Entangle This: Randomness, Complexity and Quantum Circuits

Benasque's Centro de Ciencias Pedro Pascual June 12th 2023

qubit MERA and quantum criticality emergent structures inside the causal cone

Guifre Vidal Google Quantum Al In collaboration with:

Riley Chien

PhD at Dartmouth College (May 2023) Student researcher at Google Quantum Al

Quantum Al

[]

Beyond Classical random circuit sampling

in quantum machine learning Quantum Al

Topological Order Abelian and non-Abelian

Majorana Edge modes in a quantum spin chain

Bound States in a quantum spin chain

Quantum Scrambling in 2d quantum evolution

Holographic Wormhole simulation

Time Crystal in a quantum spin chain

Molecular Isomerization simulation

Quantum Error Correction break-even milestone

Commercial Applications of Quantum Computing ?

Are Quantum Computers needed for Quantum Chemistry / Materials Science?

Quantum computers may be able to efficiently solve the **ground state electronic structure** of complex molecules and materials:

Jantum Al

- Fertilizers
- Solar Energy
- Batteries
- Catalyzers
- Drug discovery
- High-Tc Superconductors
- New Materials

However... heuristic classical methods might be enough

Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry

Seunghoon Lee, Joonho Lee, Huanchen Zhaj, Yu Tong, Alexander M. Dalzell, Ashutosh Kumar, Phillip Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, Michael Kastoryano, Ryan Babbush, John Preskill, David R. Reichman, Earl T. Campbell, Edward F. Valeev, Lin Lin & Garnet Kin-Lic Chan 🖂

Nature Communications 14, Article number: 1952 (2023) Cite this article

Quantum Computers vs Tensor Network algorithms?

Actually, quantum computers can accelerate (exponentially!?) tensor network algorithms...

Outline

- 1 Motivation:
 - MERA on qubits (q-MERA)
- 2 MERA quantum channel
 - Eigenvalue decomposition
 - Symmetries
 - Derivative descendants

- 3 Emergent structures in the causal cone
 - Space resolved patterns
 - MPO for channel eigen-operators

MERA is a 'holographic' tensor network:

Vidal 2007, 2008 *(talk in Benasque 2005?)* Evenbly, Vidal 2009

ground state of **1d system** (e.g. spin chain) represented as a **2d tensor network** (space + scale)

accurate representation of ground states of critical systems

correlations

 $\langle O(0)O(x)
angle \sim rac{1}{x^p} \qquad {\sf law}$

entanglement

$$S(L) \sim \log(L)$$

logarithmic correction to area law

$$|\Psi_{MERA}
angle = U|0^{\otimes N}
angle$$

 $\langle O_A
angle = \langle \Psi_{MERA} | O_A | \Psi_{MERA}
angle$

 $\langle O_A
angle = \langle \Psi_{MERA} | O_A | \Psi_{MERA}
angle$

 $\langle O_A
angle = \langle \Psi_{MERA} \ket{O_A \ket{\Psi_{MERA}}}$

 $\langle O_A
angle = \langle \Psi_{MERA} \ket{O_A \ket{\Psi_{MERA}}}$

 $\langle O_A
angle = \langle \Psi_{MERA} | O_A | \Psi_{MERA}
angle$

 $\langle O_A
angle = \langle \Psi_{MERA} | O_A | \Psi_{MERA}
angle$

Simulating an N-qubit wavefunction with O(1) qubits

full N-qubit wavefunction: N-qubits

Local observable: O(1) qubits (e.g. 3)

(Sufficient for optimization with 1D local Hamiltonian)

Two-point correlator: O(1) qubits (e.g. 6) (Sufficient for optimization with 1D non-local Hamiltonian, e.g. $V = \sum_{i,j} \frac{n_i n_j}{|i-j|}$)

k-point correlator: exp(k) qubits (e.g. 9 for 3-point correlator)

Experimental implementation of MERA on a quantum processor

A layer of MERA is a coarse-graining transformation

How can we make MERA more expressive / accurate?

A layer of MERA is a coarse-graining transformation

How can we make MERA more expressive / accurate?

By increasing the depth D

Fishman, White 2015, Evenbly, White 2016

See also: Arguello-Luengo 2017 Haegeman, Swingle, Walter, Cotler, Evenbly, Scholz, 2017 Kim, Swingle 2017 Haghschensas, Gray, Potter, Chan, 2021 Miao, Barthel, 2021

Single layer of MERA and width of causal cone

Single layer of MERA and width of causal cone

Exponential quantum advantage?

* A comment for tensor network **experts**:

Quantum Al

* A comment for tensor network **experts**:

Summary so far:

MERA is a variational ansatz for (quantum critical) many-body ground states

χ -MERA (increase bond dimension χ) χ

Summary so far:

MERA is a variational ansatz for (quantum critical) many-body ground states

Outline

- 1 Motivation:
 - MERA on qubits (q-MERA)

- 2 MERA quantum channel
 - Eigenvalue decomposition
 - Symmetries
 - Derivative descendants

- 3 Emergent structures in the causal cone
 - Space resolved patterns
 - MPO for channel eigen-operators

MERA quantum channel

Key step in MERA algorithms, both classical and quantum

depth D = 2(2D-1=) 3 qubits

 $ho ~~{
m is}~~2^{2D-1} imes 2^{2D-1}$

Quantum Al

computational resourcesclassicalquantummemory $O(\exp(D))$ O(D) qubits ontime $O(\exp(D))$ depth D circuit

MERA quantum channel

Our goal: diagonalize this channel

Quantum Al

Why? Extraction of universal (conformal) data, e.g. scaling dimensions

White 2016

input: MERA tensors optimized for ground state of from Evenbly, (modified) critical transverse field Ising chain

$$egin{aligned} H &= -\sum_{i=-\infty}^\infty ig(X_i X_{i+1} - X_{i-1} Z_i X_{i+1}ig) \ & \left[H_{ ext{Ising}} = -\sum_{i=-\infty}^\infty (X_i X_{i+1} + Z_i)
ight] \end{aligned}$$

output:

Dominant eigenvalue decomposition of MERA quantum channel C

$$\mathcal{C} = \sum_{lpha=0}^{\chi-1} \lambda_lpha | \hat{
ho}_lpha) (\hat{ arphi}_lpha |$$

depth D = 4(2D-1=) 7 qubits Eigenvalue decomposition of MERA quantum channel ${\cal C}$

lots of terms!!!

$$\begin{array}{c} \text{eigenvalues (real or complex pairs), with } |\lambda_{\alpha}| \leq 1 \\ 1 = \lambda_0 \geq |\lambda_1| \geq \cdots \geq |\lambda_{2^{2n}-1}| \\ \mathcal{C} = \sum_{\alpha=0}^{2^{2n}-1} \lambda_{\alpha} |\hat{\rho}_{\alpha}\rangle (\hat{\varphi}_{\alpha}| \\ \text{"density matrices"} \\ \text{"density matrices"} \\ \text{primal eigen-operators} \\ \mathcal{C}|\hat{\varrho}_{\alpha}\rangle = \lambda_{\alpha} |\hat{\varrho}_{\alpha}\rangle \\ \text{or } \mathcal{C}[\hat{\varrho}_{\alpha}] = \lambda_{\alpha} \hat{\varrho}_{\alpha} \end{array}$$

depth D = 4(2D-1=) 7 qubits

Eigenvalue decomposition of MERA guantum channel Clots of terms!!! eigenvalues (real or complex pairs), with $|\lambda_{\alpha}| < 1$

depth D = 4(2D-1=) 7 qubits

Quantum Al U

 $|\hat{arrho}_{0}) \,$ fixed-point density matrix

Eigenvalue decomposition of MERA quantum channel
$$\mathcal{C}$$

lots of terms!!

$$2^{2n}-1$$

$$C = \sum_{\alpha=0}^{2^{2n}-1} \lambda_{\alpha} |\hat{\rho}_{\alpha}\rangle (\hat{\varphi}_{\alpha}|$$

$$1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$$

$$1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$$

$$1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$$

$$(density matrices'')$$

$$(densi$$

1

depth D = 4(2D-1=) 7 qubits

Quantum Al

Eigenvalue decomposition of MERA quantum channel
$$\mathcal{C}$$

lots of terms!!
 $2^{2n}-1$
 $C = \sum_{\alpha=0}^{2^{2n}-1} \lambda_{\alpha} |\hat{\rho}_{\alpha}\rangle (\hat{\varphi}_{\alpha}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge \cdots \ge |\lambda_{2^{2n}-1}|$
 $1 = \lambda_{0} \ge |\lambda_{1}| \ge |\lambda_{0}|$
 $1 = \lambda_{0} \ge |\lambda_{0}| \ge |\lambda_{0}| \ge |\lambda_{0}|$
 $1 = \lambda_{0} \ge |$

ho is a 128x128 matrix

Arnoldi iteration

for dominant eigenvalues

of non-normal

matrix

Quantum Al

 ρ

Arnoldi iteration

for dominant eigenvalues

of non-normal

matrix

ho is a 128x128 matrix

Quantum Al

 $\lambda_lpha=2^{-\Delta_lpha}$ eigenvalues scaling dimensions $\Delta_lpha=-\log_2(\lambda_lpha)$

symm. sect.	scaling	numer.	exact
(a_Z, a_T, a_R)	operator	Δ_{α}	$\Delta_{\alpha}^{\rm CFT}$
(0,0,0)	I	0.0000	0
(1,0,0)	σ	0.1233	0.125
$(0,\!0,\!0)$	ϵ	1.0000	1
(1,0,1)	$\partial_x \sigma$	1.1229	1.125
$(1,\!1,\!0)$	$\partial_t \sigma$	1.1349	1.125
$(0,\!0,\!0)$	h	2.0000	2
(0,1,1)	p	2.0000	2
(0,0,1)	$\partial_x \epsilon$	2.0000	2
(0,1,0)	$\partial_t \epsilon$	2.0000	2
$(1,\!0,\!0)$	$\partial_t^2 \sigma$	2.1233	2.125
(1,0,0)	$\partial_x^2 \sigma$	2.1253	2.125
(1,1,1)	$\partial_x \partial_t \sigma$	2.1356	2.125
(0,0,0)	$\partial_t^2 \epsilon$	3.0000	3
(0,0,0)	$\partial_x^2 \epsilon$	3.0000	3
(0,1,1)	$\partial_x \partial_t \epsilon$	3.0000	3
(0,1,0)	$\partial_x h$	3.0000	3
(0,0,1)	$\partial_x p$	3.0000	3
	$\begin{array}{c} \text{symm. sect.}\\ (a_Z, a_T, a_R)\\ (0,0,0)\\ (1,0,0)\\ (0,0,0)\\ (1,0,1)\\ (1,1,0)\\ (0,0,0)\\ (0,1,1)\\ (0,0,0)\\ (1,0,0)\\ (1,0,0)\\ (1,1,1)\\ (0,0,0)\\ (0,0,0)\\ (0,1,1)\\ (0,1,0)\\ (0,0,1)\\ \end{array}$	symm. sect. scaling operator (a_Z, a_T, a_R) operator $(1,0,0)$ \mathcal{I} $(1,0,0)$ σ $(0,0,0)$ ϵ $(1,0,1)$ $\partial_x \sigma$ $(1,1,0)$ $\partial_t \sigma$ $(0,0,0)$ h $(0,0,0)$ h $(0,0,0)$ h $(0,1,1)$ p $(0,0,1)$ $\partial_x \epsilon$ $(1,0,0)$ $\partial_t^2 \sigma$ $(1,0,0)$ $\partial_x^2 \sigma$ $(1,1,1)$ $\partial_x \partial_t \sigma$ $(0,0,0)$ $\partial_x^2 \epsilon$ $(0,0,1,1)$ $\partial_x \partial_t \epsilon$ $(0,1,0)$ $\partial_x h$ $(0,0,0,1)$ $\partial_x p$	symm. sect.scaling operatornumer. Δ_{α} (0,0,0)I0.0000(1,0,0) σ 0.1233(0,0,0) ϵ 1.0000(1,0,1) $\partial_x \sigma$ 1.1229(1,1,0) $\partial_t \sigma$ 1.1349(0,0,0) h 2.0000(0,1,1) p 2.0000(0,1,1) $\partial_x \epsilon$ 2.0000(0,1,0) $\partial_t \epsilon$ 2.0000(1,0,0) $\partial_t \epsilon$ 2.1233(1,0,0) $\partial_x^2 \sigma$ 2.1253(1,1,1) $\partial_x \partial_t \sigma$ 3.0000(0,0,0) $\partial_x^2 \epsilon$ 3.0000(0,1,1) $\partial_x \partial_t \epsilon$ 3.0000(0,1,0) $\partial_x h$ 3.0000(0,0,1) $\partial_x p$ 3.0000

Arnoldi iteration

for dominant eigenvalues

of non-normal

matrix

ρ	is a	128x128	matrix
--------	------	---------	--------

	eigenvalue	symm. sect.	scaling	numer.	exact
	$\tilde{\lambda}_{lpha}$	(a_Z, a_T, a_R)	operator	Δ_{α}	$\Delta_{\alpha}^{\rm CFT}$
	1.00000	(0,0,0)	I	0.0000	0
	0.91807	(1,0,0)	σ	0.1233	0.125
- ` - /	0.50000	(0,0,0)	E	1.0000	1
V	0.45918	(1,0,1)	$\partial_x \sigma$	1.1229	1.125
	0.45537	(1,1,0)	$\partial_t \sigma$	1.1349	1.125
	0.25000	(0,0,0)	h	2.0000	2
7	0.25000	(0,1,1)	p	2.0000	2
$\overline{\mathcal{V}}$	0.25000	(0,0,1)	$\partial_x \epsilon$	2.0000	2
	0.25000	(0,1,0)	$\partial_t \epsilon$	2.0000	2
	0.22952	(1,0,0)	$\partial_t^2 \sigma$	2.1233	2.125
	0.22921	(1,0,0)	$\partial_x^2 \sigma$	2.1253	2.125
	0.22757	(1,1,1)	$\partial_x \partial_t \sigma$	2.1356	2.125
N	0.12500	(0,0,0)	$\partial_t^2 \epsilon$	3.0000	3
	0.12500	(0,0,0)	$\partial_x^2 \epsilon$	3.0000	3
	0.12500	(0,1,1)	$\partial_x \partial_t \epsilon$	3.0000	3
V	0.12500	(0,1,0)	$\partial_x h$	3.0000	3
	0.12500	(0,0,1)	$\partial_x p$	3.0000	3

Amazing!! [Evenbly, White 2016]

Arnoldi iteration

for dominant eigenvalues

of non-normal

matrix

 $ho\,$ is a 128x128 matrix

Quantum Al

 $\lambda_lpha=2^{-\Delta_lpha}$ eigenvalues scaling dimensions $\Delta_lpha=-\log_2(\lambda_lpha)$

	$egin{array}{c} { m eigenvalue} \ \lambda_lpha \end{array}$	symm. sect. (a_Z, a_T, a_R)	scaling operator	numer. Δ_{α}	$\stackrel{\text{exact}}{\Delta_{\alpha}^{\text{CFT}}}$
	1.00000	(0,0,0)	I	0.0000	0
	0.91807	(1,0,0)	σ	0.1233	0.125
	0.50000	(0,0,0)	ϵ	1.0000	1
5	0.45918	(1,0,1)	$\partial_x \sigma$	1.1229	1.125
$\overline{\mathcal{V}}$	0.45537	(1,1,0)	$\partial_t \sigma$	1.1349	1.125
	0.25000	(0,0,0)	h	2.0000	2
N	0.25000	(0,1,1)	p	2.0000	2
$\overline{\mathcal{V}}$	0.25000	(0,0,1)	$\partial_x \epsilon$	2.0000	2
	0.25000	(0,1,0)	$\partial_t \epsilon$	2.0000	2
N	0.22952	(1,0,0)	$\partial_t^2 \sigma$	2.1233	2.125
- /	0.22921	(1,0,0)	$\partial_x^2 \sigma$	2.1253	2.125
	0.22757	(1,1,1)	$\partial_x \partial_t \sigma$	2.1356	2.125
	0.12500	(0,0,0)	$\partial_t^2 \epsilon$	3.0000	3
N	0.12500	(0,0,0)	$\partial_x^2 \epsilon$	3.0000	3
- \ - /	0.12500	(0,1,1)	$\partial_x \partial_t \epsilon$	3.0000	3
1	0.12500	(0,1,0)	$\partial_x h$	3.0000	3
	0.12500	(0,0,1)	$\partial_x p$	3.0000	3

degeneracies!

 $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

without symmetries

with symmetries

(spin-flip, matrix transposition, space reflection)

VS

Quantum Al

🚺 Quantum Al

symmetries

MERA tensors

* These symmetries were already included in [Evenbly, White 2016]

Symmetries of the MERA quantum channel

One can see that the super-operators

$$\mathcal{C},\mathcal{Z},[\]^*,\mathcal{T},\mathcal{R}$$

commute with each other.

examples:

One can see that the super-operators

 $\mathcal{C},\mathcal{Z},[\]^*,\mathcal{T},\mathcal{R}$

commute with each other.

Therefore we can diagonalize the MERA quantum channel C using real 128x128 matrices O that are invariant under spin-flip, matrix transposition and space reflection.

examples:

One can see that the super-operators

 $[\mathcal{C},\mathcal{Z},[\]^*,\mathcal{T},\mathcal{R}]$

commute with each other.

Therefore we can diagonalize the MERA quantum channel C using real 128x128 matrices *O* that are invariant under **spin-flip**, **matrix** transposition and space reflection.

examples:

One can see that the super-operators

 $\mathcal{C}, \mathcal{Z}, [\]^*, \mathcal{T}, \mathcal{R}$

commute with each other.

Therefore we can diagonalize the MERA quantum channel C using real 128x128 matrices O that are invariant under spin-flip, matrix transposition and space reflection.

spin flip $\mathcal{Z}[O] = \pm O$ \mathcal

examples.

One can see that the super-operators

 $\mathcal{C},\mathcal{Z},[\]^*,\mathcal{T},\mathcal{R}$

commute with each other.

Therefore we can diagonalize the MERA quantum channel C using real 128x128 matrices *O* that are invariant under **spin-flip**, **matrix** transposition and space reflection.

$$|\hat{arrho}_lpha), (\hat{arphi}_lpha| \, \leftrightarrow (a_Z, a_T, a_R)$$

(spin-flip, matrix transposition, space reflection)

 $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

without symmetries

vs with symmetries

(spin-flip, matrix transposition, space reflection)

With spin flip \mathcal{Z} , matrix transposition \mathcal{T} and space reflection \mathcal{R} symmetries we can identify individual eigen-operators within degenerate multiplets

 $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

without symmetries

vs with symmetries

(spin-flip, matrix transposition, space reflection)

With spin flip \mathcal{Z} , matrix transposition \mathcal{T} and space reflection \mathcal{R} symmetries we can identify individual eigen-operators within degenerate multiplets

Quantum Al

We can still not distinguish second order derivative doublets $(\partial_x^2 \sigma, \partial_t^2 \sigma)$ and $(\partial_x^2 \epsilon, \partial_t^2 \epsilon)$

How can we relate a scaling operator with its derivative descendants?

How can we relate a scaling operator with its derivative descendants?

$$(\hat{arphi}| \stackrel{f ?}{<} \widehat{(\partial_t arphi)} \ \widehat{(\partial_x arphi)}$$

Given
$$O,H\longrightarrow \partial_t O=i[H,O]$$

Hamiltonian operator

$$H=-\sum_{i=-\infty}^\infty \left(X_iX_{i+1}-X_{i-1}Z_iX_{i+1}
ight)$$

Given $O, P \longrightarrow \partial_x O = i[P, O]$

How can we relate a scaling operator with its derivative descendants?

Given
$$O, H \longrightarrow \partial_t O = i[H, O]$$

Hamiltonian operator

$$H=-\sum_{i=-\infty}^{\infty}\left(X_iX_{i+1}-X_{i-1}Z_iX_{i+1}
ight)$$

Hamiltonian density
 $h_i=-rac{1}{2}(X_{i-1}X_i+X_iX_{i+1})+X_{i-1}Z_iX_{i+1}$

Given
$$O, P \longrightarrow \partial_x O = i[P, O]$$

How can we relate a scaling operator with its derivative descendants?

Given
$$O, H \longrightarrow \partial_t O = i[H, O]$$

Hamiltonian operator

Hamiltonian density

$$H=-\sum_{i=-\infty}^{\infty}\left(X_iX_{i+1}-X_{i-1}Z_iX_{i+1}
ight)$$

 $h_i = -rac{1}{2}(X_{i-1}X_i + X_iX_{i+1}) + X_{i-1}Z_iX_{i+1})$

$$\begin{array}{c|c} & (\mathcal{O}_t \, \varphi) \\ & & \widehat{(\partial_x \, \varphi)} \\ \end{array}$$
Given $O, P \longrightarrow \partial_x O = i[P, O]$
Momentum operator
$$P = -\sum_{i=1}^{\infty} (X_i Y_{i+1} - Y_i X_{i+1})$$

momentum density

 $i = -\infty$

<

$$p_{i+rac{1}{2}}=-\left(X_{i}Y_{i+1}-Y_{i}X_{i+1}
ight)$$

Energy conservation (continuum)

 $\partial_t h + \partial_x p = 0$

$$ightarrow \partial_t h_j = i[H,h_j] = -\left(p_{j+rac{1}{2}}-p_{j-rac{1}{2}}
ight)$$

Energy conservation (lattice)

Quantum Al

How can we relate a scaling operator with its derivative descendants?

Given
$$O, H \longrightarrow \partial_t O = i[H, O]$$

Hamiltonian operator

$$H=-\sum_{i=-\infty}^\infty \left(X_iX_{i+1}-X_{i-1}Z_iX_{i+1}
ight)$$

$$(\hat{arphi}| \stackrel{f ?}{<} \widehat{(\partial_t arphi)} \ \widehat{(\partial_x arphi)}$$
 Given O,P

Given
$$O, P \longrightarrow \partial_x O = i[P, O]$$

(cheap alternative: use finite difference)

Momentum operator $P = -\sum_{i=-\infty}^{\infty} \left(X_i Y_{i+1} - Y_i X_{i+1}
ight)$

Example:
$$\widehat{(\hat{\sigma}|_{(1,0,0)})} \subset \widehat{(\hat{\partial}_t \sigma|_{(1,1,0)})} = i[P, (\hat{\sigma}|] \sim \widehat{(\hat{\partial}_t \sigma|_{(1,1,0)})} = i[P, (\hat{\sigma}|] \sim \widehat{(\hat{\partial}_x \sigma|_{(1,0,1)})}$$

$$\begin{array}{c} \operatorname{Example:} \quad (\widehat{\sigma}_{t} \widehat{\sigma}_{t}) = i[H, (\widehat{\sigma}_{t}]] \sim \underbrace{(\widehat{\partial_{t}\sigma}_{t})}_{(1,1,0)} \\ (\partial_{x}\widehat{\partial_{t}\sigma}_{t}) = i[P, (\widehat{\partial_{t}\sigma}_{t})] \\ (\partial_{x}\widehat{\sigma}_{t}) = i[P, (\widehat{\sigma}_{t}]] \sim \underbrace{(\widehat{\partial_{x}\sigma}_{t})}_{(1,0,1)} \\ (\partial_{x}\widehat{\sigma}_{t}) = i[P, (\widehat{\partial_{x}\sigma}_{t})] \\ (\partial_{x}\widehat{\sigma}_{t}) = i[P, (\widehat{\sigma}_{t})] \sim \underbrace{(\widehat{\partial_{x}\sigma}_{t})}_{(1,0,1)} \\ (\partial_{x}\widehat{\partial_{x}\sigma}_{t}) = i[P, (\widehat{\partial_{x}\sigma}_{t})] \sim \underbrace{(\widehat{\partial_{x}\sigma}_{t})}_{(1,1,1)} \\ (\partial_{x}\widehat{\partial_{x}\sigma}_{t}) = i[P, (\widehat{\partial_{x}\sigma}_{t})] \sim \underbrace{(\widehat{\partial_{x}\sigma}_{t})}_{(1,0,0)} \\ (\widehat{\partial_{x}\sigma}_{t}) = i[P, (\widehat{\partial_{x}\sigma}_{t})] \cap \underbrace{(\widehat{\partial_{x}\sigma}_{t})}_{(1,0,0)} \\ (\widehat{\partial_{x}\sigma}_{t}) = i[P, (\widehat{\partial_{x}\sigma}_{t})$$

Example:
$$(\widehat{\sigma})_{(1,0,0)} \leftarrow (\widehat{\partial}_{t}\widehat{\sigma}) = i[H, (\widehat{\sigma})] \sim (\widehat{\partial}_{t}\widehat{\sigma}) = i[H, (\widehat{\partial}_{t}\sigma)] \sim (\widehat{\partial}_{t}\widehat{\partial}_{\tau}\sigma) = i[P, (\widehat{\partial}_{t}\sigma)] \qquad (1,0,0)$$

$$(\partial_{t}\widehat{\partial}_{t}\sigma) = i[P, (\widehat{\partial}_{t}\sigma)] \sim (\widehat{\partial}_{t}\widehat{\partial}_{\tau}\sigma) = i[H, (\widehat{\partial}_{x}\sigma)] \sim (\widehat{\partial}_{t}\widehat{\partial}_{\tau}\sigma) = i[H, (\widehat{\partial}_{x}\sigma)] \sim (\widehat{\partial}_{t}\widehat{\partial}_{\tau}\sigma) = i[P, (\widehat{\partial}_{x}\widehat{\partial}_{\tau}] \sim (\widehat{\partial}_{t}\widehat{\partial}_{\tau}\widehat{\partial}_{\tau}\sigma) = i[P, (\widehat{\partial}_{x}\widehat{\partial}_{\tau}\widehat{\partial}_{$$

Outline

- 1 Motivation:
 - MERA on qubits (q-MERA)
- 2 MERA quantum channel
 - Eigenvalue decomposition
 - Symmetries
 - Derivative descendants

3 - Emergent structures in the causal cone

- Space resolved patterns
- MPO for channel eigen-operators

Emergent structure in *primal* and dual eigen-operators

We can now investigate the space-resolved structure of the eigen-operators

Emergent structure in *primal* eigen-operators

Emergent structure in *primal* eigen-operators

Empirical results:

$$egin{aligned} &(X_j|\hat{
ho}_{\sigma}) = ext{tr}(X_j\hat{
ho}_{\sigma}) \sim a_0 \ &(X_j|\hat{
ho}_{\partial_x\sigma}) = ext{tr}(X_j\;\hat{
ho}_{\partial_x\sigma}) \sim a_1\;j \ &(X_j|\hat{
ho}_{\partial_x^2\sigma}) = ext{tr}(X_j\;\hat{
ho}_{\partial_x^2\sigma}) \sim a_2\;j^2 \end{aligned}$$

🚺 Quantum Al

Emergent structure in *primal* eigen-operators

Quantum Al

Application: we can finally distinguish between $\partial_x^2 \sigma$ and $\partial_t^2 \sigma$!!

Quantum Al

-0.75 -1.00

-2

$$= \operatorname{tr}(X_3\hat{\sigma})$$

Practical application: given operator entanglement structure, we can approximate with a matrix product operator (MPO)!

Summary

- Quantum Computer vs Tensor Networks?
- Quantum Computers can accelerate Tensor Networks
- MERA is already a quantum circuit (but χ -MERA \rightarrow q-MERA)

PhD at Dartmouth College (May 2023) Student researcher at Google Quantum Al

Riley Chien

Summary

In collaboration with:

We diagonalized **n**-qubit MERA quantum channel (for **n=7** instead of n=3 → we can now resolve in space)

Riley Chien PhD at Dartmouth College (May 2023)

Student researcher at Google Quantum Al

Energy density ε

Symmetries help identify eigen-operators with CFT scaling operators

Quantum Al

-0.2

Space-time *derivatives* connect descendant eigen-operators

(1,0,0) $\partial_t^2 \varepsilon \quad \partial_x \partial_t \varepsilon \quad \partial_x^2 \varepsilon$ ∂_xh ∂_xp (1,0,1)(1, 1, 0)scaling dimension Δ (1.1.1) $\partial_t^2 \sigma \ \partial_x \partial_t \sigma \ \partial_x^2 \sigma$ 3+6 3,8 1+1/8 (0,0,0) $\partial_t \sigma$ ∂xσ (0.0.1)• (0.1.0) (0.1.1)

Spin σ

Identity /

We discovered space-resolved *emergent properties* which allow us to

- distinguish between derivative descendants where symmetries are not enough
 - suggest more efficient MERA algorithm (based on MPO)

THANKS!

Fermionic super-operator

for non-local operators ... ZZZZZ O

🚺 Quantum Al

-2

Ó

ż

 $(Z_{-}(X_{j}-iY_{j})|\hat{\varrho})$

-- 20-

primal eigenvectors

20

40

60

10°

10-3

10-6

10-9

10-12

10-15

Ó

0

-2

-1.00