clique Homology is QMA1-hard

Joint work with Marcos Crichigno (Imperial College London & QC-ware)

arxiv:2209.11793

Input: a (efficient description of a) simplicial complex K and an integer, l Output: yes if K has an L-dimensional hole, no otherwise

Why is this problem

ø It has applications for topological data analysis – a practically useful problem! (Li et al, 2015)

o There is a quantum algorithm for a closely related problem - can that algorithm be dequantised? (Lloyd et al, 2014)

The problem was first defined formally in
 2002 (Kaibel-Pfetsch, 2002)

ø It is known to be NP-hard and retains its hardness when restricted to clique complexes (Adamaszek-Stacho, 2016) and when restricted to clique dense complexes (Lloyd-Schmidhuber 2022)

A similar problem for general chain complexes was shown to be QMA1-hard last year (Crichigno-Cade, 2021)

MARTS KAOWA ADOUL LES

NP-hard

our main results

Homology is QMA1-hard, and retains its hardness when restricted to clique complexes and to clique dense complexes.

 QMA_1

NP

- QMA_1 -hard

Our main results

Why should this (seemingly classical problem) be related to quantum complexity classes?

SUSY QM

Quantum Computing

Can we use this relationship to achieve quantum advantage for problems related to homology?

Homology

o Overview of simplicial homology @ Quantum K-SAT a our reduction from quantum k-SAT to homology

o Quantum advantage for topological data analysis?

Simplicial complexes are formed by gluing along faces

o-simplex [Xo]

Xo

 \bigcirc

1-simplex [XoX1]

Boundary operator

 $\times 1$

 $\partial_n [x_0 x_1 \cdots x_n] = \sum_{i=0}^n (-1)^i [x_0 \cdots \hat{x}_i \cdots x_n]$ delete ith vertex

X3

 $\times 1$

\circ cycles don't have boundaries: $\partial_p c = 0$ The boundary of a boundary vanishes: $\partial_{p-1}\partial_p = 0$

Properties of the boundary operator

Holes in simplicial complexes Ahole, C: o is a cycle, $\partial_p c = 0$ $\rightarrow c \in ker(\partial_p)$ isult a boundary $c ≠ ∂_{p+1}v$ isult a boundary $c ≠ ∂_{p+1}v$ c ∉ $Im(∂_{p+1})$

1-d hole-

 Π_1

2-d hole

HOMOLOGY GTOUPS Given a simplicial complex, K, with boundary

operator 2 define:

Given a simplicial complex, K, and an inleger, p, decide if $H_p(K) \neq 0$ or $H_p(K) = 0$

 $H_p(K) := \frac{\ker(\partial_p)}{Im(\partial_{p+1})}$

o The independence (clique) complex I(G) (Cl(G)) of a graph is the simplicial complex defined by its independent sets (cliques) We are interested in clique 0 complexes, but $Cl(G) = I(\overline{G})$ and in the reduction we focus on independence complexes

Guantum k=SAT and GMA1

Definition 2 (QMA₁). A promise problem $L_{yes} \cup L_{no} \subset \{0,1\}^*$ is contained in QMA₁ if and only if there exists a uniform polynomial-size quantum circuit family U_X over the gate set \mathcal{G} such that If $X \in L_{\text{yes}}$ there exists a state $|W\rangle$ such that $AP(U_X, |W\rangle) = 1$ (perfect completeness). If $X \in L_{no}$ then AP $(U_X, |W\rangle) \leq \frac{1}{3}$ for any state $|W\rangle$ (soundness).

Ux

$$\widehat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}, \quad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(Rational coefficients - important later)

Complexily class GMA1

A common choice of universal gale set is:

 $\mathcal{G} = \{\widehat{H}, T, \text{CNOT}\},\$

However any set {CNOT, U} is universal if U is basis changing. We choose {CNOT, U, Toffoli} where: "Pythagorean gate" 4

06]. 	····································
projectors	
TTa	a = (1,, m= poly(n))
	$\langle \Psi H \Psi \rangle \ge \varepsilon$ for all $ \Psi \rangle$ $)$ NO $1/poly(n)$
· · · · · · · · · · · · ·	· ·

Theorem: [Bravyi, 2006] [Gosset-Nagaj, 2013] Quantum 4-SAT is QMA_-complete

Theorem: [Bravyi, 2006] [Gosset-Nagaj, 2013]

Quantum 4-SAT is QMA-complete

Given a QMA1 verification circuit Ux construct a Hamiltonian: $H_X = \sum \Pi_a(U_X)$

a

EA

YES

Such that: - if $X \in L_{Yes}$, $H_X | \psi_{hist} > = 0$ - if $X \in L_{No}$, $\langle \psi | H_X | \psi \rangle \geq \epsilon \forall \psi$

NO

[Bravyi, 2006] [Gosset-Nagaj, 2013] Theorem: Quantum 4-SAT is QMA-complete

The Hamiltonian $H_X = H_{in} + H_{clock} + H_{prop} + H_{out}$ **∑** | 011 > < 011 | ... in

$$\begin{split} H_{\rm clock}^{(1)} &= |u\rangle\langle u|_{1}, \\ H_{\rm clock}^{(2)} &= |d\rangle\langle d|_{L}, \\ H_{\rm clock}^{(3)} &= \sum_{1 \leq j < k \leq L} (|a1\rangle\langle a1| + |a2\rangle\langle a2|)_{j} \otimes (|a1\rangle\langle a1| + |a2\rangle\langle a2|)_{k}, \\ H_{\rm clock}^{(4)} &= \sum_{1 \leq j < k \leq L} (|a1\rangle\langle a1| + |a2\rangle\langle a2| + |u\rangle\langle u|)_{j} \otimes |d\rangle\langle d|_{k}, \\ H_{\rm clock}^{(5)} &= \sum_{1 \leq j < k \leq L} |u\rangle\langle u|_{j} \otimes (|a1\rangle\langle a1| + |a2\rangle\langle a2| + |d\rangle\langle d|)_{k}, \\ H_{\rm clock}^{(6)} &= \sum_{1 \leq j \leq L-1} |d\rangle\langle d|_{j} \otimes |u\rangle\langle u|_{j+1}. \end{split}$$

$$H_{\text{prop},t} = \frac{1}{2} \left[(|a1\rangle\langle a1| + |a2\rangle\langle a2|)_t \otimes I_{\text{comp}} - |a2\rangle\langle a1|_t \otimes U_t - |a1\rangle\langle a2|_t \right]$$

$$H'_{\text{prop},t} = \frac{1}{2} \left(|a2, u\rangle \langle a2, u| + |d, a1\rangle \langle d, a1| - |d, a1\rangle \langle a2, u| - |a2, u\rangle \langle d, a1| \right)_{t,t}$$

In order to reduce from quantum k-SAT to homology we need to encode the following projectors into an independence complex:

Term in $H_{\rm Bravyi}$	Penalizes state $ \psi_S\rangle$
$H_{ m prop,t}^{\prime}$	$rac{1}{\sqrt{2}} \ket{10} (\ket{11} - \ket{00})$
$H_{ m prop,t}(m CNOT)$	$rac{1}{\sqrt{2}}\ket{01}(\ket{10}-\ket{01})$
$H_{ m prop,t}(m CNOT)$	$rac{1}{\sqrt{2}}\ket{00}(\ket{10}-\ket{01})$
$H_{\rm prop,t}({ m Toffoli})$	$rac{1}{\sqrt{2}}\ket{000}(\ket{10}-\ket{01})$
$H_{\rm prop,t}({ m Toffoli})$	$rac{1}{\sqrt{2}} \ket{101} (\ket{10} - \ket{01})$
$H_{\mathrm{prop,t}}(\mathrm{Toffoli})$	$rac{1}{\sqrt{2}} \ket{010} (\ket{10} - \ket{01})$
$H_{ m prop,t}(U_{Pyth.})$	$\frac{1}{5\sqrt{2}}\left(-5\left 011 ight angle+4\left 100 ight angle+3\left 101 ight angle ight)$
$H_{ m prop,t}(U_{Pyth.})$	$rac{1}{5\sqrt{2}}\left(-5\ket{010}+3\ket{100}-4\ket{101} ight)$
$H_{ m prop,t}(m CNOT)$	$rac{1}{\sqrt{2}} \ket{1} (\ket{101} - \ket{010})$
$H_{\mathrm{prop,t}}(\mathrm{Toffoli})$	$rac{1}{\sqrt{2}} \ket{11} (\ket{101} - \ket{010})$
$H_{ m prop,t}(m CNOT)$	$rac{1}{\sqrt{2}}\ket{1}(\ket{011}-\ket{100})$
$H_{\mathrm{prop,t}}(\mathrm{Toffoli})$	$rac{1}{\sqrt{2}} \ket{11} (\ket{011} - \ket{100})$
$H^{(1)}_{ m clock} onumber \ H^{(2)}_{ m clock}$	$ 00\rangle$
$H_{ m clock}^{(2)}$	$ 11\rangle$
$H_{ m in},H_{ m out}$	011 angle
$H_{ m clock}^{(6)}, H_{ m clock}^{(4)}, H_{ m clock}^{(5)}, H_{ m clock}^{(3)}$	$ 1100\rangle$
$H^{(4)}_{1}$,	$ 0111\rangle$
$H_{\rm clock}^{(5)}$	$ 0001\rangle$

@ Construct a graph where the independence complex has 2n (n-1)dimensional holes

 \circ Build up the graph corresponding to H_X - any remaining holes are satisfying solutions to quantum k-SAT

2n holes!

 $H_{n-1}(\Sigma_n) = (\mathbb{C}^2)^{\otimes n}$ $H_0(\Sigma_n) = \mathbb{C}$

Hilbert space of n qubits!

The independence complex, $\Sigma_n = I(G_n)$, has dimension n and:

 $H_i(\Sigma_n) = 0 \forall i \neq 0, n-1$

Constructing 2 qubit projectors

We have $H_1(\Sigma_n) = \mathbb{C}^4$ and can choose a basis: $|00\rangle = [X_1X_2] + [X_2a_1] + [a_1a_2] + [a_2X_1]$

We have $H_1(\Sigma_n) = \mathbb{C}^4$ and can choose a basis: $[01] = [X_1X_2] + [X_2A_1] + [A_1b_2] + [b_2X_1]$

constructing 2 aubit projectors

We have $H_1(\Sigma_n) = \mathbb{C}^4$ and can choose a basis: $[10 > = [x_1 x_2] + [x_2 b_1] + [b_1 a_2] + [a_2 x_1]$

Constructing 2 aubit projectors

 a_2

 x_1

 a_1

We have $H_1(\Sigma_n) = \mathbb{C}^4$ and can choose a basis: $[11] = [X_1X_2] + [X_2b_1] + [b_1b_2] + [b_2X_1]$

Constructing 2 aubit projectors

 a_2

 \mathcal{X}_1

 a_1

Consider the classical projector $\Pi = |00\rangle < 00|$, we need to fill in the cycle corresponding to $|00\rangle$:

Constructing 2 aubil projectors

 $\times 1$

mediator induces interactions lifting the required state

The same process works for the other computational basis states. For the entangled states things get a little more complicated...

 m_2

$\Pi = (|00 > - |11 >)(<00| - <11|)$

 x_1

 m_2 (m_3 m_1 x_2

So, we created Cr2'=

 $H(I(G'_{i}))$ span { 101 >, 110 >, 100 >+ 111 >{

such that:

Space of satisfying solutions to $\pi | \psi \rangle = 0$ $TT = (|00\rangle - |11\rangle)((00) - (11))$

Taking stock...

Term in H_{Bravyi}	Penalizes state $ \psi_S\rangle$
$H_{ m prop,t}^{\prime}$	$\frac{1}{\sqrt{2}}$ $ 10\rangle$ $ 11\rangle - 00\rangle)$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} 01\rangle 10\rangle - 01\rangle)$
$H_{ m prop,t}(m CNOT)$	$\frac{1}{\sqrt{2}} 00\rangle 10\rangle - 01\rangle)$
$H_{\rm prop,t}({ m Toffoli})$	$rac{1}{\sqrt{2}}\ket{000}\ket{\ket{10}-\ket{01}}$
$H_{\rm prop,t}$ (Toffoli)	$rac{1}{\sqrt{2}}\ket{101}\ket{\ket{10}-\ket{01}}$
$H_{\rm prop,t}$ (Toffoli)	$rac{1}{\sqrt{2}}\ket{010}\ket{\ket{10}-\ket{01}}$
$H_{\mathrm{prop,t}}(U_{Pyth.})$	$\frac{1}{5\sqrt{2}}\left(-5\left 011 ight angle+4\left 100 ight angle+3\left 101 ight angle ight)$
$H_{ m prop,t}(U_{Pyth.})$	$rac{1}{5\sqrt{2}}\left(-5\ket{010}+3\ket{100}-4\ket{101} ight)$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}}$ $ 1\rangle$ $ 101\rangle - 010\rangle$)
$H_{\rm prop,t}({ m Toffoli})$	$rac{1}{\sqrt{2}}\ket{11}(\ket{101}-\ket{010})$
$H_{\rm prop,t}({ m CNOT})$	$rac{1}{\sqrt{2}} \ket{1} \ket{011} - \ket{100}$
$H_{\rm prop,t}({\rm Toffoli})$	$rac{1}{\sqrt{2}}\ket{11}(\ket{011}-\ket{100})$
$H_{ m clock}^{(1)}$	$ 00\rangle$
$H_{ m clock}^{(2)}$	$ 11\rangle$
$H_{ m in},H_{ m out}$	011)
$H_{\rm clock}^{(6)}, H_{\rm clock}^{(4)}, H_{\rm clock}^{(5)}, H_{\rm clock}^{(3)}$	$ 1100\rangle$
$H_{\rm clock}^{(4)}$	$ 0111\rangle$
$H_{ m clock}^{(5)}$	$ 0001\rangle$

Constructing three qubit projectors x_1

To construct three qubit projectors we need to fill in three dimensional voids. E.g. to lift the state $|000\rangle$ we need to fill x_2 , the void:

 a_3

 x_3

Constructing three qubit projectors

To construct three qubit projectors we need to fill in three dimensional voids. E.g. to lift the state $|000\rangle$ we need to fill x_2 the void:

Which we do by adding a mediator:

 x_3

 a_3

Constructing three qubit projectors

To construct three qubit projectors we need to fill in three dimensional voids. E.g. to life the state 1000, we need to fill the void:

This corresponds to this hew graph

Constructing three qubit projectors

To fill in enhangled projectors we have to fill take linear combinations of voids, as we did in the 2-qubit case:

|101
angle - |010
angle

Again we do this by adding mediators, and connecting them to the faces surrounding the void lo fill in.

Taking slock...

Just the Pythagorean gate Left!

$Term in H_{\rm Bravyi}$	Penalizes state $ \psi_S\rangle$
$H'_{ m prop,t}$	$\frac{1}{\sqrt{2}}$ $ 10\rangle$ $ 11\rangle - 00\rangle)$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}}$ $ 01\rangle$ $ 10\rangle - 01\rangle)$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} 00\rangle 10\rangle - 01\rangle)$
$H_{\rm prop,t}({ m Toffoli})$	$\frac{1}{\sqrt{2}} \ket{000} (\ket{10} - \ket{01})$
$H_{\rm prop,t}({ m Toffoli})$	$\frac{1}{\sqrt{2}} \ket{101} (\ket{10} - \ket{01})$
$H_{\rm prop,t}({ m Toffoli})$	$\frac{1}{\sqrt{2}} \ket{010} (\ket{10} - \ket{01})$
$H_{ m prop,t}(U_{Pyth.})$	$rac{1}{5\sqrt{2}}\left(-5\ket{011}+4\ket{100}+3\ket{101} ight)$
$H_{ m prop,t}(U_{Pyth.})$	$rac{1}{5\sqrt{2}}\left(-5\left 010 ight angle+3\left 100 ight angle-4\left 101 ight angle$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}}$ $ 1\rangle$ $ 101\rangle - 010\rangle)$
$H_{\rm prop,t}({ m Toffoli})$	$\frac{1}{\sqrt{2}}$ $ 11\rangle$ $ 101\rangle - 010\rangle$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}}$ $ 1\rangle$ $011\rangle - 100\rangle)$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}}$ $ 11\rangle$ $ 011\rangle - 100\rangle$
$H_{\rm clock}^{(1)}$	$ 00\rangle$
$H_{ m clock}^{(2)}$	$ 11\rangle$
$H_{ m in},H_{ m out}$	
$H_{\rm clock}^{(6)}, H_{\rm clock}^{(4)}, H_{\rm clock}^{(5)}, H_{\rm clock}^{(3)}$	$ 1100\rangle$
$H_{ m clock}^{(4)}$	$ 0111\rangle$
$H_{ m clock}^{(5)}$	$ 0001\rangle$

The Pythagorean projectors are the most technical challenging gadgets to construct:

$|\psi\rangle = -5|011\rangle + 4|100\rangle + 3|101\rangle$

A-cycle

B-cycle

The Pythagorean projectors are the most technical [A] challenging gadgets to construct:

We can then glue the A faces along the shared face with opposite orientation:

[A]

This is implemented by this graph!

$Term in H_{Bravyi}$	Penalizes state $ \psi_S angle$
$H'_{ m prop,t}$	$rac{1}{\sqrt{2}} \ket{10} (\ket{11} - \ket{00})$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} \ket{01} (\ket{10} - \ket{01})$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} \ket{00} (\ket{10} - \ket{01})$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}} \ket{000} (\ket{10} - \ket{01})$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}} \left 101 \right\rangle \left(\left 10 \right\rangle - \left 01 \right\rangle \right)$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}} \ket{010} (\ket{10} - \ket{01})$
$H_{ m prop,t}(U_{Pyth.})$	$\frac{1}{5\sqrt{2}}\left(-5\left 011\right\rangle+4\left 100\right\rangle+3\left 101\right\rangle\right)$
$H_{ m prop,t}(U_{Pyth.})$	$\frac{\frac{1}{5\sqrt{2}} \left(-5 \left 010\right\rangle + 3 \left 100\right\rangle - 4 \left 101\right\rangle\right)}{\frac{1}{5\sqrt{2}} \left(-5 \left 010\right\rangle + 3 \left 100\right\rangle - 4 \left 101\right\rangle\right)}$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} \left 1 \right\rangle \left(\left 101 \right\rangle - \left 010 \right\rangle \right)$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}} \left 11 \right\rangle \left(\left 101 \right\rangle - \left 010 \right\rangle \right)$
$H_{\rm prop,t}({ m CNOT})$	$\frac{1}{\sqrt{2}} \left 1 \right\rangle \left(\left 011 \right\rangle - \left 100 \right\rangle \right)$
$H_{\rm prop,t}$ (Toffoli)	$\frac{1}{\sqrt{2}} \left 11 \right\rangle \left(\left 011 \right\rangle - \left 100 \right\rangle \right)$
$H_{ m clock}^{(1)}$	$ 00\rangle$
$H_{ m clock}^{(2)}$	$ 11\rangle$
$H_{\rm in}, H_{\rm out}$	$ 011\rangle$
$H_{\rm clock}^{(6)}, H_{\rm clock}^{(4)}, H_{\rm clock}^{(5)}, H_{\rm clock}^{(3)}$	1100>
$H_{\rm clock}^{(1)}$	$ 0111\rangle$
$H_{ m clock}^{(5)}$	$ 0001\rangle$

Publing everything together...

Clique / independence homology are QMA1-hard with the graph, G, given as input.

We also show that the problem remains QMA1-hard when restricted to cliquedense complexes.

 QMA_1

NP

Can we pin down the complexity more?

A promise version of the problem is contained in QMA - but it's not clear that our initial construction satisfies the promise.

We are working on a new construction that does satisfy the promise - should appear shortly!

Quantum advantage for TDA?

