left(\pi_{1}, \ldots, \pi_{N}\right) \in \mathcal{S}(p)^{N}$ s.t. id $\rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{N} \rightarrow \gamma$ is a geodesic.

Outline

(1) Background and motivations

2 Interlude: Free probability, random matrices and combinatorics of permutations
(3) Main results

Limiting spectral distribution of random tensor network states

Lemma (Limiting moments of random TNS)

Let $\left|\varphi_{\partial V}\right\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_{A} is s.t.

$$
\forall p \in \mathbf{N}, \mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) \underset{D \rightarrow \infty}{\sim} \text { FCat }_{p, N(A)-1} D^{-\delta(A)(p-1)} .
$$

Remark: In addition, $\frac{\operatorname{Var}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)}{\left[\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)\right]^{2}} \underset{D \rightarrow \infty}{=} O\left(\frac{1}{D}\right)$. So $\operatorname{Tr}\left(\rho_{A}^{p}\right)$ concentrates around its average.

Limiting spectral distribution of random tensor network states

Lemma (Limiting moments of random TNS)

Let $\left|\varphi_{\partial V}\right\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_{A} is s.t.

$$
\forall p \in \mathbf{N}, \mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) \underset{D \rightarrow \infty}{\sim} \text { FCat }_{p, N(A)-1} D^{-\delta(A)(p-1)} .
$$

Remark: In addition, $\frac{\operatorname{Var}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)}{\left[\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)\right]^{2}} \underset{D \rightarrow \infty}{=} O\left(\frac{1}{D}\right)$. So $\operatorname{Tr}\left(\rho_{A}^{p}\right)$ concentrates around its average.

Theorem (Limiting spectral distribution of random TNS)

Let $\left|\varphi_{\partial V}\right\rangle$ be a random TNS. For any $A \subset \partial V$, let ρ_{A} be the random reduced state and $\hat{\rho}_{A}$ be the restriction of ρ_{A} to its support. Set $\mu_{A}^{(D)}:=\frac{1}{D^{\delta(A)}} \sum_{\lambda \in \operatorname{spec}\left(\hat{\rho}_{A}\right)} \delta_{D^{\delta(A)} \lambda}$. Then,

$$
\mu_{A}^{(D)} \underset{D \rightarrow \infty}{\longrightarrow} \mu_{M P}^{\boxtimes(N(A)-1)} \text { in probability. }
$$

Remark: This means that, for any $f: \mathbf{R} \rightarrow \mathbf{R}$ continuous,

$$
\forall \varepsilon>0, \lim _{D \rightarrow \infty} \mathbf{P}\left(\left|\int_{\mathbf{R}} f(x) d \mu_{A}^{(D)}(x)-\int_{\mathbf{R}} f(x) d \mu_{M P}^{\boxtimes(N(A)-1)}(x)\right| \leqslant \varepsilon\right)=1
$$

Interpretation and consequences

Particular cases:

- If $N(A)=1: \mu_{A}^{(D)} \underset{D \rightarrow \infty}{\longrightarrow} \delta_{1}$, i.e. $\operatorname{spec}\left(\hat{\rho}_{A}\right) \underset{D \rightarrow \infty}{\simeq} \operatorname{spec}\left(\frac{1}{D^{\delta(A)}}\right)$, with / the identity of size $D^{\delta(A)}$.
- If $N(A)=2: \mu_{A}^{(D)} \underset{D \rightarrow \infty}{\longrightarrow} \mu_{M P}$, i.e. $\operatorname{spec}\left(\hat{\rho}_{A}\right) \underset{D \rightarrow \infty}{\simeq} \operatorname{spec}\left(\frac{W}{D^{\delta(A)}}\right)$, with W a normalized Wishart matrix of size and parameter $D^{\delta(A)}$.
\longrightarrow If $N(A)>1$, the asymptotic spectrum of $\hat{\rho}_{A}$ is not flat.

Interpretation and consequences

Particular cases:

- If $N(A)=1: \mu_{A}^{(D)} \underset{D \rightarrow \infty}{\longrightarrow} \delta_{1}$, i.e. $\operatorname{spec}\left(\hat{\rho}_{A}\right) \underset{D \rightarrow \infty}{\simeq} \operatorname{spec}\left(\frac{1}{D^{\delta(A)}}\right)$, with / the identity of size $D^{\delta(A)}$.
- If $N(A)=2: \mu_{A}^{(D)} \underset{D \rightarrow \infty}{\longrightarrow} \mu_{M P}$, i.e. $\operatorname{spec}\left(\hat{\rho}_{A}\right) \underset{D \rightarrow \infty}{\simeq} \operatorname{spec}\left(\frac{W}{D^{\delta(A)}}\right)$, with W a normalized Wishart matrix of size and parameter $D^{\delta(A)}$.
\longrightarrow If $N(A)>1$, the asymptotic spectrum of $\hat{\rho}_{A}$ is not flat.

Corollary (Limiting entropy of random TNS)

Let $\left|\varphi_{\partial V}\right\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_{A} is s.t.

$$
\mathbf{E}\left(S\left(\rho_{A}\right)\right) \underset{D \rightarrow \infty}{=} \delta(A) \log D-\sum_{k=2}^{N(A)} \frac{1}{k}+o(1)
$$

\longrightarrow Area law of entanglement, with finite correction when $N(A)>1$.

Ingredients in the proof

$$
\Gamma_{1} \forall 1 \leqslant i_{1}, \ldots, i_{p} \leqslant d, U^{\pi}\left|i_{1} \cdots i_{p}\right\rangle=\left|i_{\pi(1)} \cdots i_{\pi(p)}\right\rangle
$$

Given $\pi \in \mathcal{S}(p)$, denote by U^{π} the associated unitary on $\left(\mathbf{C}^{d}\right)^{\otimes p}$.

- $\operatorname{Tr}\left(\rho_{A}^{p}\right)=\operatorname{Tr}\left(U_{A^{\rho}}^{\gamma} \rho_{A}^{\otimes p}\right)=\operatorname{Tr}\left(U_{A^{\rho}}^{\gamma} \otimes U_{\bar{A}^{\rho}}^{\mathrm{id}}|\varphi\rangle\left\langle\left.\varphi\right|_{\partial V} ^{\otimes p}\right)=\operatorname{Tr}\left(U_{A^{\rho}}^{\gamma} \otimes U_{\bar{A}^{\rho}}^{\mathrm{id}} \otimes|\varphi\rangle\left\langle\left.\varphi\right|_{V_{0}} ^{\otimes p} \mid \psi\right\rangle\left\langle\left.\psi\right|_{E} ^{\otimes p}\right)\right.\right.$

$$
\rightarrow \text { 'replica trick' } \longrightarrow \rho_{A}=\operatorname{Tr}_{\bar{A}}\left(|\varphi\rangle\left\langle\left.\varphi\right|_{\partial V}\right) \quad \longrightarrow\left|\varphi_{\partial V}\right\rangle=\left\langle\varphi_{V_{0}} \mid \psi_{E}\right\rangle\right.
$$

- For $|\varphi\rangle \in \mathbf{C}^{d}$ a Gaussian vector, $\mathbf{E}\left(|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes p}\right)=\sum_{\pi \in \mathcal{S}(p)} U^{\pi}\right.$.

Hence: $\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)=\sum_{\substack{\pi_{x} \in S(p), x \in V \\ \pi_{x}=\gamma, x \in A \\ \pi_{x}=\mathrm{id}, x \in \bar{A}}} \operatorname{Tr}\left(\bigotimes_{x \in V} U_{x^{\rho}}^{\pi_{x}}|\psi\rangle\left\langle\left.\psi\right|_{E} ^{\otimes p}\right)=\sum_{\substack{\pi_{x} \in S(p), x \in V \\ \pi_{x}=\gamma, x \in A \\ \pi_{x}=\mathrm{id}, x \in \bar{A}}} D^{-w\left(\left(\pi_{x}\right)_{x \in V}\right)}\right.$,
with $w\left(\left(\pi_{x}\right)_{x \in V}\right)=\sum_{(x, y) \in E}\left|\pi_{x}^{-1} \pi_{y}\right|$, since $\forall(x, y) \in E, \operatorname{Tr}\left(\left.U_{x^{p}}^{\pi_{x}} \otimes U_{y^{p}}^{\pi_{y}}|\psi\rangle\langle\psi|\right|_{x y} ^{\otimes p}\right)=D^{-\left|\pi_{x}^{-1} \pi_{y}\right|}$.
Now, for any $\left(\pi_{x}\right)_{x \in V}, w\left(\left(\pi_{x}\right)_{x \in V}\right) \geqslant \delta(A)(p-1)$, with equality iff there is a geodesic path $\gamma=\pi_{0} \rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{N(A)-1} \rightarrow \pi_{N(A)}=$ id s.t. for all $0 \leqslant i \leqslant N(A)$ and all $x \in V_{i}, \pi_{x}=\pi_{i}$.
Therefore: $\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) \underset{D \rightarrow \infty}{\sim} \mathrm{FCat}_{p, N(A)-1} D^{-\delta(A)(p-1)}$.

Generalizations

- What about the case where the edge tensors have different local dimensions D_{e} ?

The results can be generalized if all of them are of the same order D, i.e. $D_{e}=\alpha_{e} D$. \longrightarrow Free product of parametrized Marčenko-Pastur distributions.

Generalizations

- What about the case where the edge tensors have different local dimensions D_{e} ? The results can be generalized if all of them are of the same order D, i.e. $D_{e}=\alpha_{e} D$. \longrightarrow Free product of parametrized Marčenko-Pastur distributions.
- What about the case where the edge tensors $\left|\psi_{e}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2}$ are not maximally entangled? The results can be generalized if all of them they have bounded entanglement spectrum, i.e. have (almost) all their Schmidt coefficients of order $1 / \sqrt{D}$.
\longrightarrow Free product of more general distributions.
But different tools are needed to study the regime of unbounded entanglement spectrum (entropic rather than geometric definition of minimal cuts).

Generalizations

- What about the case where the edge tensors have different local dimensions D_{e} ? The results can be generalized if all of them are of the same order D, i.e. $D_{e}=\alpha_{e} D$. \longrightarrow Free product of parametrized Marčenko-Pastur distributions.
- What about the case where the edge tensors $\left|\psi_{e}\right\rangle \in\left(\mathbf{C}^{D}\right)^{\otimes 2}$ are not maximally entangled? The results can be generalized if all of them they have bounded entanglement spectrum, i.e. have (almost) all their Schmidt coefficients of order $1 / \sqrt{D}$.
\longrightarrow Free product of more general distributions.
But different tools are needed to study the regime of unbounded entanglement spectrum (entropic rather than geometric definition of minimal cuts).
- What about the case where the minimal cuts are not necessarily edge-disjoint?

The minimizing configurations of permutations can still be identified, but counting them may become cumbersome.

Future directions

- What about estimating other quantities than entropies of random boundary states?

Example: For $A, B \subset \partial V$ with $A \cap B=\emptyset$ and $A \cup B \neq \partial V$, the average mutual information and entanglement negativity of the random bipartite boundary state $\rho_{A B}$ are non-vanishing as D grows iff $\delta(A B)<\delta(A)+\delta(B)$.

But what are the conditions for $\rho_{A B}$ to be typically entangled or separable, satisfying or not a given entanglement criterion, etc?
Simplest case: 'network' with one bulk vertex, i.e. with boundary state a (normalized) Gaussian tensor $\left|\varphi_{A B C}\right\rangle \in \mathbf{C}^{d_{A}} \otimes \mathbf{C}^{d_{B}} \otimes \mathbf{C}^{d_{C}}$.
Known: threshold phenomena for properties such as separability, PPT, realignment, extendibility, etc (Aubrun/Szarek/Ye, Aubrun, Aubrun/Nechita, Lancien).
\longrightarrow Can these results be generalized to more complicated networks?

Future directions

- What about estimating other quantities than entropies of random boundary states?

Example: For $A, B \subset \partial V$ with $A \cap B=\emptyset$ and $A \cup B \neq \partial V$, the average mutual information and entanglement negativity of the random bipartite boundary state $\rho_{A B}$ are non-vanishing as D grows iff $\delta(A B)<\delta(A)+\delta(B)$.

But what are the conditions for $\rho_{A B}$ to be typically entangled or separable, satisfying or not a given entanglement criterion, etc?
Simplest case: 'network' with one bulk vertex, i.e. with boundary state a (normalized) Gaussian tensor $\left|\varphi_{A B C}\right\rangle \in \mathbf{C}^{d_{A}} \otimes \mathbf{C}^{d_{B}} \otimes \mathbf{C}^{d_{C}}$.
Known: threshold phenomena for properties such as separability, PPT, realignment, extendibility, etc (Aubrun/Szarek/Ye, Aubrun, Aubrun/Nechita, Lancien).
\longrightarrow Can these results be generalized to more complicated networks?

- What about implications in terms of quantum error-correcting codes?

Setting: Add one non-contracted leg to each bulk vertex tensor, and view the resulting tensor as a map from the bulk ('logical') space to the boundary ('physical') space. Known: if $N(A)=1$, the entanglement wedge of A is protected against errors in \bar{A} (Harlow/Pastawki/Preskill/Yoshida, Hayden/Nezami/Qi/Thomas/Walter/Yang).
\longrightarrow What happens in the case of non-unique min-cuts?

References

- G. Aubrun. Partial transposition of random states and non-centered semicircular distributions. 2012.
- G. Aubrun, I. Nechita. Realigning random states. 2012.
- G. Aubrun, S. Szarek, D. Ye. Entanglement threshold for random induced states. 2013.
- T. Banica, S.T. Belinschi, M. Capitaine, B. Collins. Free Bessel laws. 2011.
- N. Cheng, C. Lancien, G. Penington, M. Walter, F. Witteveen. Random tensor networks with nontrivial links. 2022.
- B. Collins, I. Nechita, K. Życzkowski. Random graph states, maximal flow and Fuss-Catalan distributions. 2010.
- B. Harlow, F. Pastawki, J. Preskill, B. Yoshida. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. 2015.
- M.B. Hastings. Solving gapped Hamiltonians locally. 2006.
- M.B. Hastings. The asymptotics of quantum max-flow min-cut. 2017.
- P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, Z. Yang. Holographic duality from random tensor networks. 2016.
- C. Lancien. k-extendibility of high-dimensional bipartite quantum states. 2016.
- Z. Landau, U. Vazirani, T. Vidick. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians. 2015.

