The Interacting Ising-Majorana chain model randomness — topology — many body localization

Nicolas Laflorencie

Laboratoire de Physique Théorique (LPT) CNRS FERMI Université Paul Sabatier (Toulouse)

The Interacting Ising-Majorana chain model randomness — topology — many body localization

Nicolas Laflorencie

Laboratoire de Physique Théorique (LPT) CNRS FERMI Université Paul Sabatier (Toulouse)

Postdoc LPT (2018-2020)

Gabriel LEMARIÉ LPT & MajuLab (Singapore)

Natalia CHEPIGA Kavli Institute Delft

The Interacting Ising-Majorana chain model randomness — topology — many body localization

Nicolas Laflorencie

Laboratoire de Physique Théorique (LPT) CNRS FERMI Université Paul Sabatier (Toulouse)

Introduction to many body localization • The non-interacting Majorana chain with disorder **•** Effects of interactions **Conclusions**

Nicolas MACÉ *Postdoc LPT (2018-2020)*

Gabriel LEMARIÉ LPT & MajuLab (Singapore)

Natalia CHEPIGA Kavli Institute Delft

Short introduction to MBL physics

Short introduction to MBL physics

Interacting electrons in one dimension

 $\mathscr{H} = \sum_{i} \left[t \left(c_{i}^{\dagger} c_{i+1}^{\dagger} + hc \right) + V n_{i} n_{i+1}^{\dagger} + \frac{\epsilon_{i} n_{i}}{\text{short-range}} \right]$ interaction potential

Short introduction to MBL physics

Interacting electrons in one dimension

Jordan-Wigner transformation spin-1/2 —> fermions

$$S_j^z = c_j^{\dagger} c_j - \frac{1}{2}$$
$$S_j^+ = c_j^{\dagger} e^{i\pi \sum_{l < j} n_l}$$
$$S_j^- = c_j e^{-i\pi \sum_{l < j} n_l}$$

Equivalent to a spin S=1/2 chain in a magnetic field

(i) Single particle $\mathscr{H} = \sum_{i} \left[t \left(c_i^{\dagger} c_{i+1}^{\dagger} + hc \right) + \epsilon_i n_i \right]$

$$_{+1} + hc + \epsilon_i n_i$$

(i) Single particle $\mathscr{H} = \sum_{i} \left[t \left(c_{i}^{\dagger} c_{i+1}^{\dagger} + hc \right) + \epsilon_{i} n_{i} \right]$ $= \sum_{m} \tilde{\epsilon}_{m} b_{m}^{\dagger} b_{m}$

(i) Single particle

(ii) Many particles $\mathscr{H} = \sum_{i} t \left(c_i^{\dagger} c_{i+1}^{\dagger} + hc \right) + \epsilon_i n_i + V n_i n_{i+1}$

 $= \sum \tilde{\epsilon}_m b_m^{\dagger} b_m + \sum V_{jklm} b_j^{\dagger} b_k^{\dagger} b_l b_m$ *j*,*k*,*l*,*m*

Emergence of Quantum Chaos in Finite Interacting Fermi Systems

Smoking guns for ergodicity breaking

Spectral statistics transition

Smoking guns for ergodicity breaking

Spectral statistics transition

Entanglement entropy: Volume vs. Area law

Khemani et al., PRX <u>7</u>, 021013 (2017)

Smoking guns for ergodicity breaking

Spectral statistics transition

	L = 10 $L = 12$ $L = 14$ $L = 16$		PRL 😋
$\frac{L}{S} \approx L$	• • <i>L</i> = 18		A lo degr
0.4 - ED results	$S/L \rightarrow 0$		of tł mod
0.2Spin chain model		Khemani et al., PRX <u>7</u> , 021013 (2017)	inter has

Smoking guns for

EPL, **128** (2019) 67003 doi: 10.1209/0295-5075/128/67003

Can we study the many-body localisation transition?

R. K. PANDA^{1,2}, A. SCARDICCHIO^{1,3}, M. SCHULZ¹, S. R. TAYLOR^{1(a)} and M. ŽNIDARIČ⁴

PHYSICAL REVIEW E 102, 062144 (2020)

Quantum chaos challenges many-body localization

Jan Šuntajs⁰,¹ Janez Bonča,^{2,1} Tomaž Prosen,² and Lev Vidmar^{1,2}

Annals of Physics Volume 427, April 2021, 168415

Distinguishing localization from chaos: Challenges in finite-size systems

D.A. Abanin^{*1}, J.H. Bardarson^{b,1}, G. De Tomasi⁺¹, S. Gopalakrishnan^{d,+1}, V. Khemani^{f,1}, S.A. Parameswaran^{g,1}, S. 🗃, F. Pollmann^{h,1,1}, A.C. Potter^{j,1}, M. Serbyn^{k,1}, R. Vasseur^{1,1}

⇒ (2018-2020) Analytical breakthrough The Avalanche scenario

Delocalization transition Avalanche of ergodic regions when $\xi_{typ} \ge (\ln 2)^{-1}$

PHYSICAL REVIEW LETTERS 121, 140601 (2018)

Many-Body Delocalization as a Quantum Avalanche

Thimothée Thiery,^{1,*} François Huveneers,^{2,†} Markus Müller,^{3,‡} and Wojciech De Roeck^{1,§} ¹Instituut voor Theoretische Fysica, KU Leuven, 3001 Leuven, Belgium ²Université Paris-Dauphine, PSL Research University, CNRS, CEREMADE, 75016 Paris, France ³Paul Scherrer Institute, PSI, 5232 Villigen, Switzerland

PHYSICAL REVIEW B 105, 174205 (2022)

Editors' Suggestion

Avalanches and many-body resonances in many-body localized systems

Alan Morningstar¹, Luis Colmenarez², Vedika Khemani, David J. Luitz,^{4,2} and David A. Huse^{1,5}

Letter	https://doi.org/10.1038/s41567-022-01887-
Probingthe	onset of quantum avalanches in a
many-body l	ocalized system
many-body l Received: 23 December 2021	Julian Léonard ^{1,5,6} , Sooshin Kim ^{®1,6} , Matthew Rispoli ¹ , Alexander Lukin ¹ ,
many-body l Received: 23 December 2021 Accepted: 22 November 2022	Julian Léonard ^{1,5,6} , Sooshin Kim [®] ^{1,6} , Matthew Rispoli ¹ , Alexander Lukin ¹ , Robert Schittko ¹ , Joyce Kwan ¹ , Eugene Demler ² , Dries Sels [®] ^{3,4} & Markus Greiner ¹

EPL, 128 (2019) 67003 doi: 10.1209/0295-5075/128/67003

Can we study the many-body localisation transition?

R. K. PANDA^{1,2}, A. SCARDICCHIO^{1,3}, M. SCHULZ¹, S. R. TAYLOR^{1(a)} and M. ŽNIDARIČ⁴

PHYSICAL REVIEW E 102, 062144 (2020)

Quantum chaos challenges many-body localization

Jan Šuntajs¹, Janez Bonča,^{2,1} Tomaž Prosen,² and Lev Vidmar^{1,2}

Annals of Physics Volume 427, April 2021, 168415

Distinguishing localization from chaos: Challenges in finite-size systems

D.A. Abanin^{a 1}, J.H. Bardarson^{b 1}, G. De Tomasi^{e 1}, S. Gopalakrishnan^{d a 1}, V. Khemani^{f 1}, S.A. Parameswaran ^{g 1} S. 🗃, F. Pollmann ^{h i 1}, A.C. Potter ^{j 1}, M. Serbyn ^{k 1}, R. Vasseur ¹

PHYSICAL REVIEW B 105, 224203 (2022) **Editors' Suggestion** Challenges to observation of many-body localization Piotr Sierant 01,2 and Jakub Zakrzewski 02,3.*

→ (2018-2020) Analytical breakthrough The Avalanche scenario

Delocalization transition Avalanche of ergodic regions when $\xi_{typ} \ge (\ln 2)^{-1}$

PHYSICAL REVIEW LETTERS **121**, 140601 (2018)

Many-Body Delocalization as a Quantum Avalanche

Thimothée Thiery,^{1,*} François Huveneers,^{2,†} Markus Müller,^{3,‡} and Wojciech De Roeck^{1,§} ¹Instituut voor Theoretische Fysica, KU Leuven, 3001 Leuven, Belgium ²Université Paris-Dauphine, PSL Research University, CNRS, CEREMADE, 75016 Paris, France ³Paul Scherrer Institute, PSI, 5232 Villigen, Switzerland

PHYSICAL REVIEW B 105, 174205 (2022)

Editors' Suggestion

Avalanches and many-body resonances in many-body localized systems

Alan Morningstar¹, Luis Colmenarez¹, Vedika Khemani, David J. Luitz, And David A. Huse^{1,5}

nature physics	
Letter	https://doi.org/10.1038/s41567-022-01887-3
Probing the 	onset of quantum avalanches in a
many-body l	ocalized system
Received: 23 December 2021	Ocalized system Julian Léonard ^{1,5,6} , Sooshin Kim ^{® 1,6} , Matthew Rispoli ¹ , Alexander Lukin ¹ ,
Received: 23 December 2021 Accepted: 22 November 2022	Julian Léonard ^{1,5,6} , Sooshin Kim [©] ^{1,6} , Matthew Rispoli ¹ , Alexander Lukin ¹ , Robert Schittko ¹ , Joyce Kwan ¹ , Eugene Demler ² , Dries Sels [©] ^{3,4} & Markus Greiner ¹

Avalanches are hard to probe but MBL seems to be still a plausible option, perhaps at disorder strengths larger than expected

EPL, 128 (2019) 67003 doi: 10.1209/0295-5075/128/67003

Can we study the many-body localisation transition?

R. K. PANDA^{1,2}, A. SCARDICCHIO^{1,3}, M. SCHULZ¹, S. R. TAYLOR^{1(a)} and M. ŽNIDARIČ⁴

PHYSICAL REVIEW E 102, 062144 (2020)

Quantum chaos challenges many-body localization

Jan Šuntajs⁰,¹ Janez Bonča,^{2,1} Tomaž Prosen,² and Lev Vidmar^{1,2}

Annals of Physics Volume 427, April 2021, 168415

Distinguishing localization from chaos: Challenges in finite-size systems

D.A. Abanin^{a,1}, J.H. Bardarson^{b,1}, G. De Tomasi^{e,1}, S. Gopalakrishnan^{d,1}, V. Khemani^{f,1}, S.A. Parameswaran ^{g 1} 9, 20, F. Pollmann ^{h i 1}, A.C. Potter ^{j 1}, M. Serbyn ^{k 1}, R. Vasseur ^{1 1}

PHYSICAL REVIEW B 105, 224203 (2022)

Editors' Suggestion

Challenges to observation of many-body localization

Piotr Sierant 01,2 and Jakub Zakrzewski 02,3,*

these debates have surprisingly focused on a restricted class of U(1) symmetric models

these debates have surprisingly focused on a restricted class of U(1) symmetric models

(XXZ chains, interacting fermions, bosons...) 99% of the studies

these debates have surprisingly focused on a restricted class of U(1) symmetric models

(XXZ chains, interacting fermions, bosons...) 99% of the studies

 $\mathcal{H} = \sum S_i^x S_{i+1}^x + S$

Random-field Heisenberg chain 98% of the studies

$$S_{i}^{y}S_{i+1}^{y} + S_{i}^{z}S_{i+1}^{z} + h_{i}S_{i}^{z}$$

 $\mathscr{H}_{\text{TFIM}} = \sum_{i} \left(J_i \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z \right)$

$$-\text{fermions} = \sum_{i} \left(J_{i} \left[c_{i}^{\dagger} c_{i+1}^{\dagger} + c_{i}^{\dagger} c_{i+1} - c_{i} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] + h_{i} \left[1 - 2c_{i}^{\dagger} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] \right)$$

$$Particle number is NOT conserved is NOT conserved$$

$$-\text{fermions} = \sum_{i} \left(J_{i} \left[c_{i}^{\dagger} c_{i+1}^{\dagger} + c_{i}^{\dagger} c_{i+1} - c_{i} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] + h_{i} \left[1 - 2c_{i}^{\dagger} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] \right)$$

$$Particle number is NOT conserved is NOT conserved$$

$$ree-fermions = \sum_{i} \left(J_{i} \left[c_{i}^{\dagger} c_{i+1}^{\dagger} + c_{i}^{\dagger} c_{i+1} - c_{i} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] + h_{i} \left[1 - 2c_{i}^{\dagger} c_{i+1}^{\dagger} - c_{i} c_{i+1} \right] \right)$$

$$Particle number is NOT conserved is not conserved$$

$$\mathscr{H}_{\text{TFIM}} = \sum_{i} \left(J_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + h_{i} \sigma_{i}^{z} \right) \xrightarrow{\text{Jordan}}_{\substack{\alpha_{j}^{x} + 1 - 2k_{j}k_{j} \\ \sigma_{j}^{z} + k_{i}(k_{j}^{z} + c_{j}) \\ \text{with } \kappa_{i} - \prod_{k=1}^{i} \sigma_{k}^{z} \\ \varepsilon_{j}^{z} = \sigma_{i}^{x} \sigma_{i+1}^{z}, \quad \tau_{i}^{x} = \prod_{k=1}^{i} \sigma_{k}^{z} \quad \Rightarrow \quad \mathscr{H}_{\text{TFIM}} = \sum_{i} \left(J_{i} \tau_{i}^{z} + h_{i} \tau_{i-1}^{x} \tau_{i}^{x} \right) \\ \mathcal{H}_{\text{TFIM}} + \text{interactions } \dots \\ \mathcal{H}_{i} = \sigma_{i}^{x} \sigma_{i+1}^{z}, \quad \tau_{i}^{x} = \prod_{k=1}^{i} \sigma_{k}^{z} \quad \Rightarrow \quad \mathscr{H}_{\text{TFIM}} = \sum_{i} \left(J_{i} \tau_{i}^{z} + h_{i} \tau_{i-1}^{x} \tau_{i}^{x} \right) \\ \mathcal{H}_{i} = \sum_{i} \left(\sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{i}^{z} + \sigma_{i}^{z} + \sigma_{i}^{z} + \sigma_{i}^{z} + \sigma_{i}^{z} + \sigma_{i}$$

 \mathbb{Z}_2

$$\begin{array}{c} \textbf{III}) \\ \mathbb{Z}_{2} \end{array} \sum_{i} J_{i}^{x} \sigma_{i}^{x} \sigma_{i+2}^{x} = \sum_{i} J_{i}^{x} \left(c_{i}^{\dagger} + c_{i} \right) \left(1 - 2n_{i} \right) \left(1 - 2n_{i+1} \right) \left(c_{i+2}^{\dagger} + c_{i} \right) \\ \mathbb{Z}_{2} \end{array}$$

$$\begin{array}{c} PRL \ \textbf{II3}, \ 107204 \ (2014) & PHYSICAL \ REVIEW \ LETTERS & ss \\ \hline \textbf{Many-Body Localization in a Disordered Quantum Ising Chain} \\ \hline \textbf{Jones A. Kjäll, Jens H. Bardarson, and Frank Pollmann} \end{array}$$

arXiv:2008.09113v1

 $\mathscr{H} = -\sum_{i} \left(J_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + h_{i} \sigma_{i}^{z} \right) + \sum_{i} g_{i} \left(\sigma_{i}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$ Interaction (\mathbb{Z}_2 sym. + duality) – non – interacting

 $\mathscr{H} = -\sum \left(J_i \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z \right) + \sum g_i \left(\sigma_i^x \sigma_{i+2}^x + \sigma_i^z \sigma_{i+1}^z \right)$ Interaction (\mathbb{Z}_2 sym. + duality) non – interacting

$T = \infty$ Phase diagram: Previous results/proposals

 $\mathscr{H} = -\sum \left(J_i \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z \right) + \sum g_i \left(\sigma_i^x \sigma_{i+2}^x + \sigma_i^z \sigma_{i+1}^z \right)$ Interaction (\mathbb{Z}_2 sym. + duality) non – interacting

$T = \infty$ Phase diagram: Previous results/proposals

some key questions

Fate of the non-interacting "Infinite Randomness" critical point ? Possible direct transition between 2 different MBL phases ? • Topological nature of the MBL Spin Glass phase ?

Non-interacting problem $\mathscr{H}_{\text{TFIM}} = -\sum_{i} (J_i \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z)$

Non-interacting problem $\mathscr{H}_{\text{TFIM}} = -\sum_{i} \left(J_i \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z \right)$

Dirac fermions

Lieb-Schultz, Mattis (1961) ; Pfeuty (1970) ...

$$\sigma_{j}^{z} = 1 - 2c_{j}^{\dagger}c_{j}$$

$$\sigma_{j}^{x} = K_{j}\left(c_{j}^{\dagger} + c_{j}\right) \quad \text{with} \quad K_{j} = \prod_{k=1}^{j-1} \sigma_{k}^{z},$$

$$\sigma_{j}^{y} = iK_{j}\left(c_{j}^{\dagger} - c_{j}\right)$$

$$\mathscr{H}_{\text{TFIM}} = \sum_{i=1}^{L} \left[J_i \left(c_i^{\dagger} c_{i+1}^{\dagger} + c_i^{\dagger} c_{i+1} - c_i c_{i+1}^{\dagger} - c_i c_{i+1} \right) + h_i \left(1 - 2c_i^{\dagger} c_i \right) \right] = \sum_{m=1}^{L} \epsilon_m \left(\phi_m^{\dagger} \phi_m - \phi_m^{\dagger} \phi_m - \phi_m^{\dagger} \phi_m \right) + h_i \left(1 - 2c_i^{\dagger} \phi_m^{\dagger} \phi_m - \phi_m^{\dagger} \phi_m^{\dagger} \phi_m - \phi_m^{\dagger} \phi_$$

Disorder "protects" magnetic order at ALL energies!

Localization-protected quantum order

David A. Huse,¹² Rahul Nandkishore,¹ Vadim Oganesyan,^{3,4} Arijeet Pal,⁵ and S. L. Sondhi²

 $\delta = \overline{\ln J} - \overline{\ln h}$

Disorder "protects" magnetic order at ALL energies!

Localization-protected quantum order

David A. Huse,¹² Rahul Nandkishore,¹ Vadim Oganesyan,^{3,4} Arijeet Pal,⁵ and S. L. Sondhi²

even & odd

What are the effects of interactions?

 $\underbrace{J_{L-1}}_{h_3} \underbrace{J_{2}}_{h_4} \underbrace{J_{L-1}}_{h_L} \underbrace{\mathscr{H}}_{Pauli} = \sum_{j} \left(J_j \sigma_j^x \sigma_{j+1}^x - h_j \sigma_j^z \right) + g_z \sum_{j} \sigma_j^z \sigma_{j+1}^z + g_x \sum_{j} \sigma_j^x \sigma_{j+2}^x$

What are the effects of interactions?

$$= \sum_{j} \left(J_j \sigma_j^x \sigma_{j+1}^x - h_j \sigma_j^z \right) + g_z \sum_{j} \sigma_j^z \sigma_{j+1}^z + g_x \sum_{j} \sigma_j^x \sigma_{j+2}^x$$

$$a_{a} = -i \sum_{j} \left(J_{j} b_{j} a_{j+1} - h_{j} a_{j} b_{j} \right) - g_{z} \sum_{j} a_{j} b_{j} a_{j+1} b_{j+1} - g_{x} \sum_{j} b_{j} a_{j+1} b_{j+1}$$

$$= \sum_{j} \left[J_{j} \left(c_{j}^{\dagger} c_{j+1} + c_{j}^{\dagger} c_{j+1}^{\dagger} + \text{h.c.} \right) + 2h_{j} n_{j} \right] + g_{z} \sum_{j} \left(1 - 2n_{j} \right) \left(1 - 2n_{j+1} \right) \left(1 + g_{x} \sum_{j} \left(c_{j}^{\dagger} - c_{j} \right) \left(1 - 2n_{j+1} \right) \left(c_{j+2}^{\dagger} \right) \right) \left(1 - 2n_{j+1} \right) \left(c_{j+2}^{\dagger} \right) \right]$$

What are the effects of interactions?

$$\sum_{j} \left(J_{j}\sigma_{j}^{x}\sigma_{j+1}^{x} - h_{j}\sigma_{j}^{z} \right) + g_{z} \sum_{j} \sigma_{j}^{z}\sigma_{j+1}^{z} + g_{x} \sum_{j} \sigma_{j}^{x}\sigma_{j+2}^{x}$$

$$a = -i \sum_{j} \left(J_{j}b_{j}a_{j+1} - h_{j}a_{j}b_{j} \right) - g_{z} \sum_{j} a_{j}b_{j}a_{j+1}b_{j+1} - g_{x} \sum_{j} b_{j}a_{j+1}b_{j}$$

$$\sum_{j} \left[J_{j} \left(c_{j}^{\dagger}c_{j+1} + c_{j}^{\dagger}c_{j+1}^{\dagger} + h \cdot c \cdot \right) + 2h_{j}n_{j} \right] + g_{z} \sum_{j} \left(1 - 2n_{j} \right) \left(1 + g_{x} \sum_{j} \left(c_{j}^{\dagger} - c_{j} \right) \left(1 - 2n_{j+1} \right) \left(c_{j+1}^{\dagger} + g_{j}^{\dagger} - g_{j}^{\dagger} \right) \right)$$
Intrice properties of trans tail model for the set of the set and defined as the formula is a set of the set and defined as the formula is a set of the set and defined as the formula is a set of the set and defined as the formula is a set of the set as the formula is a set of the set of the set as the formula is a set of the set of the set of the set as the formula is a set of the set of th

g

1.3

... so what happens at high energy?

so what happens at high energy?

$$\delta = \overline{\ln J} - \overline{\ln h}$$

... so what happens at high energy?

- Shift-Invert Exact Diagonalization result at $T = \infty$

	PHYSICAL REVIEW RESEARCH 4, L032016 (2022)
Letter	
Topologi	cal order in random interacting Ising-Majorana chains stabilized by many-body localization

Interacting problem Shift-Invert Exact Diagonalization

$$\mathcal{H} = -\sum_{i} \left(J_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + h_{i} \sigma_{i}^{z} \right)$$
$$+g \sum_{i}^{i} \left(\sigma_{i}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$$

 $L_{max} = 18$ (harder than Heisenberg)

Interacting problem Shift-Invert Exact Diagonalization

$$\mathcal{H} = -\sum_{i} \left(J_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + h_{i} \sigma_{i}^{z} \right)$$
$$+g \sum_{i}^{i} \left(\sigma_{i}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$$

 $L_{max} = 18$ (harder than Heisenberg)

g=0.5 MBL — ergodic — MBL

PMERGODICMBLSG

Interacting problem Shift-Invert Exact Diagonalization

$$\mathcal{H} = -\sum_{i} \left(J_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + h_{i} \sigma_{i}^{z} \right)$$
$$+g \sum_{i}^{i} \left(\sigma_{i}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$$

 $L_{\rm max} = 18$ (harder than Heisenberg)

g=0.5 MBL — ergodic — MBL

Spectroscopy of the MBL-SG

Spectroscopy of the MBL-SG

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Consequences for the weakly interacting regime

Summary

- Two topologically different MBL phases
- Wide intervening ERGODIC regime
- Infinite Randomness unstable towards ergodicity
- Spectral-pairing transition = avalanche criterion

Topological MBL-SG + spectral pairing Featureless MBL Paramagnet

Summary

- Two topologically different MBL phases
- Wide intervening ERGODIC regime
- Infinite Randomness unstable towards ergodicity
- Spectral-pairing transition = avalanche criterion

Strong Zero Mode Topological MBL-SG + spectral pairing **Featureless MBL Paramagnet** operator?

