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Quantum many body systems (on the lattice)

“The quantum many-body problem”

 Q: When and how can we compute 
physically relevant 
phenomena/features/quantities…for 
these models?

• Quantum information
• Q Computation and complexity theory
• Condensed matter
• High energy physics
• Quantum chemistry 
• ….

IMPORTANT: …but HARD: 

• Hilbert space dimension exponential! 
• Direct computational approaches are doomed 

to fail.
• Solution: understand the physics, and find 

smart workarounds.



Simulating many-body dynamics

A



• Time evolution operator:

• Observable:

• Initial state:

• Goal:  

Simulating many-body dynamics

A



Classically easy (P)
Classically hard + quantum 
easy (BQP)

• Local Hamiltonian on N particles + 
few-body observable 

time

Computational problem
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How do we study this problem classically?

• Exact diagonalization (small systems)

• Tensor networks (short times, one dimension)

• Many other methods….(model-specific?)

• ……..

• This talk: cluster expansion ← short times, but very accurate and analytically tractable



Quantum dynamics: simple or not?

A HUGE matrix you 
cannot diagonalize

The exponential of a 
“simple” local operator



Approx. Heisenberg evolution: Runtime:

Approx. Loschimidt echo: Runtime:

Summary of results 

A



Taylor expansion and computation

Ingredients:

• Prove convergence of Taylor series for high enough degree 
(analyticity).

• Estimate cost of calculating Taylor coefficients.

• Taylor series gives approximation.



• Taylor series expansions for quantities defined on lattices.

• Efficient way of writing the Taylor moments in terms of clusters

• CLUSTER:  A multiset of Hamiltonian terms

Cluster expansion: main idea
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Types of clusters

• Connected • Disconnected • Connected to A



Cluster expansion:
• KEY: Only connected contribute to the log-partition function:

• How to calculate the contributions? Ursell function:

• We need to know:

      -How to count connected clusters are there

      -How do they contribute (Ursell function)



• Rough intuition: (Kuwahara & Saito 1906.10872* , Haah et al 2108.04842* )

• There are exponentially many connected clusters:

• Weight of each cluster term to the sum is :

• Total Taylor term: 

• Series converges exponentially

Cluster expansion: convergence



• Rough intuition: (Kuwahara & Saito 1906.10872 , Haah et al 2108.04842 )

• There are exponentially many connected clusters:

• Weight of each cluster term to the sum is :

• Total Taylor term: 

• Series converges exponentially

• General framework (polymer models) –  (Kotecky&Preiss ´86 + others)

• Related to phase diagram: expansion converges away from phase transitions.

Cluster expansion: convergence



• Ursell function can be computed efficiently: (Bjorklund et al 0711.2585)

• Cluster enumeration (Helmuth et al 1806.11548): 
(remember           )

• Cluster contributions: (operator on region of size m)

• Computing Taylor series: 

Cluster expansion: computation



• Loschmidt echo:            vs.

• KEY INSIGHT: with product states also only connected clusters contribute

• The previous results follow (mostly straightforward), resulting in

Cluster expansion: dynamics



• Result: analyticity and efficient algorithm for

• For longer times: log becomes non-analytic.

-State may become orthogonal to the initial one 

-Dynamical phase transitions (Heyl 1709.07461)

• Computation: computing complex Ising partition function at O(1) times (even 
approximately) is #P hard. (Galanis et al 2005.01076)

No large improvement possible



Some physical consequences:
• Result: analyticity and efficient algorithm for

• So it takes at least       to become orthogonal to initial state 
• Strengthening over previous Quantum Speed Limits (Mandeltam-Tamm, Margolus-Levitin)

• Dynamical phase transitions (Heyl 1709.07461):        is a lower bound to how fast they occur.

    (in analogy with thermal phase transitions)
• Probability theory: concentration bounds (Chernoff) for short-time evolved states + Berry-Esseen 

theorem (Rae, AMA, Cirac, see arXiv next week).

Vs.



• Classical simulation of

• Taylor expansion in terms of clusters

• Difference: Function analytic for all times

Heisenberg time evolution



• Classical simulation of

• Count connected clusters:
• Weight of each cluster:
• Similar convergence of Taylor series (and algorithm) for  short times  

Heisenberg time evolution



• Function is analytic on a strip, not just a disk.

• Analytic continuation (Barvinok ‘16, Harrow et al. 1910.09071).

• We can use Taylor series at the origin to calculate any later point, with overhead.

• Idea:  use series of a function that maps disk to rectangle.

Arbitrary times: analytic continuation



• Series converges for all times, but degree grows fast.

• RESULT: There is an algorithm outputting             such that:

   With runtime:

Arbitrary times: result



• Series converges for all times, but degree grows fast.

• RESULT: There is an algorithm outputting             such that:

   With runtime:

• Remark: if                 , runtime is 

Arbitrary times: result



• Simple strategy: simulate Lieb-Robinson light-cone exactly.

• Runtime: 

• Super-poly in higher dimensions for

• OUR RESULT:  With clusters: polynomial in      , for all dimensions! (even 
expander graphs).  

Alternative: Lieb-Robinson bounds



Evolution time

Computational complexity of dynamics

• Complexity of simulating to small additive error

• #P hard -> Galanis et al 2005.01076
• BQP hardness: standard arguments + de las Cuevas (1104.2517) 

P

P

P

P

#P-hard #P-hard #P-hard

BQP-complete

BQP-complete

??

??

??



Conclusions

• Cluster expansion: versatile and well-studied tool for partition functions + related 
problems.

-Shows convergence of Taylor approximation and yields efficient algorithms.

-Works for many different interaction graphs.

• Here: it also works for problems of quantum dynamics.

• Implications for: complexity of dynamics, dynamical phase transition, quantum 
speed limits,…

• Versatile technique for classical simulation of many quantum problems.



Conclusions

• Cluster expansion: versatile and well-studied tool for partition functions + related 
problems.

-Shows convergence of Taylor approximation and yields efficient algorithms.

-Works for many different interaction graphs.

• Here: it also works for problems of quantum dynamics.

• Implications for: complexity of dynamics, dynamical phase transition, quantum 
speed limits,…

• Versatile technique for classical simulation of many quantum problems.

Thanks!!  arXiv:2210.11490



Cluster expansion in QI (so far)
Different ideas proven this way:
• Approximations of partition functions (Harrow et al. 1910.09071, Mann & Helmuth 2004.11568)
• Concentration bounds for Gibbs states: (Kuwahara & Saito 1906.10872)
•  Optimal learning of Gibbs states (Haah et al 2108.04842)
• Efficient sampling of high temperature Gibbs states (Yin & Lucas 2305.18514)

• Connected to Barvinok’s interpolation method and Lovasz’s local lemma (e.g. estimation of 
expectation values of shallow circuits Bravyi et al. 1909.11485)

• + likely many others…. 
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