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The first “Quantum advantage” claims have 
now been made…

Random Circuit Sampling (Google 
“Sycamore”) in 2019, 2023

Gaussian BosonSampling (USTC, 
Xanadu) in 2021,2022,2023

This talk: the latest complexity theoretic arguments to understand 
these “random quantum circuit” experiments



What is the ideal goal of quantum advantage?

• Find a problem:
1. Can be solved using a near-term 

quantum experiment
2. Is classically hard to solve – can’t 

be solved by any classical 
algorithm in polynomial time 

3. Solution can be efficiently verified 
with a classical computer with 
minimal trust in the experiment



What is the status quo?
• Current quantum advantage experiments solve 

“sampling problems” in which the goal is to 
sample from a complicated distribution
• We’ll discuss evidence that these problems 

cannot be solved classically in polynomial time
• But current experiments are not scalable

1. The verification is inefficient
2. Noise causes the signal to rapidly decay

• These issues force current quantum advantage 
candidates to find “Goldilocks” parameter 
regimes
• Is this inevitable?  Can classical hardness in RCS 

survive the noise asymptotically?

Goldilocks and the three bears



What is Random Circuit Sampling? [e.g., Boixo 
et. al. 2017]
• Generate a quantum circuit C on 𝑛 qubits on a 2D 

lattice, with 𝑑 layers of (Haar) random nearest-
neighbor gates
• In practice use a discrete approximation to the Haar 

random distribution
• Start with |0n〉 input state, apply random quantum 

circuit and measure all qubits in computational basis
• i.e., Sample from a distribution 𝐷!  over 0,1 "

• Has now been implemented: 
• n = 53 qubits, d = 20 [Google, 2019]
• n = 60 qubits, d = 24 [USTC, 2021] 
• n = 70 qubits, d = 24 [Google, 2023]

(single layer of Haar random two 
qubit gates applied on 2D grid of 
qubits)



Why should RCS be classically hard?

• First goal: prove impossibility of an efficient “classical Sampler” 
algorithm that:
• takes as input a random circuit C
• outputs a sample from 𝐷!  whp over C

• Here we aren’t modelling physical noise, we’re just asking if there’s a 
hard to simulate quantum signal in the ideal case



Proof first step: from sampling to computing
• By a well-known reduction [Stockmeyer ’85] it suffices to prove that 

estimating the output probability of a random quantum circuit is #P-hard
• i.e., need to prove hardness of estimating 𝑝"! = | 0# 𝐶 0# |$ within additive error 
𝑂(2%#) wp 2/3

Classical 
Sampling

Estimating output 
probabilities*

Stockmeyer
(uses NP oracle)



Inspiration: average-case hardness of Permanent 
[Lipton ‘91]
• Permanent of 𝑛	×	𝑛	matrix is #P-hard in the worst-case [Valiant ‘79]
• 𝑃𝑒𝑟 𝑋 = ∑!∈##∏$%&

' 𝑋$,!($)
• Algebraic property: 𝑃𝑒𝑟[𝑋] is a degree 𝑛 polynomial with 𝑛+ variables
• Need to compute 𝑃𝑒𝑟 𝑋  of worst-case matrix 𝑋	over 𝔽,

• But we only have access to algorithm 𝑂 that correctly computes most permanents
• i.e., Pr

!∈!𝔽"#	×	#
𝑂 𝑌 = 𝑃𝑒𝑟 𝑌 ≥ 1 − $

%&'((*)

• Choose 𝑛 + 1 fixed non-zero points	𝑡&, 𝑡+… , 𝑡'-& ∈ 𝔽, 	and uniformly random 
matrix 𝑅
• Consider line 𝐴(𝑡) = 𝑋 + 𝑡𝑅

• Observation 1 “scrambling property”: for each 𝑖, 𝐴(𝑡$) is a random matrix over 𝔽%	"	×	"
• Observation 2: “univariate polynomial”: 𝑃𝑒𝑟[𝐴(𝑡)] is a degree 𝑛 polynomial in 𝑡

• But now these 𝑛 + 1 points uniquely determine the polynomial, so use 
polynomial extrapolation to evaluate 𝑃𝑒𝑟[𝐴(0)] = 𝑃𝑒𝑟[𝑋]



[BFNV’18]: Hardness for Random Quantum Circuits

• Algebraic property: much like 𝑃𝑒𝑟[𝑋], output probability of random 
quantum circuits has polynomial structure
• Consider circuit 𝐶 = 𝐶'𝐶'%(…𝐶(
• Polynomial structure comes from path integral:

• ⟨0# 𝐶 0#⟩ = ∑)" ,)# ,…,)$∈ ",( ! 0# 𝐶' 𝑦' 𝑦' 𝐶'%( 𝑦'%( … 𝑦$ 𝐶( 0#

• This is a polynomial of degree 𝑚 in the gate entries of the circuit
• So the output probability 𝑝!#(𝐶) is a polynomial of degree 2𝑚



How to “scramble” worst-case circuit, 𝐶?

• Fix 𝑚 Haar random two qubit gates 𝐻" "∈[%] 

• Main idea: Implement tiny fraction of 𝐻"'(
• i.e., each	𝐶-. = 𝐶-𝐻-𝑒%-/%0

• This scrambles C if 𝜃	 ≈ 	𝑠𝑚𝑎𝑙𝑙, since each gate is close to Haar random
• However, if 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶

• Strategy (in style of Lipton): take several non-zero but small	𝜃, for 
each angle we have “random but correlated” circuit 𝐶′)( , 𝐶′)) … , 𝐶))*

*  
then compute output probabilities and apply polynomial 
extrapolation, evaluate at 𝜃 = 1 to retrieve 𝑝!#(𝐶)



This is not quite the “right way” to scramble!

• Problem: 𝑒'"++)  is not polynomial in 𝜃
• Solution: take fixed truncation of Taylor series for 𝑒'"++)

• i.e., each gate of 𝐶0
.  is 𝐶-𝐻- ∑12"3 %-/%0 &

1!
• So each gate entry is a polynomial in 𝜃 and so is 𝑝"!(𝐶0

. )
• Now extrapolate and compute 𝑝(1) = 𝑝"!(𝐶)



Subtleties in this argument

Truncations make the distribution supported on circuits that are slightly 
non-unitary!

• [BFNV’18] addressed this by proving that estimating the truncated random circuit 
probability is hard iff estimating the unitary random circuit probability is hard

• See also follow-up work which gets rid of these truncations entirely 
[Movassagh’19’20]



On robustness to imprecision
• So far we assumed the ability to compute the 

output probabilities of random circuits 
{𝑝"!(𝐶′0%)} exactly 

• Actual setting: Given faulty evaluation points 
{(𝜃- , 𝑦-)}	so that for most 𝑖:
• 𝑦, − 𝑝-#(𝐶′.&) ≤ 𝛿
• There’s “ideal” polynomial 𝑝 𝜃, = 𝑝-# 𝐶.&

/  of 
degree 𝑚 and need an estimate for 𝑝(1)

• State of the art [BFLL’21, KMM’21]: There’s 
an algorithm (uses NP oracle) that outputs a 
polynomial 𝑞(𝜃) so that:
• 𝑞 1 − 𝑝(1) ≤ 𝛿20 1230   

• ⇒ need 𝛿~2%5('	789	')
• (for BosonSampling: have hardness at (
;'! ()* ! but we need (

;! ()* ! [BFLL’21])

0 1𝛽 𝜃

𝑝(𝜃)

“average-case” points “worst-case” point



Does the “quantum signal” survive 
uncorrected noise?
• Noise is overwhelming in near-term 

experiments
• e.g., Google RCS: ~0.2% signal, 99.8% noise

• How to theoretically model this?  First, 
consider just single qubit depolarizing – 
i.e., each layer random gates followed by:
• ℰ 𝜌 = 1 − 𝛾 𝜌 + ?@

$
𝑇𝑟[𝜌]

• Where the noise strength, 𝛾 is positive 
constant

• This is a popular model, but oversimplified!



Depolarizing noise and complexity
• Intuitively, uncorrected depolarizing noise increases entropy.  As the 

circuit gets deeper the output distribution converges to uniform
• First question: how close are the output distribution of noisy (i.e., 

depolarizing) random circuit and uniform distribution?
• 2%A(B) close in TVD [Aharonov et. al. ’96][Deshpande et. al.’22]

• This rules out scalable noisy quantum advantage at super-logarithmic 
depth



What about noisy shallow circuits?

• If depth is at most log(𝑛) then output distribution is far from uniform
• [Aharonov et. al. ’22] give a classical algorithm for sampling from the 

output distribution of noisy, log(𝑛) depth random quantum circuits
• Idea: Write noisy output probabilities as path integral in the Pauli basis 

• i.e., as O𝑝C = ∑D∈E!+,- 1 − 𝛾
|D|𝑓(𝐶, 𝑠, 𝑥)

• Where 𝑠  is the “weight of the path”, i.e., the number of non-identity operators

• Key point: output probabilities of noisy circuit in Pauli basis are 
exponentially suppressed in weight of path
• Classical algorithm: throw away paths with sufficiently high Pauli weight



Analysis of this algorithm uses anti-concentration

• Bounding approximation error relies on “anti-concentration” property
• i.e., Output distribution of random circuit is well-spread over outcomes
• Formal: for any outcome 𝑥 ∈ 0,1 # there exists constants 𝛼 ∈ (0,1], 𝑐 > 0 so 

that  Pr
!
𝑝C 𝐶 ≥ G

$!
≥ 𝑐

• Anti-concentration is a property of sufficiently deep random quantum 
circuits
• For noiseless circuits, or for circuits with depolarizing noise, at least log(𝑛) depth 

is known to be necessary and sufficient [Dalzell et. al. ’20] [Deshpande et. al. ’22] 



Adapting [Aharonov et. al. ’22] to other noise

• For BosonSampling with “Gaussian” noise, we show that a similar 
classical algorithm works [Oh et. al., ‘23] building on [Kalai & Kindler ‘14]
• Gaussian noise means 𝑈 → 𝛾	𝑈 + 1 − 𝛾	𝐺 where G is Gaussian matrix
• But we don’t know how to make this work for other noise models e.g., photon 

loss
• Anticoncentration fails for random circuits with depolarizing noise 

together with many non-unital noise channels, at any depth [Ghosh et. 
al., unpublished]
• e.g., Amplitude damping channel: 𝐾" =

1 0
0 1 − 𝛾 , 𝐾( =

0 𝛾
0 0

• So in these cases we know neither hardness, nor easiness!



Open questions

• Can we prove hardness of sampling from random circuits in the noiseless 
case? (i.e., involves improving robustness of hardness results)

• How hard are random quantum circuits with “low noise” i.e., 𝛾 = 𝑂 (
;

• Motivated by recent results showing that in this regime cross-entropy 
approximates fidelity [Google group ‘23]

• Can we find better RCS verification protocols?



Thanks!


