Tensor network states for relativistic quantum field theory

Entangle This V

Antoine Tilloy June 16th, 2023 Benasque, Spain

Goal: strongly coupled relativistic field theories

QCD \equiv High T_{c} supra of HEP

Goal: strongly coupled relativistic field theories

QCD \equiv High T_{c} supra of HEP

Monte Carlo on Wick-rotated lattice-discretized = only game in town

Science, 2008, BMW collaboration

With tensor network states

- $3+1$ dimensions
- Relativistic fermions
- Gauge fields
- Taking the continuum limit for relativistic models \leftarrow today

Objective: understand the continuum on the simplest non-trivial model: ϕ_{2}^{4}

Relativistic field theory as a condensed matter system

Casual definition of a relativistic scalar field ϕ_{2}^{4}

Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

$$
\hat{H}=\int_{\mathbb{R}} d x \frac{\hat{\pi}(x)^{2}}{\text { on-site inertiaa }_{2}}+\underset{\text { spatial stiffess }}{\frac{[\nabla \hat{\phi}(x)]^{2}}{2}}+\frac{m^{2} \hat{\phi}^{2}(x)}{2}+g \hat{\phi}^{4}(x)
$$

with $[\hat{\phi}(x), \hat{\pi}(y)]=i \delta(x-y) \mathbb{1}-$ i.e. bosons / harmonic oscillators

Better definition of ϕ_{2}^{4}

Renormalized ϕ_{2}^{4} theory

$$
H=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{2}: \phi^{2}:_{m}+g: \phi^{4}:_{m}
$$

Better definition of ϕ_{2}^{4}

Renormalized ϕ_{2}^{4} theory

$$
H=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{2}: \phi^{2}:_{m}+g: \phi^{4}:_{m}
$$

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density ε_{0} finite for all g
3. Difficult to solve unless $g \ll m^{2}-$ not integrable
4. Phase transition around $f_{c}=\frac{g}{4 m^{2}}=11$ i.e. $g \simeq 2.7$ in mass units

Two (main) games in town

Perturbation theory

+ resummation

state of the art is $O\left(g^{8}\right)$

arXiv:1805. 05882
Serone, Spada, Villadoro

Lattice Monte-Carlo

arXiv:1807. 03381
Bronzin, De Palma, Guagnelli

Short distance troubles

Similarity between relativistic and critical models

- A critical model is scale invariant in the IR

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \quad \underset{|x-y| \rightarrow+\infty}{\sim} \frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}}}
$$

Similarity between relativistic and critical models

- A critical model is scale invariant in the IR

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \quad \underset{|x-y|_{\rightarrow+\infty}}{\sim} \frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}}}
$$

- A relativistic QFT is scale invariant in the UV

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \underset{|x-y| \rightarrow 0}{\sim} \frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}}}
$$

Similarity between relativistic and critical models

- A critical model is scale invariant in the IR

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \underset{|x-y| \rightarrow+\infty}{\sim} \frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}}}
$$

- A relativistic QFT is scale invariant in the UV

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle \underset{|x-y| \rightarrow 0}{\sim} \frac{1}{|x-y|^{2 \Delta_{\mathcal{O}}}}
$$

Consequence on entanglement
With a UV cutoff $\Lambda=1$ /a in $1+1$ dimensions:

$$
S \propto \log (\Lambda)
$$

\Longrightarrow infinite amount of information in high frequency modes

Consequence for lattice discretizations

1. easy: taking thermodynamic limit

Consequence for lattice discretizations

1. easy: taking thermodynamic limit

2. hard: taking small lattice spacing

Consequence for lattice discretizations

1. easy: taking thermodynamic limit

2. hard: taking small lattice spacing

A finely discretized relativistic QFT, seen as a lattice model, is almost critical.

f_{c} estimate continuum extrapolation with GILT-TNR Clément Delcamp, AT, 2020

UV "criticality" is usually milder than IR criticality

UV CFT tend to be kind
For QFT that are either

1. super renormalizable or
2. asymptotically free
the critical behavior at short distance is free

UV "criticality" is usually milder than IR criticality

UV CFT tend to be kind
For QFT that are either

1. super renormalizable or
2. asymptotically free
the critical behavior at short distance is free
E.g. for ϕ_{2}^{4} at short distances

$$
H \longrightarrow H_{0}=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{2}: \phi^{2}:_{m}
$$

which is exactly solvable

Objective

Stop wasting parameters on short distance criticality

1. Disentangle the trivial UV behavior
2. Put some tensor network on top to deal with the IR

Gaussian disentangling

Disentangle short distance criticality

1 - Bogoliubov transform

Define modes $a(p), a^{\dagger}(p)$ as

$$
a(p)=\frac{1}{\sqrt{2}}\left(\sqrt{\omega_{p}} \phi(p)+i \frac{\pi(p)}{\sqrt{\omega_{p}}}\right) \text { with } \omega_{p}=\sqrt{p^{2}+m^{2}}
$$

which verify $\left[a(p), a^{\dagger}(q)\right]=2 \pi \delta(p-q)$ and yield

$$
H_{0}=\int_{\mathbb{R}} \mathrm{d} p \omega_{p} a_{p}^{\dagger} a_{p}
$$

The ground state of H_{0} is the Fock vacuum, i.e. $|G S\rangle=|0\rangle$ with $\forall p, a_{p}|0\rangle=0$

Disentangle short distance criticality

2 - Go back to real space
Fourier transform the modes a_{p}

$$
a(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} p e^{i p x} a_{p}
$$

which enforces $\left[a(x), a^{\dagger}(y)\right]=\delta(x-y)$

Disentangle short distance criticality

2 - Go back to real space
Fourier transform the modes a_{p}

$$
a(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} p e^{i p x} a_{p}
$$

which enforces $\left[a(x), a^{\dagger}(y)\right]=\delta(x-y)$

Note

1. We integrate with $\mathrm{d} p$ not $\omega_{p}^{-1 / 2} \mathrm{~d} p$
2. ϕ is not a local function of a, a^{\dagger}

$$
\phi(x)=\int_{\mathbb{R}} \mathrm{d} y J(x-y)\left[a(y)+a^{\dagger}(y)\right] \quad \text { with } \quad J(x)=\int_{\mathbb{R}} \frac{\mathrm{d} p}{\sqrt{2 \omega_{p}}} e^{i p x}
$$

Tensor network intuition

Free particle entanglement entropy

We now have two possible ways to split $\mathscr{H}=\mathscr{H}_{-} \otimes \mathscr{H}_{+}$

1. Standard one, yielding $S \propto \log \Lambda$

$$
\left.\mathscr{H}_{+}=\operatorname{span}\left\{\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left|\Omega_{+}\right\rangle\right\} \text {for } x \geqslant 0\right\}
$$

Free particle entanglement entropy

We now have two possible ways to split $\mathscr{H}=\mathscr{H}_{-} \otimes \mathscr{H}_{+}$

1. Standard one, yielding $S \propto \log \Lambda$

$$
\left.\mathscr{H}_{+}=\operatorname{span}\left\{\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left|\Omega_{+}\right\rangle\right\} \text {for } x \geqslant 0\right\}
$$

2. The free particle one $S_{\text {free }}$

$$
\mathscr{H}_{+}=\operatorname{span}\left\{a^{\dagger}\left(x_{1}\right) \cdots a^{\dagger}\left(x_{n}\right)|0\rangle \text { for } x \geqslant 0\right\}
$$

Free particle entanglement entropy

Super-renormalizability \Longrightarrow Gaussian disentangling kills the divergent part of S :

Conjecture

For any bosonic QFT with strongly relevant interaction $V(\phi)$ in $1+1 \mathrm{~d}$, the free particle entanglement entropy $S_{\text {free }}$ is finite in the ground state

Free particle entanglement entropy

Super-renormalizability \Longrightarrow Gaussian disentangling kills the divergent part of S :

Conjecture

For any bosonic QFT with strongly relevant interaction $V(\phi)$ in $1+1 \mathrm{~d}$, the free particle entanglement entropy $S_{\text {free }}$ is finite in the ground state

Hence the ground state has an efficient (continuous) MPS representation:

Trading entanglement for (mild) non-locality

Trading entanglement for (mild) non-locality

H local in $\phi(x)$ hence mildly non-local in $a(x)$, e.g.

$$
\int \mathrm{d} x \phi(x)^{2}=\int \mathrm{d} x \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} J\left(x_{1}-x\right) J\left(x_{2}-x\right)\left(a\left(x_{1}\right)+a^{\dagger}\left(x_{1}\right)\right)\left(a\left(x_{2}\right)+a^{\dagger}\left(x_{2}\right)\right)
$$

1. UV singular

$$
J(x) \underset{0}{ } \quad \frac{1}{\sqrt{|x|}}
$$

2. IR nice
$J(x) \underset{+\infty}{\sim} e^{-m|x|}$

Remarks on Gaussian disentanglement

Idea used the lattice, in Quantum chemistry, for impurity models e.g.

- Krumnow, Veis, Legeza, and Eisert 2016
- Wu, Fishman, Pixley, Stoudenmire 2022

Here minor differences

1. The disentangler is not optimized (not needed)
2. The disentangler does not have a simple local representation
3. The disentangler makes the optimization well defined \rightarrow kills divergence

Relativistic continuous matrix product states

Relativistic continuous matrix product states

aka continuous matrix product states (CMPS) [Verstraete and Cirac 2010] on Gaussian disentanglement steroids

Definition

RCMPSs are a manifold of states parameterized by $2(D \times D)$ matrices Q, R

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes a^{\dagger}(x)\right]\right\}|0\rangle
$$

with

- $|0\rangle$ is the Fock vacuum of the free model H_{0}
- trace taken over \mathbb{C}^{D}
- \mathcal{P} path-ordering exponential

Basic properties of RCMPS

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes \mathrm{a}^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

Checklist:

1. Extensive because of $\mathcal{P} \exp \int$
2. Observables computable at cost D^{3} (non trivial!) requires $\left[a(x), a^{\dagger}(y)\right]=\delta(x-y)$
3. No UV problems
$|0,0\rangle=|0\rangle$ is the ground state of H_{0} hence exact CFT UV fixed point $\langle Q, R|: P(\phi):|Q, R\rangle$ is finite for all Q, R (not trivial!)

Tensor network intuition

In the continuum limit contracting a non-uniform ladder is numerically exact with high order Runge-Kutta.

The variational algorithm

Optimization

Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with (geometric improvements of) gradient descent

The variational algorithm

Optimization

Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with (geometric improvements of) gradient descent

Computations of e_{0} and ∇e_{0} in a nutshell:

1. $V_{b}=\left\langle::^{b \phi(x)}:\right\rangle_{Q R}$ computable by solving an ODE with cost $\propto D^{3}$
2. $\left\langle: \phi^{n}:\right\rangle_{Q R}$ computable doing $\left.\partial_{b}^{n} V_{b}\right|_{b=0} \rightarrow \propto D^{3}$
3. $e_{0}=\langle h\rangle_{Q R}$ computable by summing such terms at cost $D^{3} \rightarrow \propto D^{3}$
4. ∇e_{0} computable by solving the adjoint ODE (backpropagation) $\rightarrow \propto D^{3}$

The variational algorithm

Optimization

Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with (geometric improvements of) gradient descent

Computations of e_{0} and ∇e_{0} in a nutshell:

1. $V_{b}=\left\langle: e^{b \phi(x)}:\right\rangle_{Q R}$ computable by solving an ODE with cost $\propto D^{3}$
2. $\left\langle: \phi^{n}:\right\rangle_{Q R}$ computable doing $\left.\partial_{b}^{n} V_{b}\right|_{b=0} \rightarrow \propto D^{3}$
3. $e_{0}=\langle h\rangle_{Q R}$ computable by summing such terms at cost $D^{3} \rightarrow \propto D^{3}$
4. ∇e_{0} computable by solving the adjoint ODE (backpropagation) $\rightarrow \propto D^{3}$

Functioning Julia implementation. OptimKit.jl to solve the Riemannian minimization, KrylovKit. jl to solve fixed point equations, DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps.jl?

Using the optimized state

After optimization: $|Q, R\rangle \simeq|0\rangle_{\text {int }}$. with $\langle Q, R| \hat{h}|Q, R\rangle=e_{0}+\varepsilon$

This gives:

- All equal-time N-point functions

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right)\right\rangle \simeq\langle Q, R| \phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right)|Q, R\rangle
$$

at cost D^{3} by solving coupled linear ODEs

- In particular all Euclidean 2-point functions \Longrightarrow spectral function

$$
\langle\phi(x) \phi(0)\rangle=\int_{0}^{+\infty} \mathrm{d} \mu \mu \rho(\mu) K_{0}(\mu x)
$$

Results: ϕ_{2}^{4} energy density

New: D can now be pushed to 32 or even 64 with some effort

Results: ϕ_{2}^{4} - field expectation value $\langle\phi\rangle$

New: the mass can be fitted from 2-point function and agrees with RHT to 10^{-3}

Todo-list for continuous tensor networks

In $1+1$ dimensions

- Solve Fermion / Gauge theories
- Go beyond strongly renormalizable interactions
- Do general CFT perturbations
- Compute more observables (masses, spectra, c-function...)

And of course the grand goal: do higher dimensions!

Come work on it in Paris with Edo and Karan!

Summary

Problem

- Relativistic QFT have infinite entanglement at short distance

Solution in $1+1 \mathrm{~d}$

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes a^{\dagger}(x)\right]\right\}|0\rangle
$$

1. Ansatz for $1+1$ relativistic QFT
2. The $\phi(x) \rightarrow a(x)$ trick disentangles the divergent UV
3. The CMPS on top solves the rest
4. Efficient (cost poly D, error plausibly $1 /$ superpoly D)
