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The first “Quantum advantage” claims have
now been made...
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Random Circuit Sampling (Google Gaussian BosonSampling (USTC,
“Sycamore”) in 2019, 2023 Xanadu) in 2021,2022,2023

This talk: the latest complexity theoretic arguments to understand
these “random quantum circuit” experiments



What is the ideal goal of qguantum advantage?

* Find a problem:

1. Can be solved using a near-term
guantum experiment

2. Is classically hard to solve — can’t
be solved by any classical
algorithm in polynomial time

3. Solution can be efficiently verified
with a classical computer with
minimal trust in the experiment




What is the status quo?

e Current guantum advantage experiments solve
“sampling problems” in which the goal is to

sample from a complicated distribution
» We'll discuss evidence that these problems
cannot be solved classically in polynomial time b
* But current experiments are not scalable N
1. The verification is inefficient
2. Noise causes the signal to rapidly decay LL

* These issues force current guantum advantage Goldilocks and the three bears
candidates to find “Goldilocks” parameter
regimes
* Is this inevitable? Can classical hardness in RCS
survive the noise asymptotically?




What is Random Circuit Sampling? [e.g., Boixo

et. al. 2017]

* Generate a quantum circuit C on n qubitsona 2D
* n =53 qubits, d = 20 [Google, 2019] .
(single layer of Haar random two

lattice, with d layers of (Haar) random nearest-
neighbor gates
* In practice use a discrete approximation to the Haar
* n =60 qubits, d = 24 [USTC, 2021] qubit gates applied on 2D grid of

random distribution
* n =70 qubits, d = 24 [Google, 2023] qubits)

e Start with |O") input state, apply random quantum
circuit and measure all qubits in computational basis

* i.e., Sample from a distribution D over {0,1}"

* Has now been implemented:



Why should RCS be classically hard?

* First goal: prove impossibility of an efficient “classical Sampler”
algorithm that:
 takes as input a random circuit C
* outputs a sample from D, whp over C

* Here we aren’t modelling physical noise, we’re just asking if there’s a
hard to simulate quantum signal in the ideal case



Proof first step: from sampling to computing

* By a well-known reduction [Stockmeyer '85] it suffices to prove that
estimating the output probability of a random quantum circuit is #P-hard

* i.e., need to prove hardness of estimating pon = [(0™|C|0™)|? within additive error
027 ™")wp2/3

Stockmeyer
(uses NP oracle)

Classical Estimating output
Sampling probabilities*



Inspiration: average-case hardness of Permanent
[Lipton 91]

* Permanent of n X n matrix is #P-hard in the worst-case [Valiant ‘79]
* PBT[X] — ZaeSn H?=1Xi,a(i)
* Algebraic property: Per[X] is a degree n polynomial with n? variables

* Need to compute Per[X] of worst-case matrix X over [F,,

* But we only have access to algorithm O that correctly computes most permanents
*ie, Pr [0()=Per[Y]]=1-
YER]ngn

poly(n)

* Choose n + 1 fixed non-zero points ty, t, ..., ty+1 € [, and uniformly random
matrix R
* Consider line A(t) = X + tR
* Observation 1 “scrambling property”: for each i, A(t;) is a random matrix over IF‘;‘ xn
* Observation 2: “univariate polynomial”: Per[A(t)] is a degree n polynomial in t

* But now these n 4+ 1 points uniquely determine the polynomial, so use
polynomial extrapolation to evaluate Per[A(0)] = Per|X]



[BFNV’18]: Hardness for Random Quantum Circuits

* Algebraic property: much like Per[X], output probability of random
guantum circuits has polynomial structure
* Consider circuit € = C,,,Cyj,—1 --- C1
e Polynomial structure comes from path integral:
* (0™[C|0™) = Zyz,yg,___,yme{o,l}nmn|Cm|Ym><)’m|cm—1|Ym—1> «(y21C110™)
* This is a polynomial of degree m in the gate entries of the circuit

* So the output probability pyn(C) is a polynomial of degree 2m



How to “scramble” worst-case circuit, C?

* Fix m Haar random two qubit gates {H,};cpm

* Main idea: Implement tiny fraction of Hl-_1
* i.e., each C/ = C;H ;e
* This scrambles Cif & = small, since each gate is close to Haar random
* However, if & = 1 the corresponding circuit C' = C
 Strategy (in style of Lipton): take several non-zero but small 8, for
each angle we have “random but correlated” circuit C'g ,C'g, ..., Cy_

then compute output probabilities and apply polynomial
extrapolation, evaluate at 8 = 1 to retrieve pyn(C)



This is not quite the “right way” to scramble!

* Problem: e ~*"i% is not polynomial in 8

» Solution: take fixed truncation of Taylor series for e =/
(—ih;0)k

k!
* So each gate entry is a polynomial in 8 and so is pgn (Cé)

* Now extrapolate and compute p(1) = pon(C)

* i.e., each gate of Cy is C;H; Y r_,



Subtleties in this argument

Truncations make the distribution supported on circuits that are slightly
non-unitary!
* [BFNV’18] addressed this by proving that estimating the truncated random circuit
probability is hard iff estimating the unitary random circuit probability is hard

» See also follow-up work which gets rid of these truncations entirely
[Movassagh’19°20]



On robustness to imprecision

* So far we assumed the ability to compute the
output Probabilities of random circuits

{pon(C'y,)} exactly
* Actual setting: Given faulty evaluation points
{(6;,v;)} so that for most i: A
i —pon(C'g)| <6

* There’s “ideal” polynomial p(8;) = pon(Cp.) of :
degree m and need an estimate for p(1) £

 State of the art [BFLL'21, KMM’21]: There’s . p(8)
an algorithm (uses NP oracle) that outputs a |
polynomial q(0) so that: i
* lg(1) —p(D)| < s2mloem T =,
« = need §~279(mlogm) T |
* (for BosonSampling: have hardness at ‘average-case” points “worst-case” point

but we need [BFLL'21])
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Does the “guantum signa
uncorrected noise?

* Noise is overwhelming in near-term
experiments
* e.g., Google RCS: ~0.2% signal, 99.8% noise

* How to theoretically model this? First,
consider just single qubit depolarizing —
i.e., each layer random gates followed by:

+ €(p) = (L= p)p + 5 Trlp]

* Where the noise strength, y is positive
constant

* This is a popular model, but oversimplified!
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Depolarizing noise and complexity

* Intuitively, uncorrected depolarizing noise increases entropy. As the
circuit gets deeper the output distribution converges to uniform

* First question: how close are the output distribution of noisy (i.e.,
depolarizing) random circuit and uniform distribution?
« 279(4) close in TVD [Aharonov et. al. ’96][Deshpande et. al.’22]

* This rules out scalable noisy quantum advantage at super-logarithmic
depth



What about noisy shallow circuits?

* If depth is at most log(n) then output distribution is far from uniform

* [Aharonov et. al. ’22] give a classical algorithm for sampling from the
output distribution of noisy, log(n) depth random quantum circuits

* Idea: Write noisy output probabilities as path integral in the Pauli basis
*i.e.,asp, = Zsepgﬂ(l —NIF(C, s, x)
* Where |s| is the “weight of the path”, i.e., the number of non-identity operators

* Key point: output probabilities of noisy circuit in Pauli basis are
exponentially suppressed in weight of path

* Classical algorithm: throw away paths with sufficiently high Pauli weight



Analysis of this algorithm uses anti-concentration

* Bounding approximation error relies on “anti-concentration” property
* i.e., Output distribution of random circuit is well-spread over outcomes
 Formal: for any outcome x € {0,1}" there exists constants a € (0,1],c > 0 so

that Pzr lpx(C) > Zi] >c

* Anti-concentration is a property of sufficiently deep random quantum
circuits

* For noiseless circuits, or for circuits with depolarizing noise, at least log(n) depth
is known to be necessary and sufficient [Dalzell et. al. ’20] [Deshpande et. al. '22]



Adapting [Aharonov et. al. "22] to other noise

* For BosonSampling with “Gaussian” noise, we show that a similar
classical algorithm works [Oh et. al., ‘23] building on [Kalai & Kindler ‘14]
* Gaussian noise means U — /y U + \/1 — ¥ G where G is Gaussian matrix

* But we don’t know how to make this work for other noise models e.g., photon
loss

* Anticoncentration fails for random circuits with depolarizing noise
together with many non-unital noise channels, at any depth [Ghosh et.
al., unpublished]

_ _ . B 1 0 (0 ¥
* e.g., Amplitude damping channel: K, = 0 \/m K = 5 o

* So in these cases we know neither hardness, nor easiness!



Open questions

e Can we prove hardness of sampling from random circuits in the noiseless
case? (i.e., involves improving robustness of hardness results)

. o . 1
* How hard are random quantum circuits with “low noise” i.e., y = O (n—)

* Motivated by recent results showing that in this regime cross-entropy
approximates fidelity [Google group 23]

* Can we find better RCS verification protocols?



Thanks!



