Clique Homology is $Q M A_{1}$-hard

Joint work with Marcos Crichigno (Imperial College London \& QC-ware)

arxiv:2209.11793

The homology problem

Input: a (efficient description of a) simplicial complex K and an integer, l
Output: yes if K has an 1 -dimensional hole, no otherwise

Why is this problem interesting?

- It has applications for topological data analysis - a practically useful problem! (Li et al, 2016)
- There is a quantum algorithm for a closely related problem - can that algorithm be dequantised? (Lloyd et al, 2014)

What's known about its

 complexily?- The problem was first defined formally in 2002 (Kaibel-Pfetsch, 2002)
- It is known to be NP-hard and retains its hardness when restricted to clique complexes (Adamaszek-Stacho, 2016) and when restricted to clique dense complexes (Lloyd-Schmidhuber 2022)
- A similar problem for general chain complexes was shown to be QMA 1 -hard last year (Crichigno-Cade, 2021)

Our main results

Homology is QMA -hard, and retains its hardness when restricted to clique complexes and to clique dense complexes.

Our main results
Why should this (seemingly classical problem) be related to quantum complexity classes?

Can we use this relationship to achieve quantum advantage for problems related to homology?

Outline of calk

- Overview of simplicial homology
- Quantum K-SAT
- Our reduction from quantum K-SAT to homology
- Quantum advantage for topological data analysis?

Simplicial homology

Simplicial homology

simplicial complexes are formed by gluing along faces

Boundary operator

$$
\partial_{n}\left[x_{0} x_{1} \cdots x_{n}\right]=\sum_{i=0}^{n}(-1)^{i}\left[x_{0} \cdots \hat{x}_{i} \cdots x_{n}\right]
$$

delete $i^{\text {th }}$ vertex

Properties of the boundary operator

- Cycles dolt have boundaries: $\partial_{p} c=0$
- The boundary of a boundary vanishes: $\partial_{p-1} \partial_{p}=0$

$$
\begin{aligned}
\underbrace{\overbrace{1}}_{x_{1}} \overbrace{x_{2}}^{x_{3}}) & =\left(\begin{array}{ll}
0 & - \\
x_{1} & x_{2}
\end{array}\right)+\left(\begin{array}{ll}
0 & - \\
x_{2} & 0 \\
x_{3}
\end{array}\right)+\left(\begin{array}{ll}
0 & - \\
x_{3} & x_{1}
\end{array}\right) \\
& =0
\end{aligned}
$$

Holes in simplicial complexes

A hole, c:

- is a cycle, $\partial_{p} c=0 \longrightarrow c \in \operatorname{ker}\left(\partial_{p}\right)$
- isnt a boundary $c \neq \partial_{p+1} v \longrightarrow c \nsubseteq \operatorname{Im}\left(\partial_{p+1}\right)$

Homology groups

Given a simplicial complex, K, with boundary operator ∂ define:

$$
H_{p}(K):=\frac{\operatorname{ker}\left(\partial_{p}\right)}{\operatorname{Im}\left(\partial_{p+1}\right)}
$$

Given a simplicial complex, K, and an integer, p, decide if $H_{p}(K) \neq 0$ or $H_{p}(K)=0$

Independence \& clique complexes

- The independence (clique) complex $I(G)(C l(G))$ of a graph is the simplicial complex defined by its independent sets (cliques)
- We are interested in clique complexes, but $C l(G)=I(\bar{G})$
 and in the reduction we focus on independence complexes

Quancum K-SAT and QMA1

Complexily class QMA1

Definition $2\left(\right.$ QMA $\left._{1}\right)$. A promise problem $L_{\text {yes }} \cup L_{\mathrm{no}} \subset\{0,1\}^{*}$ is contained in QMA_{1} if and only if there exists a uniform polynomial-size quantum circuit family U_{X} over the gate set \mathcal{G} such that If $X \in L_{\text {yes }}$ there exists a state $|W\rangle$ such that AP $\left(U_{X},|W\rangle\right)=1$ (perfect completeness). If $X \in L_{\text {no }}$ then $\operatorname{AP}\left(U_{X},|W\rangle\right) \leq \frac{1}{3}$ for any state $|W\rangle$ (soundness).

Complexity class QMA

A common choice of universal gate set is:

$$
\begin{gathered}
\mathcal{G}=\{\widehat{H}, T, \mathrm{CNOT}\}, \\
\widehat{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{i \pi}{4}}
\end{array}\right), \quad \mathrm{CNOT}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

However any set $\{$ CNOT, U\} is universal if U is basis changing. We choose \{CNOT, U, Toffoli\} where:

$$
U=\frac{1}{6}\left(\begin{array}{cc}
3 & 4 \\
-4 & 3
\end{array}\right) \text { "Pythagorean gate" }
$$

(Rational coefficients - important later)

Quantumk-SAT
[Bravyi, 2006]

Given set of n-quit, k-local projectors

$$
H=\sum_{a} \prod_{a} \quad a=(1, \ldots, m=\text { poly }(n))
$$

decide if

$$
\begin{array}{lc}
H|\psi\rangle=0 & \text { or }
\end{array} \begin{gathered}
H|H| \psi\rangle \geqslant \varepsilon \\
\text { for some }|\psi\rangle \\
\text { YES }
\end{gathered}
$$

promised one is the case.

Theorem: [Bravyi, 2006] [Gosset-Nagaj, 2013]
Quantum 4-SAT is QMA-complete

Theorem: [Bravyi, 2006] [Gosset-Nagaj, 2013]

Quantum 4-SAT is QMA-complete

Given a $Q M A_{1}$ verification circuit Ux construct a Hamiltonian:

$$
H_{X}=\sum_{a} \Pi_{a}\left(U_{X}\right)
$$

Such that:

- if $X \in L_{\text {Yes, }} H_{X} \mid \psi_{\text {hist }}>=0$
- if $X \in L_{N o},<\psi\left|H_{X}\right| \psi>\geq \epsilon \forall \psi$

Theorem: [Bravy, 2006] [Gosset-Nagaj, 2013]

Quantum 4-SAT is QMA-complete

The Hamiltonian $H_{X}=H_{\text {in }}+H_{\text {clock }}+H_{\text {prop }}+H_{\text {out }}$

$$
\sum_{n}
$$

In order to reduce from quantum k-SAT to homology we need to encode the following projectors into an independence complex:

Reduclion from quankum K-SAT to homology

Proof idea

- Construct a graph where the independence complex has $2^{n}(n-1)$ dimensional holes

$2 n$ holes!
- Construct gadgets which 'fill in' hotes corresponding to the projectors in quantum K-SAT
- Build up the graph corresponding to H_{X} - any remaining holes are satisfying solutions to quantum k-SAT

Constructing the holes

Consider n disconnected Eriangles:

The independence complex, $\Sigma_{n}=I\left(G_{n}\right)$, has dimension n and:

$$
H_{0}\left(\Sigma_{n}\right)=\mathbb{C}
$$

$$
H_{n-1}\left(\Sigma_{n}\right)=\left(\mathbb{C}^{2}\right)^{\otimes n}
$$

$$
H_{i}\left(\Sigma_{n}\right)=0 \forall i \neq 0, n-1
$$

Hilbert space of n qubits!

Constructing 2 qubit projectors

Constructing 2 quit projectors
We have $H_{1}\left(\Sigma_{n}\right)=\mathbb{C}^{4}$ and can choose a basis:

$$
|00\rangle=\left[x_{1} x_{2}\right]+\left[x_{2} a_{1}\right]+\left[a_{1} a_{2}\right]+\left[a_{2} x_{1}\right] a_{a_{2}}^{0}
$$

Constructing 2 quit projectors
We have $H_{1}\left(\Sigma_{n}\right)=\mathbb{C}^{4}$ and can choose a basis:

$$
|01\rangle=\left[x_{1} x_{2}\right]+\left[x_{2} a_{1}\right]+\left[a_{1} b_{2}\right]+\left[b_{2} x_{1}\right]
$$

Constructing 2 quail projectors
We have $H_{1}\left(\Sigma_{n}\right)=\mathbb{C}^{4}$ and can choose a basis:

Constructing 2 quit projectors
We have $H_{1}\left(\Sigma_{n}\right)=\mathbb{C}^{4}$ and can choose a basis:

$$
|11\rangle=\left[x_{1} x_{2}\right]+\left[x_{2} b_{1}\right]+\left[b_{1} b_{2}\right]+\left[b_{2} x_{1}\right] a_{a_{2}}^{0}
$$

Constructing 2 qubit projectors

Consider the classical projector $\Pi=|00><00|$, we need to fill in the cycle corresponding to |oos:

The same process works for the other computational basis states. For the entangled states things get a little more complicated..

So, we created $\epsilon_{2}^{\prime}=$
 such that:

$$
\begin{gathered}
H_{1}\left(I\left(G_{2}^{\prime}\right)\right) \\
\operatorname{span}\{|01\rangle,|10\rangle,|00\rangle+|11\rangle\}
\end{gathered}
$$

Space of satisfying solutions to

$$
=
$$

$$
\begin{gathered}
\pi|\psi\rangle=0 \\
\bigcap_{\pi=(|100\rangle-|11\rangle)((000 \mid-\langle 111)}
\end{gathered}
$$

Taking slock...

Term in $H_{\text {Bravyi }}$	Penalizes state $\left\|\psi_{s}\right\rangle$	
$H_{\text {prop,t }}^{\prime}$	$\frac{1}{\sqrt{\sqrt{2}} \text { \| }}$ \|10>	$\|11\rangle-\|00\rangle)$
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|01\rangle$	$\|10\rangle-\|01\rangle)$
$H_{\text {prop, },}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|00\rangle$	10〉-\|01)
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|000\rangle$	$\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|101\rangle$	$\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|010\rangle$	$\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}\left(U_{\text {Pyth. }}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|011\rangle+4\|100\rangle+3\|101\rangle)$	
$H_{\text {prop,t }}\left(U_{\text {Pyth. }}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|010\rangle+3\|100\rangle-4\|101\rangle)$	
$H_{\text {prop,t }}(\mathrm{CNOT})$	$\left.\frac{1}{\sqrt{2}}\|1\rangle\|101\rangle-\|010\rangle\right)$	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|11\rangle(\|101\rangle-\|010\rangle)$	
$H_{\text {prop,t }}(\mathrm{CNOT})$	$\left.\frac{1}{\sqrt{2}}\|11\rangle\|011\rangle-\|100\rangle\right)$	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|11\rangle(\|011\rangle-\|100\rangle)$	
$H_{\text {clock }}^{(1)}$	\|00〉	
$H_{\text {clock }}^{(2)}$	\|11>	
$H_{\text {in }}, H_{\text {out }}$	\|011)	
$H_{\text {clock }}^{(6)}, H_{\text {clock }}^{(4)}, H_{\text {clock }}^{(5)}, H_{\text {clock }}^{(3)}$	\|1100>	
$H_{\text {clock }}^{(4)}$	\|0111>	
$H_{\text {clock }}^{(5)}$	\|0001>	

Constructing three quit projectors

To construct three quit projectors we need to fill in three dimensional voids.
E.g. to lift the state $\mid 000$, we need to fill the void:

Constructing three quit projectors

To construct three quit projectors we need to fill in three dimensional voids. E.9. to lift the state $\mid 000>$ we need to fill the void:

Constructing three quit projectors

To construct three quit projectors we need to fill in three dimensional voids.
E.g. to lift the state $\mid 000>$ we need to fill the void:

This corresponds to this new graph

Constructing three qubit projectors

To fill in entangled projectors we have to fill take linear combinations of voids, as we did in the 2-qubit case:

$|101\rangle-|010\rangle$

Constructing three qubit projectors

Again we do this by
adding mediakors, and connecting them to the faces surrounding the void to fill in.

Constructing three qubit projectors

Taking slock...

Just the Pychagorean gate left!

Term in $H_{\text {Bravyi }}$	Penalizes state $\left\|v_{s}\right\rangle$		
$H_{\text {prop,t }}^{\prime}$	$\frac{1}{\sqrt{\sqrt{2}}} \left\lvert\, \begin{aligned} & \text { \| }\end{aligned}\right.$	$\|11\rangle-\|00\rangle)$	
$H_{\text {prop, },}(\mathrm{CNOT})$	$\frac{1}{\sqrt{ }{ }^{\prime}\|01\rangle}$	$\|10\rangle$ - \|01 \rangle)	
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{ }}$ \| ${ }^{1}$ 00>	$\|10\rangle$ - \|01 ${ }^{\text {(}}$	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}$ 000)	$\rangle(10\rangle-\|01\rangle)$	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}$ 101)	$\rangle(\|10\rangle-\|01\rangle)$	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}} 010$) $\langle 10\rangle-\|01\rangle)$	
$H_{\text {prop,t }}\left(U_{\text {Pyth. }}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|011\rangle+4\|100\rangle+3\|101\rangle)$		
$H_{\text {prop,t }}\left(U_{P y t h .}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|010\rangle+3\|100\rangle-4\|101\rangle)$		
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|1\rangle$ 101 $\left.\rangle-\|010\rangle\right)$		
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}\|11\rangle$	$\|101\rangle-\|010\rangle$,	
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|1\rangle$	011 - \|100〉)	
$H_{\text {prop,t }}($ Toffoli)	$\frac{1}{\sqrt{2}}$ \|11)	$\|011\rangle$ - \|100 \rangle	
$H_{\text {clock }}^{(1)}$		\|00>	
$H_{\text {clock }}^{(2)}$		\|11)	
$H_{\text {in }}, H_{\text {out }}$		\|011)	
$H_{\text {clock }}^{(6)}, H_{\text {clock }}^{(4)}, H_{\text {clock }}^{(5)}, H_{\text {clock }}^{(3)}$		\|1100>	
$H_{\text {clock }}^{(4)}$		\|0111)	
$H_{\text {clock }}^{(5)}$		\|0001)	

The Pythagorean projectors are the most technical challenging gadgets to construct:

$$
|\psi>=-5| 011>+4|100>+3| 101>
$$

A-cycle

[C]:

The Pythagorean projectors are the most technical challenging gadgets to construck:

We can then glue the A faces along the shared face with opposite orientation:

This is implemenked by chis graph!

Summing up...

Term in $H_{\text {Bravyi }}$	Penalizes state $\left\|\psi_{S}\right\rangle$
$H_{\text {prop,t }}^{\prime}$	$\frac{1}{\sqrt{2}}\|10\rangle(\|11\rangle-\|00\rangle)$
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|01\rangle(\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|00\rangle(\|10\rangle-\|01\rangle)$
$H_{\text {prop,t}}($ Toffoli $)$	$\frac{1}{\sqrt{2}}\|000\rangle(\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}($ Toffoli $)$	$\frac{1}{\sqrt{2}}\|101\rangle(\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}($ Toffoli $)$	$\frac{1}{\sqrt{2}}\|010\rangle(\|10\rangle-\|01\rangle)$
$H_{\text {prop,t }}\left(U_{\text {Pyth. }}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|011\rangle+4\|100\rangle+3\|101\rangle)$
$H_{\text {prop,t }}\left(U_{\text {Pyth. }}\right)$	$\frac{1}{5 \sqrt{2}}(-5\|010\rangle+3\|100\rangle-4\|101\rangle)$
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|1\rangle(\|101\rangle-\|010\rangle)$
$H_{\text {prop,t }}($ Toffoli $)$	$\frac{1}{\sqrt{2}}\|11\rangle(\|101\rangle-\|010\rangle)$
$H_{\text {prop,t }}($ CNOT $)$	$\frac{1}{\sqrt{2}}\|1\rangle(\|011\rangle-\|100\rangle)$
$H_{\text {prop,t }}($ Toffoli $)$	$\frac{1}{\sqrt{2}}\|11\rangle(\|011\rangle-\|100\rangle)$
$H_{\text {clock }}^{(1)}$	$\|00\rangle$
$H_{\text {clock }}^{(2)}$	$\|11\rangle$
$H_{\text {in }}, H_{\text {out }}$	$\|011\rangle$
$H_{\text {clock }}^{(6)}, H_{\text {clock }}^{(4)}, H_{\text {clock }}^{(5)}, H_{\text {clock }}^{(3)}$	$\|1100\rangle$
$H_{\text {clock }}^{(4)}$	$\|0111\rangle$
$H_{\text {clock }}^{(5)}$	$\|0001\rangle$

Putting everything together...

Clique / independence homology are $Q M A_{1}$-hard with the graph, G, given as input.

We also show that the problem remains QUA 1 -hard when restricted to cliquedense complexes.

Future work

Can we pin down the complexity more?
A promise version of the problem is contained in QMA - but it's not clear that our initial construction satisfies the promise.

We are working on a new construction that does satisfy the promise - should appear shortly!

Fukure work

Quankum advankage for TDA?

