Classical simulation of short time many-body dynamics

Alvaro M. Alhambra
(Instituto de Fisica Teorica CSIC -Madrid)

w/ Dominik Wild
(Max Planck Institute for Quantum Optics)
(arXiv:2210:11490)
PRX Quantum 4, 020340

Quantum many body systems (on the lattice)

n-

> Q: When and how can we compute physically relevant phenomena/features/quantities...for these models?
"The quantum many-body problem"

IMPORTANT:

- Quantum information
- Q Computation and complexity theory
- Condensed matter
- High energy physics
- Quantum chemistry

...but HARD:

- Hilbert space dimension exponential!
- Direct computational approaches are doomed to fail.
- Solution: understand the physics, and find smart workarounds.

Simulating many-body dynamics

$$
U=e^{-i t H} \quad H=\sum_{i} h_{i}
$$

$$
A(t)=e^{-i H t} A e^{i H t}
$$

Simulating many-body dynamics

- Time evolution operator:

$$
U=e^{-i t H} \quad H=\sum_{i} h_{i}
$$

- Initial state:
- Goal:
- Observable: $\quad A(t)=e^{-i H t} A e^{i H t}$

$$
|\Phi\rangle=\bigotimes\left|\phi_{i}\right\rangle
$$

$$
|\langle\Phi| A(t)| \Phi\rangle-f(t) \mid \leq \epsilon
$$

Computational problem

- Local Hamiltonian on N particles + few-body observable

$$
|\langle\Phi| A(t)| \Phi\rangle-f(t) \mid \leq \epsilon
$$

Classically easy (P)

Classically hard + quantum
easy (BQP)

$$
t=\operatorname{poly}(N)
$$

Computational problem

- Local Hamiltonian on N particles + few-body observable

$$
|\langle\Phi| A(t)| \Phi\rangle-f(t) \mid \leq \epsilon
$$

Classically hard + quantum easy (BQP)
 $$
t=\operatorname{poly}(N)
$$

How do we study this problem classically?

- Exact diagonalization (small systems)
- Tensor networks (short times, one dimension)

$$
A(t)=e^{-i H t} A e^{i H t}
$$

- Many other methods....(model-specific?)
- This talk: cluster expansion \leftarrow short times, but very accurate and analytically tractable

Quantum dynamics: simple or not?

A HUGE matrix you cannot diagonalize

The exponential of a "simple" local operator

$$
U \in\left(\mathbb{C}^{d}\right)^{\otimes N}
$$

$$
U=e^{-i t H}
$$

$$
H=\sum_{i} h_{i}
$$

Summary of results

Approx. Heisenberg evolution:

$$
|\langle\Phi| A(t)| \Phi\rangle-f(t) \left\lvert\, \leq \epsilon \quad\left(\exp (\mathcal{O}(t)) \frac{1}{\epsilon}\right)^{\exp (\mathcal{O}(t))}\right.
$$

Approx. Loschimidt echo:

$$
\left.\left|\log \langle\Phi| e^{-i t H}\right| \Phi\right\rangle-g(t) \left\lvert\, \leq \epsilon \quad \begin{array}{ll}
\operatorname{poly}\left(N, \epsilon^{-1}\right) \\
& t \leq t^{*}=\mathcal{O}(1)
\end{array}\right.
$$

Taylor expansion and computation

$$
\left|F(t)-F_{m}(t)\right| \leq e^{-\mathcal{O}(m)}
$$

$$
F(t)=\sum_{m=0}^{\infty} \frac{K_{m}}{m!} t^{m}
$$

$$
F(t)_{M}=\sum_{m=0}^{M} \frac{K_{m}}{m!} t^{m}
$$

Ingredients:

- Prove convergence of Taylor series for high enough degree (analyticity).
- Estimate cost of calculating Taylor coefficients.
- Taylor series gives approximation.

Cluster expansion: main idea

- Taylor series expansions for quantities defined on lattices.

$$
\log Z \equiv \log \operatorname{Tr}\left[e^{-\beta H}\right]=\sum_{m}^{\infty} \frac{K_{m}^{(\beta)}}{m!} \beta^{m} \quad e^{-\beta H}=\mathbb{I}-\beta H+\frac{\beta^{2}}{2} H^{2}+\ldots
$$

- Efficient way of writing the Taylor moments in terms of clusters

$$
\begin{aligned}
& H=\sum_{X} h_{X} \\
& \left\|h_{X}\right\| \leq 1
\end{aligned}
$$

- CLUSTER: A multiset of Hamiltonian terms

$$
\mathbf{W}=\left\{h_{1}, h_{1}, h_{2}, \ldots, h_{l}, h_{l}\right\}
$$

Cluster expansion: main idea

- Taylor series expansions for quantities defined on lattices.

$$
\log Z \equiv \log \operatorname{Tr}\left[e^{-\beta H}\right]=\sum_{m}^{\infty} \frac{K_{m}^{(\beta)}}{m!} \beta^{m} \quad e^{-\beta H}=\mathbb{I}-\beta H+\frac{\beta^{2}}{2} H^{2}+\ldots
$$

- Efficient way of writing the Taylor moments in terms of clusters

$$
\begin{aligned}
& H=\sum_{X} h_{X} \\
& \left\|h_{X}\right\| \leq 1
\end{aligned}
$$

- CLUSTER: A multiset of Hamiltonian terms

$$
\mathbf{W}=\left\{h_{1}, h_{1}, h_{2}, \ldots, h_{l}, h_{l}\right\}
$$

Types of clusters

- Connected

$\mathbf{W} \in \mathcal{G}_{m}$
- Disconnected

$\mathbf{W} \in \mathcal{C}_{m} \backslash \mathcal{G}_{m}$
- Connected to A

$\mathbf{W} \in \mathcal{G}_{m}^{A}$

$$
\mathbf{W}=\left\{h_{1}, h_{1}, h_{2}, \ldots, h_{l}, h_{l}\right\}
$$

Cluster expansion:

- KEY: Only connected contribute to the log-partition function:
$\log Z \equiv \log \operatorname{Tr}\left[e^{-\beta H}\right]=\sum_{m}^{\infty} \frac{K_{m}^{(\beta)}}{m!} \beta^{m}$

$$
K_{m}^{(\beta)}=\sum_{\mathbf{W} \in \mathcal{G}_{m}} \prod_{\not}(\ldots) \operatorname{Tr}\left[h_{1} \ldots . h_{n}\right]
$$

- How to calculate the contributions? Ursell function: $\Phi(\mathbf{W})$

$$
\Phi\left(\left\{h_{1}, h_{2}\right\}\right)=\operatorname{Tr}\left[h_{1} h_{2}\right]-\operatorname{Tr}\left[h_{1}\right] \operatorname{Tr}\left[h_{2}\right]
$$

- We need to know:
-How to count connected clusters are there
-How do they contribute (Ursell function)

Cluster expansion: convergence

- Rough intuition: (Kuwahara \& Saito 1906.10872*, Haah et al 2108.04842*)
- There are exponentially many connected clusters: $\left|\mathcal{G}_{m}\right| \leq N c_{1}^{m}$
- Weight of each cluster term to the sum is: $\quad(\ldots) \leq m!c_{2}^{m}$

- Total Taylor term: $\quad\left|K_{m}^{(\beta)}\right| \leq m!N\left(1 / \beta^{*}\right)^{m} \quad \beta<\beta^{*}$
- Series converges exponentially $\left|\log Z-\sum_{m=0}^{M} \frac{\beta}{m!} K_{m}^{(\beta)}\right| \leq N \frac{\left(\beta / \beta^{*}\right)^{M}}{1-\left(\beta / \beta^{*}\right)}$

Cluster expansion: convergence

- Rough intuition: (Kuwahara \& Saito 1906.10872, Haah et al 2108.04842)
- There are exponentially many connected clusters: $\left|\mathcal{G}_{m}\right| \leq N c_{1}^{m}$
- Weight of each cluster term to the sum is: $\quad(\ldots) \leq m!c_{2}^{m}$
- Total Taylor term: $\quad\left|K_{m}^{(\beta)}\right| \leq m!N\left(1 / \beta^{*}\right)^{m} \quad \beta<\beta^{*}$
- Series converges exponentially $\left|\log Z-\sum_{m=0}^{M} \frac{\beta}{m!} K_{m}^{(\beta)}\right| \leq N \frac{\left(\beta / \beta^{*}\right)^{M}}{1-\left(\beta / \beta^{*}\right)}$
- General framework (polymer models) - (Kotecky\&Preiss '86 + others)

Statistical Mechanics of Lattice Systems A Concrete Mathematical Introduction Sacha Friedli and Yvan Velenik

- Related to phase diagram: expansion converges away from phase transitions.

Cluster expansion: computation

- Ursell function can be computed efficiently: (Bjorklund et al 0711.2585)

$$
\Phi(\mathbf{W}) \quad \text { runtime } \sim e^{\mathcal{O}(m)}
$$

- Cluster enumeration (Helmuth et al 1806.11548):

$$
\text { (remember } \left.\left|\mathcal{G}_{m}\right| \leq N c_{1}^{m}\right) \quad \text { runtime } \sim N e^{\mathcal{O}(m)}
$$

- Cluster contributions: (operator on region of size m)

$$
\text { runtime } \sim e^{\mathcal{O}(m)} \quad \beta<\beta^{*}
$$

- Computing Taylor series:

$$
\left|\log Z-\sum_{m=0}^{M} \frac{\beta^{m}}{m!} K_{m}\right| \leq \epsilon \quad M=\mathcal{O}(\log (N / \epsilon)) \quad \text { runtime }=\operatorname{poly}(N / \epsilon)
$$

Cluster expansion: dynamics

- Loschmidt echo: $\log \langle\Phi| e^{-i t H}|\Phi\rangle$ vs. $\log \left[\operatorname{Tr} e^{-\beta H}\right]$
- KEY INSIGHT: with product states also only connected clusters contribute

$$
|\Phi\rangle=|\phi\rangle^{\otimes N}
$$

- The previous results follow (mostly straightforward), resulting in

$$
\left.\left|\log \langle\Phi| e^{i H t}\right| \Phi\right\rangle \left.-\sum_{m=0}^{M} \frac{t^{m}}{m!} K_{m} \right\rvert\, \leq \epsilon \quad t \leq t^{*}
$$

$$
M=\mathcal{O}(\log (N / \epsilon)) \quad \longrightarrow \text { runtime }=\operatorname{poly}(N / \epsilon)
$$

No large improvement possible

- Result: analyticity and efficient algorithm for

$$
\log \langle\Phi| e^{-i t H}|\Phi\rangle \quad t \leq t^{*}
$$

- For longer times: log becomes non-analytic.

- Computation: computing complex Ising partition function at $\mathrm{O}(1)$ times (even approximately) is \#P hard. (Galanis et al 2005.01076)

Some physical consequences:

- Result: analyticity and efficient algorithm for

$$
\log \langle\Phi| e^{-i t H}|\Phi\rangle \quad t \leq t^{*}
$$

- So it takes at least t^{*} to become orthogonal to initial state

- Strengthening over previous Quantum Speed Limits (Mandeltam-Tamm, Margolus-Levitin)

$$
t_{Q S L} \geq t^{*}=\mathcal{O}(1) \quad \text { vs. } \quad t_{Q S L} \geq \mathcal{O}(1 / \sqrt{N})
$$

- Dynamical phase transitions (Heyl 1709.07461): t^{*} is a lower bound to how fast they occur. (in analogy with thermal phase transitions)
- Probability theory: concentration bounds (Chernoff) for short-time evolved states + Berry-Esseen theorem (Rae, AMA, Cirac, see arXiv next week).

Heisenberg time evolution

- Classical simulation of

$$
\begin{aligned}
\langle\Phi| e^{-i t H} A e^{i t H}|\Phi\rangle & =\sum_{m=0}^{\infty} \frac{(i t)^{m}}{m!}\langle\Phi|[H,[H, \ldots[H, A]]|\Phi\rangle \\
& =\sum_{m=0}^{\infty} \frac{(i t)^{m}}{m!} \sum_{\mathcal{G}_{m}^{A}}\langle\Phi|\left[h_{X_{1}},\left[h_{X_{2}}, \ldots\left[h_{X_{m}}, A\right]\right]|\Phi\rangle\right.
\end{aligned}
$$

- Taylor expansion in terms of clusters $\mathbf{W} \in \mathcal{G}_{m}^{A}$
- Difference: Function analytic for all times

Heisenberg time evolution

- Classical simulation of

$$
\begin{aligned}
\langle\Phi| e^{-i t H} A e^{i t H}|\Phi\rangle & =\sum_{m=0}^{\infty} \frac{(i t)^{m}}{m!}\langle\Phi|[H,[H, \ldots[H, A]]|\Phi\rangle \\
& =\sum_{m=0}^{\infty} \frac{(i t)^{m}}{m!} \sum_{\mathcal{G}_{m}^{A}}\langle\Phi|\left[h_{X_{1}},\left[h_{X_{2}}, \ldots\left[h_{X_{m}}, A\right]\right]|\Phi\rangle\right.
\end{aligned}
$$

- Count connected clusters: $\left|\mathcal{G}_{m}^{A}\right| \leq c_{1}^{m}$
- Weight of each cluster: $m!2^{m}\|A\|$
- Similar convergence of Taylor series (and algorithm) for short times $t \leq t^{*}$

$$
|\langle\Phi| A(t)| \Phi\rangle-\sum_{m=0}^{M} \frac{t^{m}}{m!} K_{m} \left\lvert\, \leq \frac{\left(t / t^{*}\right)^{M}}{1-\left(t / t^{*}\right)}\|A\|\right.
$$

Arbitrary times: analytic continuation

- Function is analytic on a strip, not just a disk. $\left|\left\langle e^{-i t H} A e^{i t H}\right\rangle\right| \leq\|A\|$
- Analytic continuation (Barvinok '16, Harrow et al. 1910.09071).
- We can use Taylor series at the origin to calculate any later point, with overhead.
- Idea: use series of a function that maps disk to rectangle.

Arbitrary times: result

- Series converges for all times, but degree grows fast.

$$
\left.\left|\langle\Phi| e^{-i H t} A e^{i H t}\right| \Phi\right\rangle \left.-\sum_{m=0}^{M} \frac{t^{m}}{m!} K_{m} \right\rvert\, \leq\left(1-e^{-\pi t / t^{*}}\right)^{M}\left(e^{\pi t / t^{*}}-1\right)\|A\|
$$

- RESULT: There is an algorithm outputting $f(t)$ such that:

$$
\left.\left|\langle\Phi| e^{-i t H} A e^{i t H}\right| \Phi\right\rangle-f(t) \mid \leq \epsilon
$$

With runtime:

$$
\left(\exp \left(\mathcal{O}(t) \frac{1}{\epsilon}\right)^{\exp (\mathcal{O}(t))}\right.
$$

Arbitrary times: result

- Series converges for all times, but degree grows fast.

$$
\left.\left|\langle\Phi| e^{-i H t} A e^{i H t}\right| \Phi\right\rangle \left.-\sum_{m=0}^{M} \frac{t^{m}}{m!} K_{m} \right\rvert\, \leq\left(1-e^{-\pi t / t^{*}}\right)^{M}\left(e^{\pi t / t^{*}}-1\right)\|A\|
$$

- RESULT: There is an algorithm outputting $f(t)$ such that:

$$
\left.\left|\langle\Phi| e^{-i t H} A e^{i t H}\right| \Phi\right\rangle-f(t) \mid \leq \epsilon
$$

With runtime:

$$
\left(\exp (\mathcal{O}(t)) \frac{1}{\epsilon}\right)^{\exp (\mathcal{O}(t))}
$$

- Remark: if $t=\mathcal{O}(1)$, runtime is $\operatorname{poly}\left(\epsilon^{-1}\right)$

Alternative: Lieb-Robinson bounds

- Simple strategy: simulate Lieb-Robinson light-cone exactly.

$$
\epsilon \sim e^{\mathcal{O}(v t-l)} \quad l \sim v t+\mathcal{O}(\log (1 / \epsilon))
$$

- Runtime: $\quad e^{\mathcal{O}\left(l^{D}\right)} \sim e^{\mathcal{O}\left((v t+\log (1 / \epsilon))^{D}\right)}$
- Super-poly in higher dimensions for ϵ^{-1}

- OUR RESULT: With clusters: polynomial in ϵ^{-1}, for all dimensions! (even expander graphs).

Computational complexity of dynamics

Evolution time	$\leq t^{*}$	$\mathcal{O}(1)$	$\mathcal{O}(\operatorname{poly} \log (N))$	$\mathcal{O}(\operatorname{poly}(N))$
$\langle A(t)\rangle$	\mathbf{P}	\mathbf{P}	??	BQP-complete
$\log \left\langle e^{-i t H}\right\rangle$	\mathbf{P}	\#P-hard	\#P-hard	\#P-hard
$\left\langle e^{-i t H}\right\rangle$	\mathbf{P}	??	??	BQP-complete

- Complexity of simulating to small additive error $\epsilon=1 / \operatorname{poly}(N)$
- \#P hard -> Galanis et al 2005.01076
- BQP hardness: standard arguments + de las Cuevas (1104.2517)

Conclusions

- Cluster expansion: versatile and well-studied tool for partition functions + related problems.
-Shows convergence of Taylor approximation and yields efficient algorithms.
-Works for many different interaction graphs.
- Here: it also works for problems of quantum dynamics.

- Implications for: complexity of dynamics, dynamical phase transition, quantum speed limits,...
- Versatile technique for classical simulation of many quantum problems.

Conclusions

- Cluster expansion: versatile and well-studied tool for partition functions + related problems.
-Shows convergence of Taylor approximation and yields efficient algorithms.
-Works for many different interaction graphs.
- Here: it also works for problems of quantum dynamics.

- Implications for: complexity of dynamics, dynamical phase transition, quantum speed limits,...
- Versatile technique for classical simulation of many quantum problems.

Cluster expansion in QI (so far)

Different ideas proven this way:

- Approximations of partition functions (Harrow et al. 1910.09071, Mann \& Helmuth 2004.11568)
- Concentration bounds for Gibbs states: (Kuwahara \& Saito 1906.10872)
- Optimal learning of Gibbs states (Haah et al 2108.04842)
- Efficient sampling of high temperature Gibbs states (Yin \& Lucas 2305.18514)

- Connected to Barvinok's interpolation method and Lovasz's local lemma (e.g. estimation of expectation values of shallow circuits Bravyi et al. 1909.11485)
- + likely many others....

