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Quantum Error Correction break-even point (milestone 2)Beyond Classical demonstration (milestone 1)



Beyond Classical
random circuit sampling 

Topological Order
Abelian and non-Abelian 

Bound States 
in a quantum spin chain 

Holographic Wormhole
simulation

Quantum Advantage 
in quantum machine learning 

Majorana Edge modes
in a quantum spin chain

Quantum Scrambling
in 2d quantum evolution 

Time Crystal
in a quantum spin chain

Molecular Isomerization 
simulation

Quantum Error Correction
break-even milestone



Commercial Applications of Quantum Computing ?

Computational 
Chemistry 

Cybersecurity & 
Cryptography

Artificial 
Intelligence

Financial 
Modelling

Complex 
Manufacturing

Drug 
Design 

Weather 
Forecasting

Logistics 
Optimisation



Are Quantum Computers needed for Quantum Chemistry / Materials Science?

Quantum computers may be able to efficiently 
solve the ground state electronic structure 
of complex molecules and materials:

● Fertilizers

● Solar Energy

● Batteries

● Catalyzers

● Drug discovery

● High-Tc Superconductors 

● New Materials

However… heuristic classical methods might be enough



Quantum Computers       vs       Tensor Network algorithms?

Actually, quantum computers can accelerate (exponentially!?) tensor network algorithms…



1 - Motivation: 
● MERA on qubits (q-MERA)

 
2 - MERA quantum channel

● Eigenvalue decomposition
● Symmetries
● Derivative descendants

3 - Emergent structures in the causal cone
● Space resolved patterns
● MPO for channel eigen-operators

Outline



MERA is a ‘holographic’ tensor network:

ground state of 1d system (e.g. spin chain) 
represented as a 2d tensor network (space + scale)

Vidal 2007, 2008   (talk in Benasque 2005?)
Evenbly, Vidal 2009



accurate representation of ground states of critical systems

power 
law

logarithmic 
correction to 
area law

correlations entanglement 



isometrydisentangler
two-body unitary gate

MERA is a quantum circuit:
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    = scale
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full N-qubit wavefunction: N-qubits 

Local observable: O(1) qubits (e.g. 3) 

Two-point correlator: O(1) qubits (e.g. 6) 

k-point correlator: exp(k) qubits 
(e.g. 9 for 3-point correlator) 

Simulating an N-qubit wavefunction with O(1) qubits

(Sufficient for optimization with 1D local Hamiltonian) 

(Sufficient for optimization with 1D non-local Hamiltonian, e.g.                        ) 



Experimental implementation of MERA on a quantum processor

Quantinuum/Honeywell HØ using 6 qubits

Quantinuum/Honeywell H1 using 10 qubits

two-point correlator
for critical ising model 
on 128 quantum spins

Quantinuum/Honeywell H1-1 using 20 qubits



How can we make MERA 
more expressive / accurate? 

A layer of MERA is a coarse-graining transformation 

Qubit MERA (q-MERA)



How can we make MERA 
more expressive / accurate? 

A layer of MERA is a coarse-graining transformation 

By increasing the depth
See also:
Arguello-Luengo 2017 
Haegeman, Swingle, Walter, Cotler, Evenbly, Scholz, 2017 
Kim, Swingle 2017 
Haghschensas, Gray, Potter, Chan, 2021 
Miao, Barthel, 2021 
…

Fishman, White 2015, Evenbly, White 2016

q-MERA (MERA on qubits) 

depth 

Qubit MERA (q-MERA)
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depth

depth

Single layer of MERA and width of causal cone 

Qubit MERA (q-MERA)



depth
depth

depth

Single layer of MERA and width of causal cone 

computational resources

classical quantum

Exponential quantum advantage?

Qubit MERA (q-MERA)



* A comment for tensor network experts:

bond dimension

depth 

By increasing the depth
By increasing the bond dimension 

Vidal 2007
Evenbly, Vidal 2009 Fishman, White 2015, Evenbly, White 2016

-MERA  

How can we make MERA 
more expressive / accurate? 

traditionally:
q-MERA (MERA on qubits) 



bond dimension

depth 

By increasing the bond dimension 
By increasing the depthVidal 2007

Evenbly, Vidal 2009

-MERA  

How can we make MERA 
more expressive / accurate? 

Fishman, White 2015, Evenbly, White 2016

traditionally:

* A comment for tensor network experts:

q-MERA (MERA on qubits) 



MERA is a variational ansatz for (quantum critical) many-body ground states 

-MERA  

q-MERA 

basis for 
classical algorithms

basis for 
quantum algorithms 

(e.g. VQE)

(increase bond dimension       )

(increase layer depth        )

Summary so far:



MERA is a variational ansatz for (quantum critical) many-body ground states 

-MERA  

q-MERA 

basis for 
classical algorithms

basis for 
quantum algorithms 

(e.g. VQE)

(increase bond dimension       )

(increase layer depth        )

Summary so far:

This talk:
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2 - MERA quantum channel

● Eigenvalue decomposition
● Symmetries
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depth depth depth

MERA quantum channel Key step in MERA algorithms, both classical and quantum

computational resources
classical quantum



MERA quantum channel
Our goal: diagonalize this channel            Why? Extraction of universal (conformal) data, e.g. scaling dimensions 

input:

output:

depth

MERA tensors optimized for ground state of 
(modified) critical transverse field Ising chain

from Evenbly, 
White 2016

Dominant eigenvalue decomposition of 
MERA quantum channel



MERA quantum channel

depth

Eigenvalue decomposition of MERA quantum channel

eigenvalues (real or complex pairs), with
lots of terms!!!

primal eigen-operators 

or                            

“density matrices”
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MERA quantum channel

depth

Eigenvalue decomposition of MERA quantum channel

eigenvalues (real or complex pairs), with
lots of terms!!!

primal eigen-operators 

or                            

dual eigen-operators 

or  

are not orthonormal bases

they are instead bi-orthonormal bases

                        are not Hermitian
 

conjugates

fixed-point density matrix

example:

“density matrices” “observables”



MERA quantum channel

Arnoldi
iteration

for dominant 
eigenvalues 
of non-normal 
matrix

is a 128x128 matrix
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MERA quantum channel

Arnoldi
iteration

for dominant 
eigenvalues 
of non-normal 
matrix

Amazing!! 
[Evenbly, White 2016]

is a 128x128 matrix

eigenvalues scaling 
dimensions



MERA quantum channel

Arnoldi
iteration

for dominant 
eigenvalues 
of non-normal 
matrix

degeneracies!

is a 128x128 matrix

eigenvalues scaling 
dimensions



without symmetries    vs     with symmetries (spin-flip, matrix transposition, space reflection)
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symmetries
MERA tensors

spin flip

complex 
conjugation 

matrix 
transposition

space
reflection

isometry disentanglers

– – 

(+ translation invariance)

* These symmetries were already included in  [Evenbly, White 2016]



Symmetries of the MERA quantum channel
One can see that the super-operators

commute with each other.
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for spin flip even/oddspin flip

examples:
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Symmetries of the MERA quantum channel
One can see that the super-operators

commute with each other.

Therefore we can diagonalize the 
MERA quantum channel       using 
real 128x128 matrices       that are 
invariant under spin-flip, matrix 
transposition and space reflection.

for spin flip even/odd

for transposition even/odd

for reflection even/odd

spin flip

complex conjugation 

matrix transposition

space reflection

(spin-flip, matrix transposition, space reflection)

examples:



without symmetries    vs     with symmetries (spin-flip, matrix transposition, space reflection)

With spin flip     , matrix transposition       and space reflection        symmetries we can 
identify individual eigen-operators within degenerate multiplets



without symmetries    vs     with symmetries

With spin flip     , matrix transposition       and space reflection        symmetries we can 
identify individual eigen-operators within degenerate multiplets

We can still not distinguish second order derivative doublets                   and

(spin-flip, matrix transposition, space reflection)



Derivative descendants ?
How can we relate a scaling operator 
with its derivative descendants?
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Derivative descendants

Hamiltonian operator

Hamiltonian density

Energy conservation (continuum) Energy conservation (lattice)

momentum density

Momentum operator

Given Given

?
How can we relate a scaling operator 
with its derivative descendants?



Derivative descendants

Hamiltonian operator Momentum operator

Given Given

How can we relate a scaling operator 
with its derivative descendants?

?

(cheap alternative: use finite difference)



Example:
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Example:

Final numerical 
identification of 
eigen-operators:
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Emergent structure in primal and dual eigen-operators

-MERA  q-MERA 

traditional numerical simulations: motivated by implementation with quantum processors:

We can now investigate the space-resolved structure of the eigen-operators 



Emergent structure in primal eigen-operators

Primal eigen-operator
 

of the quantum channel
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Emergent structure in primal eigen-operators

Primal eigen-operator
 

of the quantum channel

j  =  -3      -2      -1       0       1      2       3position in causal cone

Empirical results:
General expression (Taylor expansion of scaling fields):

Application:  we can finally distinguish between           and            !!  



Emergent structure in dual eigen-operators
j  =  -3      -2      -1       0       1      2       3position in causal cone

Dual eigen-operator
 

of the quantum channel



Emergent structure in dual eigen-operators
j  =  -3      -2      -1       0       1      2       3position in causal cone

Empirical results:

Dual eigen-operator
 

of the quantum channel



Emergent structure in dual eigen-operators
j  =  -3      -2      -1       0       1      2       3position in causal cone

Empirical results:
General expression (polynomial from finite differences):

Dual eigen-operator
 

of the quantum channel



Practical application: given 
operator entanglement structure, 
we can approximate with a matrix 
product operator (MPO)! 

bond dimension

Emergent structure in dual eigen-operators



Summary

-MERA  

q-MERA 

basis for 
classical algorithms

basis for 
quantum algorithms 

(e.g. VQE)

In collaboration with:

Riley Chien
PhD at Dartmouth College (May 2023) 

Student researcher at Google Quantum AI

- Quantum Computer vs Tensor Networks?

- Quantum Computers can accelerate Tensor Networks

- MERA is already a quantum circuit (but                               )-MERA  q-MERA 



Symmetries help identify eigen-operators with 
CFT scaling operators

Space-time derivatives connect descendant 
eigen-operators

We discovered space-resolved emergent properties 
which allow us to

- distinguish between derivative descendants where symmetries 
are not enough

- suggest more efficient MERA algorithm (based on MPO)  

In collaboration with:

Riley Chien
PhD at Dartmouth College (May 2023) 

Student researcher at Google Quantum AI

We diagonalized n-qubit 
MERA quantum channel 

(for n=7 instead of n=3 → we can now resolve in space)

Summary



THANKS!



Fermionic super-operator
for non-local operators




