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Tensor network states: construction

Underlying graph: set of vertices V , set of edges E .
We write V = V0t∂V , with V0 the set of bulk vertices and ∂V the set of boundary vertices.

∀ v ∈ V0, d(v) > 1 ∀ v ∈ ∂V , d(v) = 1

We associate to each e ∈ E a space He ≡ (CD)⊗2 and to each v ∈ V a space Hv ≡ (CD)⊗d(v).
−→We can identify HE :=

⊗
e∈E

He with HV :=
⊗

v∈V
Hv , since HE ≡ HV ≡ (CD)⊗2|E |.

For each e ∈ E , pick |ψe〉 ∈ He, and set |ψE 〉 :=
⊗

e∈E
|ψe〉 ∈ HE .

For each v ∈ V0, pick |ϕv 〉 ∈ Hv , and set |ϕV0〉 :=
⊗

v∈V0

|ϕv 〉 ∈ HV0 .

Construct |ϕ∂V 〉 := 〈ϕV0 |ψE 〉 ∈ H∂V ≡ (CD)⊗|∂V |.
−→ |ϕ∂V 〉 is a multipartite pure state constructed from an underlying graph (up to normalization).

•

•

•

•

•

••

••

•

•

•

•

V0

∂V

|ψE 〉 ∈ (CD)⊗2|E | |ϕV0〉 ∈ (CD)⊗(2|E |−|∂V |) |ϕ∂V 〉 ∈ (CD)⊗|∂V |

General problem: How is the geometry of the bulk reflected in the entanglement-related
properties of the resulting boundary state?
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Minimal cuts of a graph

Given A⊂ ∂V , its min-cut δ(A) and the number of ways of achieving it N(A) are

δ(A) := min
{

δ(AX :ĀX̄), X ⊂ V0
}

and N(A) :=
∣∣{X ⊂ V0, δ(AX :ĀX̄) = δ(A)

}∣∣ ,
with δ(Y :Y ′) the number of edges having one end in Y and one end in Y ′, for Y ,Y ′ ⊂ V disjoint.

Assumption: Min-cuts are non-crossing. This means that, for any A⊂ ∂V , if N(A) > 1, then two
distinct ways of achieving δ(A) have no edge in common.

−→ Min-cuts can be ordered and V =

N(A)⊔
i=0

Vi , with Vi the vertices ‘between’ min-cuts i and i + 1.

•
•

•

•
• • •

•

•

•
••

A

Ā

δ(A) = 3, N(A) = 2

•
• •

•

•

•
•

•

minimal cuts

Example: Graphs that define a Riemannian
geometry in the continuum limit.
−→ ‘Pipe’ from A to Ā, where distinct
‘bottlenecks’ are disjoint.
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Tensor network states: motivation

• AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of
dimension d + 1 and quantum conformal field theory of dimension d .
−→ Holographic principle that conjectures quantitative relations between geometric properties of
the bulk and entanglement properties of the boundary.

• Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically
rigorous and tractable, (2) reproduce several of the conjectured formulas.

Example: Holographic states are expected to satisfy an area law of entanglement (e.g. the
Ryu-Takayanagi formula), which tensor network states (TNS) do by construction.

Indeed: Let |ϕ∂V 〉 ∈ (CD)⊗|∂V | be a TNS. Given a subset of boundary vertices A⊂ ∂V , let ρA be
the reduced state of |ϕ∂V 〉 on (CD)⊗|A|, i.e. ρA := TrĀ (|ϕ∂V 〉〈ϕ∂V |).

By construction, rank(ρA)6 Dδ(A)� D|A|, i.e. S(ρA)6 δ(A) log D� |A| log D.
Schmidt rank of |ϕ∂V 〉 across the bipartition A : Ā

−→ The entropy of ρA scales proportionally to the ‘area’ δ(A) and not to the ‘volume’ |A|.

Remark: TNS are useful wherever physically relevant states exhibit entanglement area law.
E.g. ground states of gapped local Hamiltonians in quantum condensed matter physics (Hastings,
Landau/Vazirani/Vidick).
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Random tensor network states

• Edge tensors |ψe〉 ∈ (CD)⊗2 are fixed. E.g. maximally entangled states.
• Vertex tensors |ϕv 〉 ∈ (CD)⊗d(v) are picked at random. E.g. independent Gaussian tensors.

|ϕv 〉 has independent complex Gaussian entries with mean 0 and variance 1

|ψe〉= 1√
D

D
∑

i=1
|ii〉

−→ Resulting random boundary tensor |ϕ∂V 〉 ∈ (CD)⊗|∂V |.

Note: We can show that: ∀ ε > 0, P(|‖ϕ∂V‖−1|6 ε)> 1−e−c|V0|(
√

Dε)1/|V0 | .
by a concentration inequality for polynomials in Gaussian variables

This means that |ϕ∂V 〉 is typically close to having norm 1, i.e. to actually being a state.

Question: Given a subset of boundary vertices A⊂ ∂V , what is the distribution of the random
reduced state ρA := TrĀ (|ϕ∂V 〉〈ϕ∂V |)?
In particular, for large D, what is typically its spectrum and hence its entropy?

Known: In the case where N(A) = 1, for large D, ρA is expected to have close to maximal
entropy, i.e. E(S(ρA)) =

D→∞
δ(A) log D−o(1) (Hayden/Nezami/Qi/Thomas/Walter/Yang, Hastings).

−→What about the case where N(A) > 1? Is the asymptotic spectrum of ρA richer?

Motivation: Not all holographic states have a flat spectrum (only fixed-area ones).
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A few definitions from free probability

Definition (S-transform)

Given a probability distribution µ on R with finite moments, its S-transform is the power series

Sµ(z) :=
1 + z

z
M−1

µ (z), where Mµ(z) :=
∞

∑
p=1

M(p)
µ zp for M(p)

µ := Ex∼µ (xp) .

Fact: One-to-one correspondence between µ compactly supported on R and Sµ.

Definition (Free product)

Given compactly supported probability distributions µ,ν on R, their free product µ�ν is the
unique compactly supported probability distribution on R satisfying

Sµ�ν(z) = Sµ(z)Sν(z).

Convention: We write µ�N := µ� · · ·�µ
N times

and µ�0 := δ1 (because µ�δ1 = µ).

• Marc̆enko-Pastur distribution µMP : characterized by SµMP (z) = 1
1+z .

supported on ]0,4], with density dµMP(x) :=

√
4/x−1
2π

1]0,4](x)dx

• Free product of N Marc̆enko-Pastur distributions µ�N
MP : characterized by Sµ�N

MP
(z) =

(
1

1+z

)N
.

supported on ]0,(N + 1)N+1/NN ] (Banica/Belinschi/Capitaine/Collins, Collins/Nechita/Žyczkowski)
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Connections with random matrices and combinatorics of permutations

Given a Hermitian matrix M on Cd , denote by µM :=
1
d ∑

λ∈spec(M)

δλ its spectral distribution.

• Let Wd = GG∗ with G a d×d matrix whose entries are independent complex Gaussians with
mean 0 and variance 1/d (i.e. Wd is a normalized Wishart matrix of size and parameter d).
• Let Wd ,N = HH∗ with H = G1×·· ·×GN and G1, . . . ,GN independent d×d matrices whose
entries are independent complex Gaussians with mean 0 and variance 1/d .

Fact: µWd −→d→∞
µMP and µWd ,N −→d→∞

µ�N
MP .

Convergence in moments: ∀ p ∈ N,


1
d ETr(W p

d ) −→
d→∞

M(p)
µMP = Catp := 1

p+1

(2p
p

)
1
d ETr(W p

d ,N) −→
d→∞

M(p)

µ�N
MP

= FCatp,N := 1
Np+1

(Np+p
p

) .

Catalan numbers

Fuss-Catalan numbers
implies convergence in probability

Remark: (π1,π2) ∈ S(p)×S(p) 7→ |π−1
1 π2| ∈ {0, . . . ,p−1} is a distance.

Hence by the triangle inequality, for any π1,π2,π3 ∈ S(p), |π−1
1 π2|+ |π−1

2 π3|> |π−1
1 π3|, with

equality iff π1→ π2→ π3 is a geodesic.

Catp counts the number of π ∈ S(p) s.t. id→ π→ γ is a geodesic.
FCatp,N counts the number of (π1, . . . ,πN) ∈ S(p)N s.t. id→ π1→ ··· → πN → γ is a geodesic.

minimal number of transpositions needed to write π
−1
1 π2

ordered full cycle (1, . . . ,p)
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Limiting spectral distribution of random tensor network states

Lemma (Limiting moments of random TNS)

Let |ϕ∂V 〉 be a random TNS. For any A⊂ ∂V , the random reduced state ρA is s.t.

∀ p ∈ N, E
(
Tr
(
ρ

p
A

))
∼

D→∞
FCatp,N(A)−1D−δ(A)(p−1).

Remark: In addition,
Var
(
Tr
(
ρ

p
A

))[
E
(
Tr
(
ρ

p
A

))]2 =
D→∞

O

(
1
D

)
. So Tr

(
ρ

p
A

)
concentrates around its average.

Theorem (Limiting spectral distribution of random TNS)

Let |ϕ∂V 〉 be a random TNS. For any A⊂ ∂V , let ρA be the random reduced state and ρ̂A be the

restriction of ρA to its support. Set µ(D)
A :=

1

Dδ(A) ∑
λ∈spec(ρ̂A)

δDδ(A)λ
. Then,

µ(D)
A −→

D→∞
µ�(N(A)−1)

MP in probability.

Remark: This means that, for any f : R→ R continuous,

∀ ε > 0, lim
D→∞

P
(∣∣∣∣∫R

f (x)dµ(D)
A (x)−

∫
R

f (x)dµ�(N(A)−1)
MP (x)

∣∣∣∣6 ε

)
= 1.
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Interpretation and consequences

Particular cases:

If N(A) = 1: µ(D)
A −→

D→∞
δ1, i.e. spec(ρ̂A) '

D→∞
spec

(
I

Dδ(A)

)
, with I the identity of size Dδ(A).

If N(A) = 2: µ(D)
A −→

D→∞
µMP , i.e. spec(ρ̂A) '

D→∞
spec

(
W

Dδ(A)

)
, with W a normalized Wishart

matrix of size and parameter Dδ(A).

−→ If N(A) > 1, the asymptotic spectrum of ρ̂A is not flat.

Corollary (Limiting entropy of random TNS)

Let |ϕ∂V 〉 be a random TNS. For any A⊂ ∂V , the random reduced state ρA is s.t.

E(S(ρA)) =
D→∞

δ(A) log D−
N(A)

∑
k=2

1
k

+ o(1).

−→ Area law of entanglement, with finite correction when N(A) > 1.
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E(S(ρA)) =
D→∞

δ(A) log D−
N(A)

∑
k=2

1
k

+ o(1).

−→ Area law of entanglement, with finite correction when N(A) > 1.
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Ingredients in the proof

Given π ∈ S(p), denote by Uπ the associated unitary on (Cd )⊗p .

∀ 16 i1, . . . , ip 6 d , Uπ|i1 · · · ip〉= |iπ(1) · · · iπ(p)〉

• Tr
(
ρ

p
A

)
= Tr

(
Uγ

Ap ρ
⊗p
A

)
= Tr

(
Uγ

Ap ⊗U id
Āp |ϕ〉〈ϕ|

⊗p
∂V

)
= Tr

(
Uγ

Ap ⊗U id
Āp ⊗|ϕ〉〈ϕ|

⊗p
V0
|ψ〉〈ψ|⊗p

E

)
‘replica trick’ ρA = TrĀ(|ϕ〉〈ϕ|∂V ) |ϕ∂V 〉= 〈ϕV0 |ψE 〉

• For |ϕ〉 ∈ Cd a Gaussian vector, E
(
|ϕ〉〈ϕ|⊗p

)
= ∑

π∈S(p)
Uπ.

Hence: E
(
Tr
(
ρ

p
A

))
= ∑

πx∈S(p),x∈V
πx =γ,x∈A
πx =id,x∈Ā

Tr

(⊗
x∈V

Uπx
xp |ψ〉〈ψ|⊗p

E

)
= ∑

πx∈S(p),x∈V
πx =γ,x∈A
πx =id,x∈Ā

D−w((πx )x∈V ),

with w ((πx )x∈V ) = ∑
(x ,y)∈E

|π−1
x πy |, since ∀ (x ,y) ∈ E , Tr

(
Uπx

xp ⊗U
πy
yp |ψ〉〈ψ|⊗p

xy

)
= D−|π

−1
x πy |.

Now, for any (πx )x∈V , w ((πx )x∈V )> δ(A)(p−1), with equality iff there is a geodesic path
γ = π0→ π1→ ··· → πN(A)−1→ πN(A) = id s.t. for all 06 i 6 N(A) and all x ∈ Vi , πx = πi .

Therefore: E
(
Tr
(
ρ

p
A

))
∼

D→∞
FCatp,N(A)−1D−δ(A)(p−1).
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Generalizations

What about the case where the edge tensors have different local dimensions De?
The results can be generalized if all of them are of the same order D, i.e. De = αeD.
−→ Free product of parametrized Marc̆enko-Pastur distributions.

What about the case where the edge tensors |ψe〉 ∈ (CD)⊗2 are not maximally entangled?
The results can be generalized if all of them they have bounded entanglement spectrum,
i.e. have (almost) all their Schmidt coefficients of order 1/

√
D.

−→ Free product of more general distributions.
But different tools are needed to study the regime of unbounded entanglement spectrum
(entropic rather than geometric definition of minimal cuts).

What about the case where the minimal cuts are not necessarily edge-disjoint?
The minimizing configurations of permutations can still be identified, but counting them may
become cumbersome.
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Future directions

What about estimating other quantities than entropies of random boundary states?

Example: For A,B ⊂ ∂V with A∩B = /0 and A∪B 6= ∂V , the average mutual information
and entanglement negativity of the random bipartite boundary state ρAB are non-vanishing
as D grows iff δ(AB) < δ(A) + δ(B).

But what are the conditions for ρAB to be typically entangled or separable, satisfying or not a
given entanglement criterion, etc?
Simplest case: ‘network’ with one bulk vertex, i.e. with boundary state a (normalized)
Gaussian tensor |ϕABC〉 ∈ CdA ⊗CdB ⊗CdC .
Known: threshold phenomena for properties such as separability, PPT, realignment,
extendibility, etc (Aubrun/Szarek/Ye, Aubrun, Aubrun/Nechita, Lancien).
−→ Can these results be generalized to more complicated networks?

What about implications in terms of quantum error-correcting codes?

Setting: Add one non-contracted leg to each bulk vertex tensor, and view the resulting
tensor as a map from the bulk (‘logical’) space to the boundary (‘physical’) space.
Known: if N(A) = 1, the entanglement wedge of A is protected against errors in Ā
(Harlow/Pastawki/Preskill/Yoshida, Hayden/Nezami/Qi/Thomas/Walter/Yang).
−→What happens in the case of non-unique min-cuts?
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