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Quantum many body systems (on the lattice)
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“The quantum many-body problem” SO OO0 G
IMPORTANT: ...but HARD:
* Quantum information * Hilbert space dimension exponential!
* Q Computation and complexity theory * Direct computational approaches are doomed

* Condensed matter
* High energy physics
* Quantum chemistry

to fail.
* Solution: understand the physics, and find
smart workarounds.




Simulating many-body dynamics
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Simulating many-body dynamics

* Time evolution operator: U — e_itH H = Z hi
7
* Observable: _ _—1Ht 1Ht 00000000
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Computational problem

* Local Hamiltonian on N particles +

few-body observable |<(I)|A(f)|q)> — f(t)| < €

Classically hard + quantum
Classically easy (P) easy (BQP)

;= 0(1) t = poly(NV)

time
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How do we study this problem classically?

Exact diagonalization (small systems)

Tensor networks (short times, one dimension) T4 T4
—1 2
A(t) =e """ Ae

Many other methods....(model-specific?)

This talk: cluster expansion < short times, but very accurate and analytically tractable




Quantum dynamics: simple or not?

A HUGE matrix you
cannot diagonalize

The exponential of a
“simple” local operator

U c ((Cd)®N




Summary of results

Approx. Heisenberg evolution: Runtime:

(DIA(H)|D) — F(£)] < e (expw(ml)e’“’”“” 3 B

Approx. Loschimidt echo: Runtime:

Tog(®le "]@) —g(t)] <€ PN



Taylor expansion and computation

F(t) = Fu(t)] < e "

K
— TTmom
F(ty =) _ ot
m=0
Ingredients:
* Prove convergence of Taylor series for high enough degree e R
Al ©00000000
(analyticity). © 00000000
© 0600 00090 0
* Estimate cost of calculating Taylor coefficients. ©00000000
o 0600 00090 0
) . ® 0600 000900
* Taylor series gives approximation. c00000060 0




Cluster expansion: main idea

* Taylor series expansions for quantities defined on lattices.

o0 K(ﬁ) _sH 2 ,
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* Efficient way of writing the Taylor moments in terms of clusters
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* Connected

W eg,

Types of clusters

* Disconnected

Wel,\Gn

W = {hla hla h?a ey hla hl}

* Connectedto A




Cluster expansion:

* KEY: Only connected contribute to the log-partition function:

o0 1-(B)
log Z = logTr[e_ﬁH] — E K_m' m Kﬁ,(?f) = E | |(...)Tr[h1....hn]
m!
m W e g,

* How to calculate the contributions? Ursell function: ®(W)

®({hy,ha}) = Tr|hihs| — Tr|hq]Tr|hs]

* We need to know:

-How to count connected clusters are there

-How do they contribute (Ursell function)

..

-



Cluster expansion: convergence

* Rough intuition: (Kuwahara & Saito 1906.10872* , Haah et al 2108.04842* )

There are exponentially many connected clusters: |G, | < Nc"

* Weight of each cluster term to the sumis : (...) < mlcy
* *
* Total Taylor term: |Kr(f)| < m'N(l/,@ )m B <
*\ M
* Series converges exponentially [ log Z — Z K(B < (6/5 )

(56



Cluster expansion: convergence

* Rough intuition: (Kuwahara & Saito 1906.10872 , Haah et al 2108.04842 ) - I '
There are exponentially many connected clusters: G| < Nct! B

(...) < mley’

Weight of each cluster term to the sumis :

* * tatistica echanics
* Total Taylor term: |K7(f)| = m!N(l/ )" B<P ,;cfo&fiﬁ'ﬁﬁles:gﬂ{rﬂlﬁm
. . NI v  ~ <
* Series converges exponentially  |log Z — K(B <
' Z REECIERI . - 7%
| « N - M
» General framework (polymer models) — (Kotecky&Preiss ‘86 + others) K¢t

g - AR

* Related to phase diagram: expansion converges away from phase transitions.




Cluster expansion: computation

Ursell function can be computed efficiently: (Bjorklund et al 0711.2585)

(W)

runtime ~ e

Cluster enumeration (Helmuth et al 1806.11548):

(remember |G,,| < N )

Cluster contributions: (operator on region of size m)

Computing Taylor series:

M /Bm
| log Z — E —le| < €
m.
m=0

runtime ~ Ne

runtime ~ ¢©™

M = O(log(N/e))

« -
O(m) E——

B < B

runtime = poly(/N/e)




Cluster expansion: dynamics

* Loschmidt echo: 10g<(1)‘€_itH|(I)> VS. log[Tre_ﬁH]

* KEY INSIGHT: with product states also only connected clusters contribute

) = [)° 1

|
* The previous results follow (mostly straightforward), resulting in ——
M .
log(@]e™[®) — Y~ — K| <e < t*
m=0

M = O(log(N/e)) mmmmp runtime = poly(N/e)




No large improvement possible

* Result: analyticity and efficient algorithm for
| Pﬁ‘:'?l AL )
log (@[ @) t<t” M

— el doma s o
—
St AN

* For longer times: log becomes non-analytic.

-State may become orthogonal to the initial one «~—— t — 0(1)

-Dynamical phase transitions (Heyl 1709.07461) A//

* Computation: computing complex Ising partition function at O(1) times (even
approximately) is #P hard. (Galanis et al 2005.01076)




Some physical conseguences:

&x-;\ d qhﬂ.'“—"-'-fb'—’\

el domnsibom

Result: analyticity and efficient algorithm for _4 F’”‘::.;\L

log({®|e " |®) t <t*

— > )

So it takes at least t* to become orthogonal to initial state

Strengthening over previous Quantum Speed Limits (Mandeltam-Tamm, Margolus-Levitin)

tosp, >t = O(1) Vs. tosr = O(l/\/N)

Dynamical phase transitions (Heyl 1709.07461): t*is a lower bound to how fast they occur.

(in analogy with thermal phase transitions)

Probability theory: concentration bounds (Chernoff) for short-time evolved states + Berry-Esseen
theorem (Rae, AMA, Cirac, see arXiv next week).



Heisenberg time evolution

* Classical simulation of

@le i ac ey = S O gy 11 (1,1, A7) @)
>

<(I)|[hX17 [hX27 "'[thv A]H‘I))

m=0 ) g;jll
* Taylor expansion in terms of clusters W ¢ g;i | 1 l
o
* Difference: Function analytic for all times A




Heisenberg time evolution

Classical simulation of

@le-act oy = S D @ 1, (1, A))0)

=N TSN [, AT

Count connected clusters: \Q;ﬁ\ <c"
Weight of each cluster: m!2™ || Al|

Similar convergence of Taylor series (and algorithm) for short times < t*

(@A) Z Lkl < LAl



Arbitrary times: analytic continuation

Function is analytic on a strip, not just a disk. | <e_itHAeitH> | < | |A| |

Analytic continuation (Barvinok ‘16, Harrow et al. 1910.09071).

We can use Taylor series at the origin to calculate any later point, with overhead.

Idea: use series of a function that maps disk to rectangle.
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Arbitrary times: result

* Series converges for all times, but degree grows fast.

M- m
’<(I)‘€—thAeth‘q)> . Z %Km| < (1 L e—wt/t*)M(eﬁt/t* L 1)||AH

m=0

* RESULT: There is an algorithm outputting f(t) such that:

(Dle™  Ae™|@) — f(t)] < ¢

(owtornt) ™

€

With runtime:



Arbitrary times: result

* Series converges for all times, but degree grows fast.

M- m
’<(I)‘€—thAeth‘q)> . Z %Km| < (1 L e—wt/t*)M(eﬁt/t* L 1)||AH

m=0

* RESULT: There is an algorithm outputting f (%) such that:

(Dle™  Ae™|@) — f(t)] < ¢

(oo )7

€ | <t

With runtime:

* Remark: if ¢ = O(1), runtimeis P01Y(€_1)




Alternative: Lieb-Robinson bounds

* Simple strategy: simulate Lieb-Robinson light-cone exactly.

e ~ Q=) [ ~ vt + O(log(1/€))

O@") o, oO((vt+log(1/€)")

* Runtime: € €

* Super-poly in higher dimensions for 6_1

—1
* OUR RESULT: With clusters: polynomialin € , for all dimensions! (even

expander graphs).



Computational complexity of dynamics

Fvolution time <t O(1) | O(polylog(N)) | O(poly(N))
(A(t)) P P ?? BQP-complete
log (e ) P #P-hard #P-hard #P-hard
(e~ ) P ?? ?? BQP-complete

e Complexity of simulating to small additive error € = 1/p Oly(N)

* #P hard -> Galanis et al 2005.01076
 BQP hardness: standard arguments + de las Cuevas (1104.2517)




Conclusions

Statistical Mechanics

Cluster expansion: versatile and well-studied tool for partition functions + related of Lattice Systems
p ro b I e m S . A Concrete Mathematical Introduction
Sacha Friedli and Yvan Velenik
-Shows convergence of Taylor approximation and yields efficient algorithms. 4¢ k1.

-Works for many different interaction graphs. K Xl
« N - K
AR K >

Here: it also works for problems of quantum dynamics. - K ’

Implications for: complexity of dynamics, dynamical phase transition, guantum
speed limits,... i I ;

Versatile technique for classical simulation of many quantum problems. '



Conclusions

Cluster expansion: versatile and well-studied tool for partition functions + related
problems.

-Shows convergence of Taylor approximation and yields efficient algorithms.

-Works for many different interaction graphs.
Here: it also works for problems of quantum dynamics.

Implications for: complexity of dynamics, dynamical phase transition, guantum
speed limits,...

Versatile technique for classical simulation of many quantum problems.
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Cluster expansion in Ql (so far)

Different ideas proven this way:

* Approximations of partition functions (Harrow et al. 1910.09071, Mann & Helmuth 2004.11568)
* Concentration bounds for Gibbs states: (Kuwahara & Saito 1906.10872)

Optimal learning of Gibbs states (Haah et al 2108.04842)

Efficient sampling of high temperature Gibbs states (Yin & Lucas 2305.18514)

o u. e g
pr—— /

-

Connected to Barvinok’s interpolation method and Lovasz’s local lemma (e.g. estimation of
expectation values of shallow circuits Bravyi et al. 1909.11485)

+ likely many others....
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