## Free fermions from graphs

### Paul Fendley All Souls College, University of Oxford

# (Quantum) many-body physics

- Always looking for many-body systems where we can do exact computations
- exact  $\neq$  rigorous
- Integrable systems make possible exact (usually non-rigorous) computations
- They have an extensive number of conversation laws
- There are intermediate (e.g. supersymmetry) cases not addressed in complexity theory. Not integrable, but not generic.
- Today I'll discuss systems where constraints are stronger than integrability, giving results both exact and rigorous

I'll describe how to construct free-fermion raising and lowering operators in some special interacting models using elementary algebra.



## Outline

- 1. What is a free fermion?
- 2. Solving the Ising chain using free fermions
- 3. Algebras and graphs for fermion bilinears
- 4. Free fermions in disguise
- 5. Claw-free graphs
- 6. A bit of physics

### 1. What is a free fermion?

Forget statistics, forget operators, forget fields...

The basic property of free fermions is that their (energy) spectrum is of the form

$$E = \pm \epsilon_1 \pm \epsilon_2 \pm \dots \pm \epsilon_L$$

The choices of a given  $\pm$  are independent, and do not affect the values of  $\epsilon_{l}$ .

E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E = 0 E =

 $\epsilon_L$ 

Levels are either filled or empty.

## The usual story

Automatically find such a spectrum when Hamiltonian is a bilinear in fermions. On the lattice:

$$H = \sum_{a,b} \mathcal{H}_{ab} \psi_a \psi_b$$

where  $\mathcal{H}_{ab}$  is an antisymmetric matrix, and the (Majorana) fermions obey the (Clifford) algebra

$$\left\{\psi_a,\,\psi_b\right\}=2\delta_{ab}$$

Examples of non-obvious free-fermionic systems:

1d quantum transverse-field/2d classical Ising

Kauffman, Onsager; its fermionic version now known as the ``Kitaev chain"

1d quantum XY

Jordan-Wigner; Lieb-Schultz-Mattis

2d Kitaev honeycomb model

In field theory: sine-Gordon at special point

Coleman; Luther-Emery

### 2. Canonical example: the Ising/Kitaev chain

transverse field favouring disorder

interaction favouring order

$$H = -h \sum_{j=1}^{L} X_j - J \sum_{j=1}^{L-1} Z_j Z_{j+1}$$

The  $X_j$ ,  $Z_j$  are Pauli matrices acting on site j of the L-site chain.

The non-local Jordan-Wigner transformation defines 2L Majorana fermions  $Z \prod_{i=1}^{L-1} V_{i} = i Y_{i} \partial_{i} + \sum_{i=1}^{L-1} \lambda_{i} = 2\delta$ 

$$\psi_{2j-1} = Z_j \prod_{k=1} X_k \qquad \psi_{2j} = i X_j \psi_{2j-1} \qquad \{\psi_a, \psi_b\} = 2\delta_{ab}$$



### Ising Hamiltonian is bilinear in fermions

$$H = -h\sum_{j=1}^{L} X_j - J\sum_{j=1}^{L-1} Z_j Z_{j+1} = ih\sum_{j=1}^{L} \psi_{2j-1}\psi_{2j} + iJ\sum_{j=1}^{L-1} \psi_{2j}\psi_{2j+1}$$
$$H = \sum_{a,b} \mathcal{H}_{ab}\psi_a\psi_b \qquad \qquad \mathcal{H} = i\begin{pmatrix} 0 & h & 0 & 0 & 0 & \cdots \\ -h & 0 & J & 0 & 0 & \cdots \\ 0 & -J & 0 & h & 0 & \cdots \\ 0 & 0 & -h & 0 & J & \cdots \\ & & & \vdots & \end{pmatrix}$$

With little additional effort, allow random couplings, i.e.

$$H = i \sum_{j=1}^{L} t_{2j-1} \psi_{2j-1} \psi_{2j} + i \sum_{j=1}^{L-1} t_{2j} \psi_{2j} \psi_{2j+1} = i \sum_{m=1}^{2L-1} t_m \psi_m \psi_{m+1}$$

Just replace entries in matrix correspondingly.

#### Really easy to find spectra of such Hamiltonians

Because  $\{\psi_a, \psi_b\} = 2\delta_{ab}$ , commuting a linear in fermions with a bilinear yields a linear:  $\begin{bmatrix} H, \sum_{a=1}^{2L} r_a \psi_a \end{bmatrix} = \sum_{b=1}^{2L} s_b \psi_b \quad \text{where} \quad \mathcal{H}_{ba} r_a = s_b$ 

Define raising and lowering operators 
$$\Psi_{\pm k} = \sum_a v_a^{(\pm k)} \psi_a$$
  $k = 1 \dots L$ 

using the eigenvectors of  $\mathcal{H}$  :  $\mathcal{H}v^{(\pm k)} = \pm 2\epsilon_k \, v^{(\pm k)}$ 

Then 
$$\left[H, \Psi_{\pm k}\right] = \pm 2\epsilon_k \Psi_{\pm k}$$

Acting with  $\,\Psi_{\pm k}\,$  either annihilates a state or changes the energy by  $\pm 2\epsilon_k$ 

$$\left[H, \Psi_{\pm k}\right] = \pm 2\epsilon_k \Psi_{\pm k}$$

$$\Psi_{-k} \xrightarrow[-\epsilon_{1}]{\begin{array}{c} \epsilon_{2} \\ \epsilon_{1} \\ -\epsilon_{2} \\ -\epsilon_{2} \\ -\epsilon_{2} \\ -\epsilon_{2} \\ -\epsilon_{2} \\ -\epsilon_{L} \\$$

Using the algebra only, easy to show that

$$\left\{\Psi_k,\,\Psi_{k'}\right\} = 2\delta_{k,-k'}$$

$$H = \sum_{k=0}^{L} \epsilon_k \Psi_k \Psi_{-k}$$

so that every level is filled or empty:

$$E = \pm \epsilon_1 \pm \epsilon_2 \pm \dots \pm \epsilon_L$$

We thus have reduced the computation of the eigenvalues of a  $2^L\times 2^L$  matrix to those of a  $2L\ge 2L$  one!

$$\mathcal{H} = i \begin{pmatrix} 0 & h & 0 & 0 & 0 & \cdots \\ -h & 0 & J & 0 & 0 & \cdots \\ 0 & -J & 0 & h & 0 & \cdots \\ 0 & 0 & -h & 0 & J & \cdots \\ & & \vdots & & \end{pmatrix}$$

By now many many models have been solved by J-W transformations. Do one on your fave chain, and if the Hamiltonian is quadratic in fermions, you win!

Using graph theory, Chapman and Flammia showed (rigorously) when a J-W transformation to a fermion-bilinear is possible 2003.05465

### Is at all there is?

Since we did everything with the fermions algebraically, suggests that we don't even really need the fermions!

### 3. Algebras and graphs for free fermions

Write 
$$H = \sum_{m=1}^{2L-1} h_m$$
  $h_{2j-1} = t_{2j-1}X_j$   $h_{2j} = t_{2j}Z_jZ_{j+1}$ 

These operators obey a very simple algebra



Can forget presentation as long as generators obey same algebra, e.g. instead take

$$h_{2j-1} = t_{2j-1} Z_{j-1} X_j Z_{j+1}$$

Although this approach looks unusual, it in essence is Onsager's original approach!

### **Conserved charges**



adjacent  $h_m$  anticommute, others commute.

Find non-local conserved charges  $Q^{(r)}$  involving  $h_m$  at least 2 sites apart:

 $\begin{aligned} Q^{(1)} &= H = \sum_{m} h_m \\ \left[ H, \ Q^{(r)} \right] &= 0 \qquad Q^{(2)} = \sum_{m_1 + 1 < m_2}^{m} h_{m_1} h_{m_2} \\ Q^{(3)} &= \sum_{m_1 + 1 < m_2 < m_3 - 1}^{m} h_{m_1} h_{m_2} h_{m_3} \qquad \text{etc} \end{aligned}$ The  $Q^{(r)}$  commute among themselves as well. ``transfer matrix''  $T(u) = \sum_{r=0}^{L} u^r Q^{(r)}$  Note finite sum and  $[T(u), \ T(u')] = 0$ 

Local conserved charges follow from

$$\frac{d}{du}\ln(T(u)) = H + uH^{(2)} + u^2H^{(3)} + \dots$$

### **Raising and lowering operators**

$$T(u) = \sum_{r=0}^{L} u^r Q^{(r)}$$
 is an operator. However, a little algebra gives 
$$T(u)T(-u) = P(-u^2)$$

where 
$$P(-u^2) = \sum_{r=0}^{L} (-u^2)^r P^{(r)}$$

is a polynomial constructed as with T(u):

$$P^{(1)} = \sum_{m} t_{m}^{2}$$

$$P^{(2)} = \sum_{m_{1}+1 < m_{2}} t_{m_{1}}^{2} t_{m_{2}}^{2}$$

$$P^{(3)} = \sum_{m_{1}+1 < m_{2} < m_{3}-1} t_{m_{1}}^{2} t_{m_{2}}^{2} t_{m_{3}}^{2}$$

Less obviously, the roots of  $P(-u^2)$  are  $u_k = \pm \frac{1}{\epsilon_k}$ and the raising/lowering operators are  $\Psi_{\pm k} = T(u_k)Z_1T(-u_k)$ 

#### Other models with this property?

#### 4. Free fermions in disguise

#### Fendley 2019

$$H = \sum_{m=1}^{L-2} h_m , \qquad h_m = t_m X_m X_{m+1} X_{m+2}$$

The generators anticommute two sites apart:

 $\tau$  o

$$h_m^2 = t_m^2$$
,  $h_m h_{m+1} = -h_{m+1} h_m$ ,  $h_m h_{m+2} = -h_{m+2} h_m$ ,  
 $h_m h_{m'} = h_{m'} h_m$  for  $|m - m'| > 2$ 



- Not solvable by Jordan-Wigner:  $H = \sum_{m=1}^{L-2} t_m \psi_{2m-1} \psi_{2m} \psi_{2m+2} \psi_{2m+3}$
- Commutes with  $\widetilde{H}=\sum_m \widetilde{h}_m$  ,  $\widetilde{h}_m=\widetilde{t}_m Z_j X_{j+1} X_{j+2}$
- Model has an N=2 supersymmetry, with generators made of fermion trilinears.

#### The same algebraic procedure works here

Non-local conserved charges  $Q^{(r)}$  now involve  $h_m$  at least 3 sites apart:  $Q^{(1)} = H = \sum_m h_m \int Q^{(2)} = \sum_{m_1+2 < m_2} h_{m_1} h_{m_2}$   $Q^{(3)} = \sum_{m_1+2 < m_2 < m_3-2} h_{m_1} h_{m_2} h_{m_3} \quad \text{etc}$ 

Proof involves only the algebra. ¡Model is integrable even with random couplings!

$$T(u) = \sum_{r=0}^{L} u^{r} Q^{(r)} \qquad P(-u^{2}) = \sum_{r=0}^{L} (-u^{2})^{r} P^{(r)}$$
$$T(u)T(-u) = P(-u^{2})$$

$$P^{(1)} = \sum_{m} t_m^2 \qquad P^{(2)} = \sum_{m_1+2 < m_2} t_{m_1}^2 t_{m_2}^2 \qquad P^{(3)} = \sum_{m_1+2 < m_2 < m_3-2} t_{m_1}^2 t_{m_2}^2 t_{m_3}^2$$

#### The raising/lowering operators require another miracle

The construction here is not simple like for the J-W fermions. It requires one non-obvious identity, and only works for open chain.

 $h_1\chi = -\chi h_1$ Include an edge mode  $\chi$  obeying  $h_m \chi = \chi h_m \qquad m>1$ Here  $\chi = Z_1$  works. From only the algebra follows  $u\left\{\left[H,\chi\right], T(u)\right\} = 2\left[\chi, T(u)\right]$  $H = \sum \epsilon_k \Psi_k \Psi_{-k}$ Then  $\Psi_{\pm k} = T(u_k)Z_1T(-u_k)$ k=0where the roots of  $P(-u^2)$  are  $u_k = \pm \frac{1}{c}$ 

### Spectrum is that of free fermions

Even though the starting algebras are different, these raising/lowering operators in both Ising and 4-fermi models obey the same algebra





If you try this trick elsewhere, you'll be disappointed – it works only in a few instances

Alcaraz + Pimenta: extend length of interaction

Frustration graph needs to be claw-free for model to be integrable.

Elman, Chapman and Flammia, 2012.07857; Chapman, Elman and Mann, 2305.15625



where the three outer vertices are not adjacent, so that

$$\{h_m, h_l\} = \{h_m, h_{l'}\} = \{h_m, h_{l'}\} = [h_l, h_{l'}] = [h_l, h_{l''}] = [h_{l'}, h_{l''}] = 0$$

### Why claw-free?

$$H = \sum_{m} h_{m} \implies H^{2} = \sum_{m=0}^{L-2} t_{m}^{2} + 2 \sum_{m_{1}+2 < m_{2}} h_{m_{1}} h_{m_{2}} = \text{const} + 2Q^{(2)}$$
Have I committed fraud?  
Two kinds of terms in  $H^{3} = \sum_{m_{1}, m_{2}, m_{3}} h_{m_{1}} h_{m_{2}} h_{m_{3}} = H' + H''$   
 $H'$  contains those where one pair commutes, two pairs anticommute.  
 $H''$  contains those where all three  $h_{m_{j}}$  mutually commute, e.g.  
 $\sum_{m_{1}+2 < m_{2} < m_{3}-2} h_{m_{1}} h_{m_{2}} h_{m_{3}} = Q^{(3)}$ 

Claw-free condition guarantees H commutes with H' and H'' individually.  $\{h_m, h_l\} = \{h_m, h_{l'}\} = \{h_m, h_{l'}\} = [h_l, h_{l'}] = [h_l, h_{l''}] = [h_{l'}, h_{l''}] = 0$ 

In general, commuting charges are given by summing over independent sets of  $\,h_{m_i}$ 

#### Claw-free is not sufficient to yield free fermions

e.g. the four-fermion model with periodic boundary conditions has a claw-free frustration graph, but is not free-fermion.

Need to generalize the edge mode  $\chi = Z_1$ 

One is guaranteed to exist if the frustration graph has a simplicial clique.

Chapman, Elman, Flammia, Mann

A clique is a subset of vertices all connected to each other. It is simplicial when the neighborhood of each such vertex is also simplicial. ¡Graph theorists have studied claw-free graphs with simplicial modes!

Chudnovsky et al

$$\Psi_k = T(u_k)\chi T(-u_k)$$

$$H = \sum_{k=0}^{M} \epsilon_k \Psi_k \Psi_{-k}$$

and the whole procedure follows

#### Claw-free is not necessary to yield disguised free fermions

Work in progress with **Balazs Pozsgay** 

Balazs found an integrable model that interpolates between my four-fermi model and another model with a free-fermion spectrum (but was thought to be another class)

Fendley and Schoutens 2006; de Gier et al 2015; Feher et al 2017

$$A_{j} \equiv a_{j-1}a_{j}X_{j-1}X_{j}Z_{j+1}, \qquad B_{j} = b_{j}b_{j+1}Z_{j-1}Y_{j}Y_{j+1}, \qquad C_{j} = a_{j}b_{j}Z_{j-1}Z_{j+1}$$
$$H = \sum_{j=2}^{L} A_{j} + \sum_{j=1}^{L-1} B_{j} + \sum_{j=1}^{L} C_{j}$$

Frustration graph is not claw-free (and too nasty to draw). But nonetheless can run procedure using a modified frustration graph (it has even more edges).

The loophole is that the generators are not independent:  $B_j A_{j+1} = -C_j C_{j+1}$ 

### 6. The physics of the four-fermi chain

Find that for uniform couplings  $t_m = 1$ , theory is critical, but not a CFT.

Instead, it has dynamical critical exponent z=3/2, i.e. parametrizing

$$\epsilon^{2}(p) = \frac{\sin^{3} p}{\sin \frac{p}{3} \sin^{2} \frac{2p}{3}} \quad \text{yields} \qquad \epsilon(p) \approx \left(\frac{4}{3}\right)^{3/4} |\pi - p|^{3/2}$$
for  $|p - \pi|$  smal

Imposing periodic b.c. breaks degeneracies and gives rise to a distinct *z*. Even though it's integrable, not free-fermion, and too difficult to extract answer analytically.

Hello numerical experts?

Staggering on every third site  $t_{3j-2} = \alpha, t_{3j-1} = \beta, t_{3j} = \gamma$ 



Free fermions not in disguise when every third coupling vanishes – equivalent to Ising.

### Combining Ising and four-fermi chains

$$H_{\rm Ising} - gH_{\rm 4-fermi}$$

O'Brien and Fendley 2017

• Combination is not only not free-fermion, it's not even integrable.

 Find a non-trivial critical point (tricritical Ising) with only one-parameter tuning and without changing the Hilbert space. Thus ideally suited for testing numerical methods.

• Along self-dual line, interesting properties such as supersymmetry and orderdisorder coexistence.

### Procedure generalizes to free parafermions!

Anticommutation relations generalise to

$$(\epsilon_k - \omega \epsilon_l) \Psi_k \Psi_l = (\epsilon_l - \omega \epsilon_k) \Psi_l \Psi_k$$

Baxter's non-Hermitian  $\mathbb{Z}_n$  chains have spectrum

$$E = \omega^{m_1} \epsilon_1 + \omega^{m_2} \epsilon_2 + \dots + \omega^{m_L} \epsilon_L$$



where  $\omega = e^{2\pi i/n}$ and each  $m_j = 0, 1, \ldots n-1$ 

Baxter 1989Fendley 2013Au-Yang/Perk2014unpub2014, 2016

### Lots more to do

• Exact edge zero modes?

• Field theory? Connection to usual Bethe ansatz?

• (Superintegrable) chiral Potts transfer matrix is related to free parafermions

- Connection to experiment both in Ising+4-fermion and in chiral Potts
   Aasen et al 2020
   Rydberg blockade
- Close connection to integrable Bazhanov-Baxter models in 3d

• Connection to chiral CFTs?