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FIG. 1. Microscopic mechanism of the chain breaking in the non-interacting case, Eq. (1.1), illustrated for a single L = 512 sites sample with
a disorder strength W = 5. (a) Expectation value of the local magnetization hSz

i i along the chain, computed with ED for an eigenstate in the
middle of the spectrum: we observe seemingly random oscillations between ±1/2. (b) Same as panel (a) but for the deviations with respect to
perfect polarization �i = 1/2 � |hSz

i i|, plotted in log-scale. Green circles highlight the sites with the smallest deviations (strongly polarized
spins). The most polarized site i? = 92 is indicated by a vertical green line and the cluster containing it by a green region in panels (a) and (b).
(c) Zoom over the region surrounding i?: one clearly sees a short-range correlation of the �i’s in its vicinity. (d) Microscopic mechanism at the
origin of the chain breaking: the most polarized site lies in a series of `max ⇡ lnL

ln 2 = 9 consecutively occupied orbitals �m, represented by
full blue lines, orange dashed lines representing the unoccupied orbitals. Panel (d) shows exponential fits to the exact single-particle states, not
necessarily symmetric, while panel (e) represents the corresponding toy model description with all �m in Eq. (1.3) having the same localization
length ⇠; the resulting deviations are shown in panel (f). (g) Disorder dependence of the localization length ⇠(W ) computed from the Lyapunov
exponent (see Sec. S2) averaged over the density of states. The continuous lines correspond to the analytical ansatz ⇠�1 = ln[1 + (W/W0)

2],
with W0 = 1.13, 1.22 (see text Eq. (3.1) and below). The inset shows the same data for 1/⇠ at large disorder.

scribes free fermions in a random potential. In the presence of
disorder, all single-particle fermionic eigenstates �m are An-
derson localized. Following Refs. 70 and 79, we model these
eigenstates by a simple exponential

|�m(i)|2 ⇠ exp

✓
�
|i� i

m
0
|

⇠m

◆
(1.3)

for all orbitals m, with ⇠m and i
m
0

the corresponding localiza-
tion lengths and centers. For a given filling fraction 0 < ⌫ < 1,
the real-space density at a site i is given by

hnii =
X

moc.

|�moc.(i)|
2
, (1.4)

where the sum is performed over the ⌫L occupied fermionic
levels moc.. In our toy model description, we then further as-
sume that all orbitals have the same localization length ⇠m ⌘ ⇠.
Therefore, the maximal (resp. minimal) fermionic density is

expected to occur in the middle of the longest region of `max

consecutive sites that are occupied (unoccupied) by an or-
bital [80]. At half-filling ⌫ = 1/2, a configuration with ` con-
secutive occupied (or empty) sites occurs with a probability
proportional to 2�`, which, for a finite chain of length L � 1
yields `max ⇡ lnL/ ln 2. Back to the spin language, the min-
imal deviation from perfect polarization �min ⌘

1

2
� |hS

z
i?i|,

is then given by

�min(L) ⇠ exp
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�
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2⇠

◆
⇠ L

� 1
2⇠ ln 2 , (1.5)

which defines the disorder-dependent freezing exponent

� =
1

2⇠ ln 2
. (1.6)

This simple reasoning, illustrated in Fig. 1 (a) to (f), will be
further discussed below in the paper, together with large-scale
numerical simulation results.
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FIG. 9. Validity of the toy model for the description of the deviation �min of the most polarized site i?. (a) Average length `cluster of the cluster
containing the most polarized site, as determined by the occupation of this site and its neighbors (see text), and rescaled with the expected size
dependence at strong disorder, lnL/ ln 2. The inset is a zoom on the di�erence of the rescaled length to one. (b) Example of an even, empty,
isolated cluster in the toy model. (c) Example of an odd, occupied, non-isolated cluster in the toy model. (d) ED data for the power-law decay
of the typical value of the minimal deviation, rescaled with the localization length ⇠(W ) and the average cluster length, for sizes L � 12. Inset:
same data but in linear scale. The green line is a guide to the eye corresponding to Eq. (3.2) with a zero shift. Compare to Fig. 4.

wavefunction around its localization center shows that ⇠�1
⇠

2 ln(W ) [87]. Therefore, the simple Ansatz formula [99]
which combines both weak and strong disorder limits

⇠ =
1

ln
h
1 + (W/W0)

2

i (3.1)

nicely fits the bill, as shown in Fig. 1(g) where we see that
Eq. (3.1) with W0 ⇠ 1.2 captures extremely well the exact
numerics for ⇠(W ).

As introduced in Sec. I B, the a priori simplistic toy model
provides a remarkably realistic description of the many-body
Anderson insulator. In particular, the simple expression for the
freezing exponent � ⇠ (2⇠ ln 2)�1 remains valid over a very
broad range of randomness, and only starts to deviate typically
below W ⇠ 2, as clearly shown in Fig. 7. Nevertheless, in
what follows, we are going to see that the extreme polariza-
tion scaling derived within the simple toy-model framework,

�min(L) ⇠ exp
⇣
�

`max
2⇠

⌘
, can be extended to weaker disorder

strengths, provided the fact that the maximal sequence `max is
replaced by `cluster, the average length of the cluster hosting
the most polarized spin.

2. Cluster length

Let us first define the cluster length `cluster for any given
sample as the size of the region surrounding the most polar-
ized site in which the magnetization does not change sign (see
green region in Fig. 1(a)). The motivation for this definition is
twofold: (i) it holds even at weak disorder, in particular when
the localization length is large and a one-to-one correspon-
dence between sites and orbitals becomes ill-defined, and (ii)
it remains valid in the presence of finite interactions, namely
for the MBL problem discussed in Sec. IV.

We have numerically computed the disorder average cluster
size, and its rescaled form `sc = `cluster/`max is shown in
Fig. 9(a). At strong disorder, we expect the cluster lengths to
be controlled by `max = lnL/ ln 2. This is indeed what is
observed in Fig. 9(a) for a surprisingly wide range of disorder
strengths, down to W

⇤
⇠ 1.5, thus giving a rough estimate for

the range of validity of the toy model. Remarkably, for W 

W
⇤ the average cluster length becomes significantly larger than

`max and strong finite-size corrections start to appear, while at
intermediate values of W the average cluster length is slightly
below `max. This non-monotonous behavior, best visible in
the inset of Fig. 9(a), results from the competition between
two e�ects. At intermediate disorder (typically 1 < W < 10)
spatial fluctuations in the localization lengths can lead to local
configurations for which the most polarized site may belong
to a cluster slightly smaller than `max. On the other hand at
smaller W , where the notion of localization center start to
become fuzzier, sites that should be normally associated to an
empty orbital can have slightly more than half-occupation, thus
creating wider and wider clusters, as clearly shown in Fig. 9(a).
Correspondingly, the maximal number of sites with the same
sign of the magnetization remains everywhere larger or equal
to `cluster and can become extremely large at weak disorder,
deviating very strongly from the toy model value `max.

3. Scaling plot and data collapse

With this in hands, we can now re-write the toy model result
Eq. (1.5) as an expression that can be tested at large scales for
the XX chain:

ln(�typ
min

) = �
`cluster

2⇠
� lnDW , (3.2)
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We expect a transition in the presence of interactions

Interacting Electrons in Disordered Wires: Anderson Localization and Low-T Transport

I. V. Gornyi,1,* A. D. Mirlin,1,2,† and D. G. Polyakov1,*
1Institut für Nanotechnologie, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany

2Institut für Theorie der kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany
(Received 21 May 2005; published 8 November 2005)

We study the conductivity !!T" of interacting electrons in a low-dimensional disordered system at low
temperature T. For weak interactions, the weak-localization regime crosses over with lowering T into a
dephasing-induced ‘‘power-law hopping.’’ As T is further decreased, the Anderson localization in Fock
space crucially affects !!T", inducing a transition at T # Tc, so that !!T < Tc" # 0. The critical behavior
of !!T" above Tc is ln!!T" / $!T $ Tc"$1=2. The mechanism of transport in the critical regime is many-
particle transitions between distant states in Fock space.

DOI: 10.1103/PhysRevLett.95.206603 PACS numbers: 72.20.$i, 71.30.+h, 72.15.Rn, 73.63.$b

In a path breaking paper [1] Anderson demonstrated that
a quantum particle may become localized by a random
potential. In particular, in noninteracting systems of one-
dimensional (1D) or two-dimensional (2D) geometry even
weak disorder localizes all states [2], yielding zero con-
ductivity, !!T" # 0, whatever temperature T. A nonzero
!!T" may then only occur due to inelastic processes lead-
ing to dephasing of electrons: (i) scattering by external
excitations (phonons) and (ii) electron-electron (e-e) scat-
tering [3]. In either case, at sufficiently high T the dephas-
ing rate "$1

# is high and the localization effects are reduced
to a weak-localization (WL) correction to the Drude con-
ductivity. This correction diverges with lowering T for
dimensionality d % 2, signaling the onset of the strong
localization (SL) regime. This prompts a question as to
how the system conducts at low T.

For the case of electron-phonon (e-ph) scattering the
conductivity is governed by Mott’s variable-range hopping
(VRH) [4], !!T" / expf$!T0=T"$g with $ # 1=!d& 1".
In the presence of a long-range Coulomb interaction, the
VRH exponent is modified, $ # 1

2 [5].
But what is the low-T behavior of !!T" if the e-ph

coupling is negligible and the only source of the inelastic
scattering is the e-e interaction? Our purpose here is to
solve this long-standing fundamental problem, which is
also of direct experimental relevance; see Refs. [6–8],
where the crossover from WL to SL with lowering T was
studied for 1D and 2D systems. For definiteness, we focus
on a many-channel 1D system with short-range interaction
and discuss generalizations (single-channel wires, 2D sys-
tems, Coulomb interaction) at the end.

It was proposed in [9] that the e-e interaction by itself is
sufficient to induce VRH. This idea was widely used for
interpretation of experimental [8,10] and numerical [11]
results on 2D systems. Further, Ref. [12] used bosonization
to study the problem in 1D and concluded that transport is
of VRH character. These results are, however, in conflict
with the energy-conservation argument [13], forbidding
elementary hops in the low-T limit [14]. The situation is
particularly interesting for d % 2, where no mobility edge

exists, activation to which might give !!T" ! 0. If neither
VRH nor activation, then what?

Let us now specify the model. We consider a many-
channel weakly disordered wire, so that the relevant length
scales satisfy k$1

F ' l ' %, where kF is the Fermi mo-
mentum, l the mean free path, %( &'D the localization
length, ' the density of states, and D the diffusion constant
[15,16]. The corresponding energy scales are the Fermi
energy EF, the elastic scattering rate "$1, and the level
spacing in the localization volume, !% # 1='%, with
EF ) "$1 ) !%. We will assume a short-range e-e inter-
action U!r$ r0" characterized by a dimensionless cou-
pling ( # ' ~U!0", where ~U!q" is the Fourier transform of
U!r". We assume that ( ' 1, which yields a richer behav-
ior of !!T" and allows better understanding of underlying
physics; the case (( 1 is discussed in the end.

At sufficiently high T, !!T" is close to its Drude value
!D, with quantum corrections related to the weak localiza-
tion (!!WL) and to the interplay of interaction and disor-
der (Altshuler-Aronov contribution !!AA) [3],

j!!WLj
!D

(
Z
l$1
#

dq
&'Dq2

( l#
%
(

!
!%

(2T

"
1=3

: (1)

Here we used the result for the dephasing rate length l# #
!D"#"1=2 due to e-e interaction [3],

"$1
# ( (2T

Z
l$1
#

dq
&'Dq2

( (2T
l#
%
: (2)

The WL correction grows with lowering T and finally
becomes strong (!!WL=!D ( 1) when l# reaches %, or,
equivalently, when "$1

# ( !%. This happens at T ( T1 #
($2!%, marking the beginning of the SL regime. The
interaction-induced correction !!AA=!D ( !(2!%=T"1=2
remains small at T ( T1 and thus is of no relevance in
the present context. (For (( 1, !!AA is of order !D at
T ( T1 and does not lead to any qualitative changes,
either.) The subject of our interest is !!T" for T < T1.

In fact, SL does not necessarily mean !!T" is exponen-
tially small. Specifically, in the high-T part of the SL
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Emergence of Quantum Chaos in Finite Interacting Fermi Systems

Ph. Jacquod1 and D. L. Shepelyansky2,*
1Institut de Physique, Université de Neuchâtel, 1, Rue A.L. Breguet, CH-2000 Neuchâtel, Switzerland
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We study the level spacing statistics Pssd in many-body Fermi systems and determine a critical two-
body interaction strength Uc at which a crossover from Poisson to Wigner-Dyson statistics takes place.
Near the Fermi level, the results allow one to find a critical temperature Tch above which quantum
chaos and thermalization set in. [S0031-9007(97)03971-9]

PACS numbers: 05.45.+b, 05.30.Fk, 24.10.Cn

The random matrix theory (RMT) was developed to
explain the general properties of complex energy spectra
in many-body interacting systems such as heavy nuclei,
many electron atoms and molecules [1]. Later, it found
many other successful applications in different physical
systems. Among the most recent of them, we can quote
models of quantum chaos, where RMT appears due
to the classically chaotic but deterministic underlying
dynamics [2]. One of the most direct indications of the
emergence of quantum chaos is the transition of the level
spacing statistics Pssd from Poisson to Wigner-Dyson
(WD) distribution. This property has been widely used to
detect the transition from integrability to chaos not only
in systems with a few degrees of freedom [2] but also in
solid-state models with many interacting electrons [3]. It
was also applied to determine the delocalization threshold
in noninteracting disordered systems [4].

While the conditions for the appearance of the WD
distribution in noninteracting systems is qualitatively well
understood, the situation is more intricate in the presence
of interaction. Indeed, in this case, the size of the total
Hamiltonian matrix grows exponentially with the number
of particles, and it becomes very sparse as a result of the
two-body nature of the interaction. Because of this, it was
initially not obvious whether switching on the interaction
would lead to the WD statistics. To study this problem
a two-body random interaction model (TBRIM) was
proposed [5,6]. This model consists of n fermions which
can occupy m unperturbed energy orbitals with mean
one-particle level spacing D. The multiparticle states are
coupled by two-body random transition matrix elements
of typical strength U. It was found that a sufficiently
strong U leads to a level mixing and appearance of
WD statistics. Very recently, the interest for this model
has been renewed, and its statistical properties were
investigated in more detail [7]. This rise in interest
was stimulated by the understanding that many statistical
properties of real physical systems such as the rare-earth
Ce atom [8] and the 28Si nucleus [9,10] are well described
by the TBRIM. In addition, this model is quite similar
to the s-d shell model used for a description of complex
nuclei [9,10]. Since interaction is generically of a two-
body nature, it is reasonable to assume that this model will

also be useful for a description of interacting electrons in
clusters [11] and mesoscopic quantum dots [12].

While the statistical properties of the TBRIM were
studied in some detail, surprisingly, the most important
question about the critical interaction strength Uc at which
the WD level spacing statistics sets in was omitted.
Apparently the reason for this is based on the common
lore in nuclear physics that the level density grows
exponentially with the number of particles, and therefore
an exponentially small interaction is sufficient to mix
nearby levels [7,10]. However, recent estimates on few-
particle models sn ≠ 2, 3, 4d showed that, in spite of the
high many-body density of states, only an interaction
strength comparable to the two-particle level spacings can
give a level mixing [13,14]. Therefore the dependence
of Uc on the number of particles and orbitals, as well as
the excitation energy, should still be determined. This is
the main purpose of this paper. The above border in U
is physically very important. Indeed, for U , Uc, levels
are not mixed by interaction, and hence the system is not
thermalized. Consequently, the occupation numbers are
not described by the Fermi-Dirac statistics. However, a
sufficiently strong interaction leads to thermalization as
has been seen in numerical simulations [7,9,10].

To study the effect of interaction on the spectral prop-
erties of finite Fermi systems we used the TBRI model
described in [7]. It consists of n particles distributed
over m orbitals with energies em0 , m0 ≠ 1, 2, . . . , m.
These energies are randomly distributed over the interval
f0, mg with average spacing D ≠ 1. The total number of
multiparticle states is N ≠ m!yfn!sm 2 nd!g. They are
coupled by random two-body transition matrix elements
distributed in the interval f2U, Ug. Because of the
two-body nature of the interaction, only states differing
by, at most, two one-particle indices are coupled. As a
result, each multiparticle state is coupled with K ≠ 1 1
nsm 2 nd 1 nsn 2 1d sm 2 nd sm2 n 2 1dy4 states [7].
All these transitions occur inside a two-body energy
interval B ≠ 2m 2 4 around the energy of an initial multi-
particle state. For large m and n, the number of transitions
K is much smaller than the size of the matrix N but is
much larger than the number of different two-body matrix
elements N2 ¯ m2y2. The total energy of the system
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Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach

Boris L. Altshuler,1 Yuval Gefen,2 Alex Kamenev,2 and Leonid S. Levitov3
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The problem of electron-electron lifetime in a quantum dot is studied beyond perturbation theory
by mapping onto the problem of localization in the Fock space. Localized and delocalized regimes
are identified, corresponding to quasiparticle spectral peaks of zero and finite width, respectively.
In the localized regime, quasiparticle states are single-particle-like. In the delocalized regime, each
eigenstate is a superposition of states with very different quasiparticle content. The transition energy is
ec . Dsgy ln gd1y2, where D is mean level spacing, and g is the dimensionless conductance. Near ec

there is a broad critical region not described by the golden rule. [S0031-9007(97)02895-0]

PACS numbers: 72.15.Lh, 72.15.Rn, 73.23.–b

Quasiparticle in a Fermi liquid is not an eigenstate: it
decays into two quasiparticles and a hole. In an infinite
clean system, by using the golden rule (GR), quasiparticle
decay rate is estimated as gsed , e2yeF , where e is quasi-
particle energy and eF is Fermi energy [1]. However, in
a finite system the eigenstate spectrum is discrete. In this
case, quasiparticles may be viewed as wave packets con-
structed of such states, the packet width being determined
by the lifetime in an infinite system: de . gsed. In this
paper we attempt to clarify the relation between quasipar-
ticles and many-particle states, and find that at different
energies it has different meanings.

Conventionally, quasiparticles are well defined pro-
vided gsed ø e. However, to resolve quasiparticles in a
mesoscopic system, a more stringent condition is required:
gsed , D, the quasiparticle level spacing. As an exam-
ple, consider quasiparticle peaks in tunneling conductance
of a quantum dot [2,3]. The peaks observed in nonlinear
conductance at certain bias are interpreted as the quasipar-
ticle tunneling density of states (DOS). Each peak corre-
sponds to a “quasiparticle state,” and its width measures
the lifetime of the state. Below we consider an isolated
Fermi liquid, ignoring any contributions to the quasiparti-
cle decay due to finite escape rate, phonons, etc. [4].

The meaning of quasiparticle lifetime needs clarifica-
tion: strictly speaking, since a quantum dot is a finite sys-
tem, any many-particle eigenstate gives rise to an infinitely
narrow conductance peak. However, we will see that only
a small fraction of those states overlap with one-particle
excitations strongly enough to be detected by a finite sensi-
tivity measurement. Under certain conditions, these strong
peaks group into clusters of the width ,gsed that can be
interpreted as quasiparticle peaks.

Before discussing possible regimes let us review the
GR approach. Recently Sivan et al. [5], adopting the
quasiparticle picture to a finite size geometry and relying
on the earlier work [6] on electron-electron scattering rate
in diffusive conductors, found that

gsed ¯ DseygDd2, e , gD , (1)

where D is the mean single-particle level spacing near the
Fermi level and g ¿ 1 is the dimensionless conductance,
for a finite system defined by g ≠ EcyD, where Ec is
the Thouless energy (inverse time of diffusion through the
system). The decay rate (1) is much larger than in a clean
Fermi liquid; however, at e , Ec one has gsed ø D,
implying that the quasiparticle states can be resolved.

However, the GR can be used to evaluate lifetime only
when the density of final states is sufficiently large, so
that the GR decay rate is larger than the level spacing
of final unperturbed states. Otherwise, the GR will not
give the decay rate, but rather just a first-order perturbation
correction to the energy of a given eigenstate. In our
problem, it is important to realize that, since a quasiparticle
decays into three quasiparticles, the density of relevant
final states, n3sed ≠ e2y2D3, is much smaller than that of
all many-body states. The interaction matrix element V
in the GR leading to Eq. (1) is of the order of Dyg (see
below), which should be compared to the three-particle
level spacing 1yn3. Therefore, the GR is not applicable
unless e . ep ≠ D

p
g. Note that, since ep ¿ D, there

are many states whose lifetime is not given by GR.
At e ø ep, when matrix elements are smaller than the

spacing 1yn3, the quasiparticle states do not decay: they
are just slightly perturbed one-particle states. Hence they
produce narrow conductance peaks that may have weak
satellites due to coupling to many-particle states. As e
approaches ep from below, the number of the satellites
rapidly increases. At e ¿ ep, clusters of satellites form
finite width peaks well described by the GR.

For a quantitative description of the interval 0 , e ,
Ec (including the vicinity of ep), it is both interesting and
instructive to explore the analogy of this problem with the
Anderson localization. This is the goal of our paper.

Extension of the traditional localization problem to few
interacting particles has received much attention recently.
The study of the two-particle case, started by Dorokhov
[7], was further advanced by Shepelyansky [8], Imry
[9], and Pichard et al. [10], with extensions to more
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Abstract

We consider low-temperature behavior of weakly interacting electrons in disordered conductors
in the regime when all single-particle eigenstates are localized by the quenched disorder. We prove
that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly
vanishes as long as the temperature T does not exceed some finite value Tc. At the same time, it can
be also proven that at high enough T the conductivity is finite. These two statements imply that the
system undergoes a finite temperature metal-to-insulator transition, which can be viewed as Ander-
son-like localization of many-body wave functions in the Fock space. Metallic and insulating states
are not different from each other by any spatial or discrete symmetries. We formulate the effective
Hamiltonian description of the system at low energies (of the order of the level spacing in the
single-particle localization volume). In the metallic phase quantum Boltzmann equation is valid,
allowing to find the kinetic coefficients. In the insulating phase, T < Tc, we use Feynmann diagram
technique to determine the probability distribution function for quantum-mechanical transition
rates. The probability of an escape rate from a given quantum state to be finite turns out to vanish
in every order of the perturbation theory in electron–electron interaction. Thus, electron–electron
interaction alone is unable to cause the relaxation and establish the thermal equilibrium. As soon
as some weak coupling to a bath is turned on, conductivity becomes finite even in the insulating
phase. Moreover, in the vicinity of the transition temperature it is much larger than phonon-induced
hopping conductivity of non-interacting electrons. The reason for this enhancement is that the
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Interactions and the Anderson transition
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We examine the effects of the electron-electron interaction on the Anderson transition. It is shown that

the dimensionality of the system and the range of the interaction are crucial in determining the decay

properties of a single-particle citation. For a long-range interaction we find that the appropriate one-electron

excitations, when localized, decay via a (e —p,)""law where (a —p,) is the energy above the Fermi energy

and d is the dimensionality. At finite temperatures this becomes a T" +' law. The single-particle excitations

are bound for short-range forces. The conditions for the persistence of the Anderson transition are presented

in terms of the nature of the "m-basis" (that in which the Green's function is diagonal) and the

convergence of a series for the renormalized self-energy.

I. INTRODUCTION

Since 1958, when the concept of localization was
first introduced by Anderson, ' there has been an

increasing amount of interest in the field. Ap-

plications of the concepts that have grown out of
the problem, such as the mobility edge, have been
used to explain the behavior of a variety of sys-
tems. ' This has been made possible by a gradual
increase in the understanding of the features of
the solution to the problem rather than the exis-
tence of a complete solution. In fact, the problem
has never been solved in detail.

The most prominent apparent success of the
application of the theory of localization is in ex-
plaining the low-temperature conductivity of cer-
tain materials; most notable of these is the in-
version layer. Variable range hopping has been
observed at low temperatures with an activated
conductivity at higher temperatures. ~ 4 This is
in accordance with the one-electron localization
picture. The same sort of behavior has been
observed in three dimensions. 2'5' Qn the other
hand, the results of measurements of the Hall
effect' are not well understood. The general state
of the art has been reviewed by Mott et al. and
more recently by Adkins.

Both the successes and failures of the one-elec-
tron theory suggest that the problem be examined
further. In particular, in this paper, we will look
at some of the effects of electron-electron inter-
actions in such a system. Since the localization
problem itself is as yet unsolved, one should not
expect exact answers for the many-body (Fermi
glass) problem. However, by using what we do
know about the localization problem, we can im-
prove our understanding of the effects of inter-
actions.

As in the case of the Fermi liquid, the succes-

ses of the one-electron picture suggest that we
develop a theory of elementary excitations. The
possibility that the same physical laws that make
this possible for the liquid —the exclusion princi-
ple —might result in the same sort of situation in
the glass was first suggested in 1970.' However,
the lack of symmetry in a glass makes the situa-
tion quite different. Perhaps the least of the
complications is that we do not know the solutions
to the noninteracting problem. For even if we
did, it is not at all clear that this is the appro-
priate place to start. %e will see that the Fermi
glass is by no means "normal" in the sense of the
Fermi liquid.

As first argued by Landau, the symmetry of the
Fermi liquid leads to a one to one, noncrossing
correspondence between the noninteracting and in-
teracting states. Even in a metal, where the

symmetry is that of the crystal, this is not neces-
sarily the case. As pointed out by Kohn and

Luttinger, ' the levels may cross and the Fermi
surface distorts. The same sort of anomalous
diagrams may occur in the glass and lead to
mixing so the eigenstates of Ho with energies
below the Fermi energy need not be the correct
starting point. Although we will have occasion
to return to this point later, we will, for the most
part, simply assume that we can self-consistently
determine which states to start from and suppose
that they are all localized.

Given this we can then see" that the lack of
momentum conservation leads to single-particle
decays that may lead to a finite decay rate at the
final Fermi energy. Aside from apparently des-
troying the quasiparticle picture it would seem that
the system can never support a localized pertur-
bation. Since Anderson insulators do seem to
occur in nature, this cannot be the final story.
In Ref. 11, it was shown how one may eliminate
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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extract the critical disorder strength hc and exponent ⌫. The
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S
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constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density
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in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ε) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 " 1) is separated from the localized regime (bright region with
a1 # 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.
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years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density
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Many-body localization phase transition

Arijeet Pal and David A. Huse
Physics Department, Princeton University, Princeton, New Jersey 08544, USA

!Received 21 October 2010; published 9 November 2010"

We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2
chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and
thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected
in this nonlocalized, “ergodic” phase. For strong random field the eigenstates are localized with only short-
range entanglement. We roughly locate the localization transition and examine some of its finite-size scaling,
finding that this quantum phase transition at nonzero temperature might be showing infinite-randomness scal-
ing with a dynamic critical exponent z→!.
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I. INTRODUCTION

As originally proposed in Anderson’s seminal paper,1 an
isolated quantum system of many interacting degrees of free-
dom with quenched disorder may be localized and thus ge-
nerically fail to approach local thermal equilibrium, even in
the limits of long time and large systems, and for energy
densities well above the system’s ground state. In the same
paper, Anderson also treated the localization of a single-
particlelike quantum degree of freedom and it is this single-
particle localization, without interactions, that has received
most of the attention in the half century since then. Much
more recently, Basko, et al.2 have presented a very thorough
study of many-body localization with interactions at nonzero
temperature and the topic is now receiving more attention;
see, e.g., Refs. 3–13.

Many-body localization at nonzero temperature is a
quantum-phase transition that is of very fundamental interest
to both many-body quantum physics and statistical mechan-
ics: it is a quantum “glass transition,” where equilibrium
quantum statistical-mechanics breaks down. In the localized
phase the system fails to thermally equilibrate. These funda-
mental questions about the dynamics of isolated quantum
many-body systems are now relevant to experiments since
such systems can be produced and studied with strongly in-
teracting ultracold atoms.14 And they may become relevant
for certain systems designed for quantum-information
processing.15,16 Also, many-body localization may be under-
lying some highly nonlinear low-temperature current-voltage
characteristics measured in certain thin films.17

II. MODEL

Many-body localization appears to occur for a wide vari-
ety of particle, spin or qubit models. Anderson’s original
proposal was for a spin system;1 the specific simple model
we study here is also a spin model, namely, the Heisenberg
spin-1/2 chain with random fields along the z direction5

H = #
i=1

L

$hiŜi
z + JS!̂ i · S!̂ i+1% , !1"

where the static-random fields hi are independent random
variables at each site i, each with a probability distribution

that is uniform in $−h ,h%. Except when stated otherwise, we
take J=1. The chains are of length L with periodic boundary
conditions. This is one of the simpler models that shows a
many-body localization transition. Since we will be studying
the system’s behavior by exact diagonalization, working with
this one-dimensional model that has only two states per site
allows us to probe longer length scales than would be pos-
sible for models on higher dimensional lattices or with more
states per site. We present evidence that at infinite tempera-
ture, "=1 /T=0, and in the thermodynamic limit, L→!, the
many-body localization transition at h=hc&3.5#1.0 does
occur in this model. The usual arguments that forbid phase
transitions at nonzero temperature in one dimension do not
apply here since they rely on equilibrium-statistical mechan-
ics, which is exactly what is failing at the localization tran-
sition. We also present indications that this phase transition
might be in an infinite-randomness universality class with an
infinite dynamical critical exponent z→!.

Our model has two global conservation laws: total energy,
which is conserved for any isolated quantum system with a
time-independent Hamiltonian and total Ŝz. The latter conser-
vation law is not essential for localization and its presence
may affect the universality class of the phase transition. For
convenience, we restrict our attention to states with zero total
Ŝz.

For simplicity, we consider infinite temperature, where all
states are equally probable !and where the sign of the inter-
action J does not matter". The many-body localization tran-
sition also occurs at finite temperature; by working at infinite
temperature we remove one parameter from the problem and
use all the eigenstates from the exact diagonalization !within
the zero total Ŝz sector" of each realization of our Hamil-
tonian. We see no reason to expect that the nature of the
localization transition differs between infinite and finite non-
zero temperature, although it is certainly different at strictly
zero temperature.18 Note that this is a quantum-phase transi-
tion that occurs at nonzero !even infinite" temperature. Like
the more familiar ground-state quantum-phase transitions,
this transition is a sharp change in the properties of the
many-body eigenstates of the Hamiltonian, as we discuss
below. But unlike ground-state phase transitions, the many-
body localization transition at nonzero temperature appears
to be only a dynamical-phase transition that is invisible in
the equilibrium thermodynamics.4

PHYSICAL REVIEW B 82, 174411 !2010"

1098-0121/2010/82!17"/174411!7" ©2010 The American Physical Society174411-1
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We suggest that if a localized phase at nonzero temperature T!0 exists for strongly disordered and weakly
interacting electrons, as recently argued, it will also occur when both disorder and interactions are strong and
T is very high. We show that in this high-T regime, the localization transition may be studied numerically
through exact diagonalization of small systems. We obtain spectra for one-dimensional lattice models of
interacting spinless fermions in a random potential. As expected, the spectral statistics of finite-size samples
cross over from those of orthogonal random matrices in the diffusive regime at weak random potential to
Poisson statistics in the localized regime at strong randomness. However, these data show deviations from
simple one-parameter finite-size scaling: the apparent mobility edge “drifts” as the system’s size is increased.
Based on spectral statistics alone, we have thus been unable to make a strong numerical case for the presence
of a many-body localized phase at nonzero T.
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I. INTRODUCTION

Although Anderson’s original paper on localization1 is
mostly remembered for its ground-breaking results about
single particles in random potentials, one goal of that paper
was to learn about transport properties of highly excited
many-body eigenstates, e.g., quantum diffusion of nuclear
moments. This latter goal was mostly neglected in subse-
quent research on localization and metal-insulator transi-
tions. However, these questions have been recently brought
to our attention by Basko, et al.2 who present detailed argu-
ments that interacting electrons in static random potentials
can have a true metal-insulator transition at a nonzero critical
temperature. Thus, these systems are argued to have an insu-
lating phase, with strictly zero Ohmic conductivity, even at a
nonzero temperature. For some work on these questions pub-
lished before Basko et al. see, for example, Refs. 3–9.

In practice, few transport measurements are possible with-
out first equilibrating the sample with its environment in or-
der to establish a steady state !by removing Joule heat". In
metals, this coupling to the environment, provided it is not
too strong, does not affect the conductivity !nonlinear trans-
port is another story altogether, see, e.g., Ref. 10". In Ander-
son insulators, however, the heat bath plays a far less subtle
role: it is what permits transport. Conduction occurs by
variable-range hopping, which is an inelastic process requir-
ing a heat bath that can locally supply or absorb the energy
needed to permit hopping of the charge carriers between lo-
calized states that are not precisely degenerate. At the heart
of this extreme sensitivity of the dynamics of a localized
insulator to the coupling with its environment is its inability
to self-equilibrate. It is therefore useful to turn the issue
around by distinguishing conductors from true T!0 insula-
tors by whether the many-particle system itself constitutes a
heat bath. For example, one might ask whether external local
probes can deposit limitless amounts of energy or if they
tend to saturate the spectrum. Similarly, whether or not at-
tached leads themselves can effectively remove heat from the

sample will generally depend on heat conductivity of the
sample itself. Thus, we see that whether or not a quantum
system of many interacting degrees of freedom constitutes a
heat bath is not only a very fundamental question, but also
one of some practical relevance.

To the extent that one of the most successful theories of
nature, namely, thermodynamics, is founded on the assump-
tion of ergodicity, we expect true insulators !where this as-
sumption is strongly violated" to be rare and require fine
tuning of some sort. The noninteracting Anderson insulator is
one example, where the unrealistic condition of no interpar-
ticle interactions is crucial. Remarkably, the authors of Ref. 2
argue that a nonzero temperature Anderson insulator can be
stable against the dephasing effects of interparticle interac-
tions, making this state a sufficiently realistic possibility to
be taken seriously and looked for in experiments !provided
decoherence from the rest of the universe can be ignored to a
good approximation".

The calculations of Ref. 2 are based on a low-energy ef-
fective Hamiltonian whose connection with the parameters
of the original model of interacting electrons in a random
potential could not be established analytically. Thus, it is
interesting and likely worthwhile to test their results using
other methods and to try to learn more about the nature of
the proposed T!0 diffusive-to-insulating phase transition
and about the range of models that may exhibit it. We report
here on one such attempt. To start, we observe that applica-
tion of the quantitative estimates of the localization transition
in Ref. 2 to a lattice model with finite entropy and energy
densities !i.e., finite number of states at each site" implies
that the aforementioned localized phase and, therefore, the
phase transition to the diffusive state can persist all the way
to infinite temperature. This seemingly innocuous observa-
tion has at least two important practical implications. First,
by adapting familiar high-temperature expansion techniques,
we can more or less rigorously rule out the possibility that
such a transition is accompanied by a thermodynamic signa-
ture both at infinite temperature and by continuity at any
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Entanglement entropy: Volume vs. Area law

Khemani et al., PRX 7, 021013 (2017)

We note that a recent work [29] studies the coefficient
of the volume law for the EE of subsystems with size
LA ∼ L=4 and has results both consistent with and com-
plementary to our work. Reference [29] finds probability
distributions of the entanglement that look increasingly
bimodal at the transition; we comment on how their results,
together with our observed discontinuities, suggest that
the MBL-to-ETH transition may be some sort of hybrid
between continuous and discontinuous phase transitions.
In the remainder of the paper, we introduce and bench-

mark the model used in our analysis (Sec. II). We then
present our numerical data for SA in Sec. III A and show
that it looks strongly subthermal in the quantum critical
region. This is followed by a finite-size scaling analysis for
SA in Sec. III B, together with a comparison to Grover’s
results. In Sec. IV, we study the variance of the half-chain
EE and parse the contributions coming from fluctuations
across samples, eigenstates, and spatial cuts. In Sec. V, we
sketch a picture of the transition consistent with our
observations, and we end with a summary and outlook
in Sec. VI.

II. THE MODEL

We study a spin-1=2 Heisenberg chain with random z
fields and nearest and next-nearest neighbor interactions:

H ¼ J
XL−1

i¼1

½ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ SziS

z
iþ1& þ

XL

i¼1

hiS
z
i

þ J0
XL−2

i¼1

ðSxi Sxiþ2 þ Syi S
y
iþ2Þ; ð1Þ

where Sfx=y=zgi are spin-1=2 degrees of freedom on site i,
J ¼ J0 ¼ 1, and the fields hi are drawn uniformly and
independently from ½−W;W&. This model is MBL for large
disorder strength W > Wc ≥ 7. We present the estimate of
Wc as a lower bound since, as usual, we do not observe a
crossover on the MBL side of the transition.
Note that this model with J0 ¼ 0 is a “canonical” model

used in manyMBL studies with a criticalWc ≥ 3.5 [25,27].
We found it prudent to add the next-nearest neighbor term
to break the integrability of the canonical model in the limit
W → 0. Since our goal is to discriminate between thermal
and subthermal scaling for the critical EE, it helps to have
the MBL phase abut a strongly thermalizing phase. In the
canonical model, the EE does not reach the thermal value
until relatively deep in the delocalized phase (for numeri-
cally accessible system sizes), thus making it problematic
to draw meaningful conclusions about an observed sub-
thermal critical EE. Because it is not integrable at W ¼ 0,
our model thermalizes more completely within the thermal
phase for the smallest system sizes in our study.
Figure 2 benchmarks the location of the transition in

Eq. (1) using the half-chain entanglement entropy S and the

level statistics ratio r. Figure 2(a) shows S divided by
ST ¼ 0.5ðL − log2 eÞ bits, which is the Page [30] value for
a random pure state. The data are averaged over 2000 − 105

disorder realizations depending on L. Within each sample,
the data are further averaged over the 100 eigenstates
closest to the center of the band in the Sztot ¼ 0 sector (or a
quarter of that sector’s Hilbert space for small system
sizes). Unless otherwise mentioned, these parameters apply
to all our numerical results. Note that S=ST as a function of
W approaches a step function with increasing L, going
from zero in the MBL phase with area-law entanglement to
one in the thermal phase.
Figure 2(b) shows the level statistics ratio r≡minfΔn;

Δnþ1g=maxfΔn;Δnþ1g, where Δn ¼ En − Enþ1 is the
spacing between eigenenergy levels. This ratio is a sensitive
test of the level repulsion in a system: It approaches the
Gaussian orthogonal ensemble (GOE) value r ≅ 0.53 in
the thermal phase and the Poisson value r ≅ 0.39 in the
localized phase. Figure 2(b) shows that the system looks
nicely thermal at smallW and localized at largeW, with the
location of the crossing drifting towards larger W with
increasing L, as is typical.

(a)

L = 10
L = 12
L = 14
L = 16
L = 18

(b)

FIG. 2. (a) Disorder-averaged half-chain entanglement entropy
divided by the Page value ST for a random pure state as a function
of W and L. Note that S=ST approaches a step function at the
transition going from zero in the MBL phase with area-law
entanglement to one in the thermal phase. (b) Disorder-averaged
level statistics ratio r̄, which obeys a GOE distribution in the
thermal phase and a Poisson distribution in the localized phase,
respectively.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S
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constant for h < hc to area-law with S
E
/L ! 0 for
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the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density
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in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ε) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 " 1) is separated from the localized regime (bright region with
a1 # 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2
chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and
thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected
in this nonlocalized, “ergodic” phase. For strong random field the eigenstates are localized with only short-
range entanglement. We roughly locate the localization transition and examine some of its finite-size scaling,
finding that this quantum phase transition at nonzero temperature might be showing infinite-randomness scal-
ing with a dynamic critical exponent z→!.
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I. INTRODUCTION

As originally proposed in Anderson’s seminal paper,1 an
isolated quantum system of many interacting degrees of free-
dom with quenched disorder may be localized and thus ge-
nerically fail to approach local thermal equilibrium, even in
the limits of long time and large systems, and for energy
densities well above the system’s ground state. In the same
paper, Anderson also treated the localization of a single-
particlelike quantum degree of freedom and it is this single-
particle localization, without interactions, that has received
most of the attention in the half century since then. Much
more recently, Basko, et al.2 have presented a very thorough
study of many-body localization with interactions at nonzero
temperature and the topic is now receiving more attention;
see, e.g., Refs. 3–13.

Many-body localization at nonzero temperature is a
quantum-phase transition that is of very fundamental interest
to both many-body quantum physics and statistical mechan-
ics: it is a quantum “glass transition,” where equilibrium
quantum statistical-mechanics breaks down. In the localized
phase the system fails to thermally equilibrate. These funda-
mental questions about the dynamics of isolated quantum
many-body systems are now relevant to experiments since
such systems can be produced and studied with strongly in-
teracting ultracold atoms.14 And they may become relevant
for certain systems designed for quantum-information
processing.15,16 Also, many-body localization may be under-
lying some highly nonlinear low-temperature current-voltage
characteristics measured in certain thin films.17

II. MODEL

Many-body localization appears to occur for a wide vari-
ety of particle, spin or qubit models. Anderson’s original
proposal was for a spin system;1 the specific simple model
we study here is also a spin model, namely, the Heisenberg
spin-1/2 chain with random fields along the z direction5

H = #
i=1

L

$hiŜi
z + JS!̂ i · S!̂ i+1% , !1"

where the static-random fields hi are independent random
variables at each site i, each with a probability distribution

that is uniform in $−h ,h%. Except when stated otherwise, we
take J=1. The chains are of length L with periodic boundary
conditions. This is one of the simpler models that shows a
many-body localization transition. Since we will be studying
the system’s behavior by exact diagonalization, working with
this one-dimensional model that has only two states per site
allows us to probe longer length scales than would be pos-
sible for models on higher dimensional lattices or with more
states per site. We present evidence that at infinite tempera-
ture, "=1 /T=0, and in the thermodynamic limit, L→!, the
many-body localization transition at h=hc&3.5#1.0 does
occur in this model. The usual arguments that forbid phase
transitions at nonzero temperature in one dimension do not
apply here since they rely on equilibrium-statistical mechan-
ics, which is exactly what is failing at the localization tran-
sition. We also present indications that this phase transition
might be in an infinite-randomness universality class with an
infinite dynamical critical exponent z→!.

Our model has two global conservation laws: total energy,
which is conserved for any isolated quantum system with a
time-independent Hamiltonian and total Ŝz. The latter conser-
vation law is not essential for localization and its presence
may affect the universality class of the phase transition. For
convenience, we restrict our attention to states with zero total
Ŝz.

For simplicity, we consider infinite temperature, where all
states are equally probable !and where the sign of the inter-
action J does not matter". The many-body localization tran-
sition also occurs at finite temperature; by working at infinite
temperature we remove one parameter from the problem and
use all the eigenstates from the exact diagonalization !within
the zero total Ŝz sector" of each realization of our Hamil-
tonian. We see no reason to expect that the nature of the
localization transition differs between infinite and finite non-
zero temperature, although it is certainly different at strictly
zero temperature.18 Note that this is a quantum-phase transi-
tion that occurs at nonzero !even infinite" temperature. Like
the more familiar ground-state quantum-phase transitions,
this transition is a sharp change in the properties of the
many-body eigenstates of the Hamiltonian, as we discuss
below. But unlike ground-state phase transitions, the many-
body localization transition at nonzero temperature appears
to be only a dynamical-phase transition that is invisible in
the equilibrium thermodynamics.4

PHYSICAL REVIEW B 82, 174411 !2010"

1098-0121/2010/82!17"/174411!7" ©2010 The American Physical Society174411-1

Localization of interacting fermions at high temperature
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We suggest that if a localized phase at nonzero temperature T!0 exists for strongly disordered and weakly
interacting electrons, as recently argued, it will also occur when both disorder and interactions are strong and
T is very high. We show that in this high-T regime, the localization transition may be studied numerically
through exact diagonalization of small systems. We obtain spectra for one-dimensional lattice models of
interacting spinless fermions in a random potential. As expected, the spectral statistics of finite-size samples
cross over from those of orthogonal random matrices in the diffusive regime at weak random potential to
Poisson statistics in the localized regime at strong randomness. However, these data show deviations from
simple one-parameter finite-size scaling: the apparent mobility edge “drifts” as the system’s size is increased.
Based on spectral statistics alone, we have thus been unable to make a strong numerical case for the presence
of a many-body localized phase at nonzero T.
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I. INTRODUCTION

Although Anderson’s original paper on localization1 is
mostly remembered for its ground-breaking results about
single particles in random potentials, one goal of that paper
was to learn about transport properties of highly excited
many-body eigenstates, e.g., quantum diffusion of nuclear
moments. This latter goal was mostly neglected in subse-
quent research on localization and metal-insulator transi-
tions. However, these questions have been recently brought
to our attention by Basko, et al.2 who present detailed argu-
ments that interacting electrons in static random potentials
can have a true metal-insulator transition at a nonzero critical
temperature. Thus, these systems are argued to have an insu-
lating phase, with strictly zero Ohmic conductivity, even at a
nonzero temperature. For some work on these questions pub-
lished before Basko et al. see, for example, Refs. 3–9.

In practice, few transport measurements are possible with-
out first equilibrating the sample with its environment in or-
der to establish a steady state !by removing Joule heat". In
metals, this coupling to the environment, provided it is not
too strong, does not affect the conductivity !nonlinear trans-
port is another story altogether, see, e.g., Ref. 10". In Ander-
son insulators, however, the heat bath plays a far less subtle
role: it is what permits transport. Conduction occurs by
variable-range hopping, which is an inelastic process requir-
ing a heat bath that can locally supply or absorb the energy
needed to permit hopping of the charge carriers between lo-
calized states that are not precisely degenerate. At the heart
of this extreme sensitivity of the dynamics of a localized
insulator to the coupling with its environment is its inability
to self-equilibrate. It is therefore useful to turn the issue
around by distinguishing conductors from true T!0 insula-
tors by whether the many-particle system itself constitutes a
heat bath. For example, one might ask whether external local
probes can deposit limitless amounts of energy or if they
tend to saturate the spectrum. Similarly, whether or not at-
tached leads themselves can effectively remove heat from the

sample will generally depend on heat conductivity of the
sample itself. Thus, we see that whether or not a quantum
system of many interacting degrees of freedom constitutes a
heat bath is not only a very fundamental question, but also
one of some practical relevance.

To the extent that one of the most successful theories of
nature, namely, thermodynamics, is founded on the assump-
tion of ergodicity, we expect true insulators !where this as-
sumption is strongly violated" to be rare and require fine
tuning of some sort. The noninteracting Anderson insulator is
one example, where the unrealistic condition of no interpar-
ticle interactions is crucial. Remarkably, the authors of Ref. 2
argue that a nonzero temperature Anderson insulator can be
stable against the dephasing effects of interparticle interac-
tions, making this state a sufficiently realistic possibility to
be taken seriously and looked for in experiments !provided
decoherence from the rest of the universe can be ignored to a
good approximation".

The calculations of Ref. 2 are based on a low-energy ef-
fective Hamiltonian whose connection with the parameters
of the original model of interacting electrons in a random
potential could not be established analytically. Thus, it is
interesting and likely worthwhile to test their results using
other methods and to try to learn more about the nature of
the proposed T!0 diffusive-to-insulating phase transition
and about the range of models that may exhibit it. We report
here on one such attempt. To start, we observe that applica-
tion of the quantitative estimates of the localization transition
in Ref. 2 to a lattice model with finite entropy and energy
densities !i.e., finite number of states at each site" implies
that the aforementioned localized phase and, therefore, the
phase transition to the diffusive state can persist all the way
to infinite temperature. This seemingly innocuous observa-
tion has at least two important practical implications. First,
by adapting familiar high-temperature expansion techniques,
we can more or less rigorously rule out the possibility that
such a transition is accompanied by a thermodynamic signa-
ture both at infinite temperature and by continuity at any
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We note that a recent work [29] studies the coefficient
of the volume law for the EE of subsystems with size
LA ∼ L=4 and has results both consistent with and com-
plementary to our work. Reference [29] finds probability
distributions of the entanglement that look increasingly
bimodal at the transition; we comment on how their results,
together with our observed discontinuities, suggest that
the MBL-to-ETH transition may be some sort of hybrid
between continuous and discontinuous phase transitions.
In the remainder of the paper, we introduce and bench-

mark the model used in our analysis (Sec. II). We then
present our numerical data for SA in Sec. III A and show
that it looks strongly subthermal in the quantum critical
region. This is followed by a finite-size scaling analysis for
SA in Sec. III B, together with a comparison to Grover’s
results. In Sec. IV, we study the variance of the half-chain
EE and parse the contributions coming from fluctuations
across samples, eigenstates, and spatial cuts. In Sec. V, we
sketch a picture of the transition consistent with our
observations, and we end with a summary and outlook
in Sec. VI.

II. THE MODEL

We study a spin-1=2 Heisenberg chain with random z
fields and nearest and next-nearest neighbor interactions:

H ¼ J
XL−1

i¼1

½ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ SziS

z
iþ1& þ

XL

i¼1

hiS
z
i

þ J0
XL−2

i¼1

ðSxi Sxiþ2 þ Syi S
y
iþ2Þ; ð1Þ

where Sfx=y=zgi are spin-1=2 degrees of freedom on site i,
J ¼ J0 ¼ 1, and the fields hi are drawn uniformly and
independently from ½−W;W&. This model is MBL for large
disorder strength W > Wc ≥ 7. We present the estimate of
Wc as a lower bound since, as usual, we do not observe a
crossover on the MBL side of the transition.
Note that this model with J0 ¼ 0 is a “canonical” model

used in manyMBL studies with a criticalWc ≥ 3.5 [25,27].
We found it prudent to add the next-nearest neighbor term
to break the integrability of the canonical model in the limit
W → 0. Since our goal is to discriminate between thermal
and subthermal scaling for the critical EE, it helps to have
the MBL phase abut a strongly thermalizing phase. In the
canonical model, the EE does not reach the thermal value
until relatively deep in the delocalized phase (for numeri-
cally accessible system sizes), thus making it problematic
to draw meaningful conclusions about an observed sub-
thermal critical EE. Because it is not integrable at W ¼ 0,
our model thermalizes more completely within the thermal
phase for the smallest system sizes in our study.
Figure 2 benchmarks the location of the transition in

Eq. (1) using the half-chain entanglement entropy S and the

level statistics ratio r. Figure 2(a) shows S divided by
ST ¼ 0.5ðL − log2 eÞ bits, which is the Page [30] value for
a random pure state. The data are averaged over 2000 − 105

disorder realizations depending on L. Within each sample,
the data are further averaged over the 100 eigenstates
closest to the center of the band in the Sztot ¼ 0 sector (or a
quarter of that sector’s Hilbert space for small system
sizes). Unless otherwise mentioned, these parameters apply
to all our numerical results. Note that S=ST as a function of
W approaches a step function with increasing L, going
from zero in the MBL phase with area-law entanglement to
one in the thermal phase.
Figure 2(b) shows the level statistics ratio r≡minfΔn;

Δnþ1g=maxfΔn;Δnþ1g, where Δn ¼ En − Enþ1 is the
spacing between eigenenergy levels. This ratio is a sensitive
test of the level repulsion in a system: It approaches the
Gaussian orthogonal ensemble (GOE) value r ≅ 0.53 in
the thermal phase and the Poisson value r ≅ 0.39 in the
localized phase. Figure 2(b) shows that the system looks
nicely thermal at smallW and localized at largeW, with the
location of the crossing drifting towards larger W with
increasing L, as is typical.

(a)

L = 10
L = 12
L = 14
L = 16
L = 18

(b)

FIG. 2. (a) Disorder-averaged half-chain entanglement entropy
divided by the Page value ST for a random pure state as a function
of W and L. Note that S=ST approaches a step function at the
transition going from zero in the MBL phase with area-law
entanglement to one in the thermal phase. (b) Disorder-averaged
level statistics ratio r̄, which obeys a GOE distribution in the
thermal phase and a Poisson distribution in the localized phase,
respectively.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L
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of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S

E
/L !

constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.

3

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

r

rGOE

rPoisson

� =0.5

12 14 15 16 17 18 19 20 22

0 1 2 3 4 5

h

0

5

10

15

20

25

30
K
L

d
iv
e
r
g
e
n
c
e

KLGOE

�80 �40 0 40

0.40

0.45

0.50

0.55

hc =3.72(6)
� =0.91(7)

1.8 2.0 2.2

KL

0

10

20

30

h=1

0 30 60

KL

0.00

0.02

0.04

h
(
K
L
)

h=4.8

Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law S
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constant for h < hc to area-law with S
E
/L ! 0 for

h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE

/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE

/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density

*luitz@irsamc.ups-tlse.fr
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in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ε) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 " 1) is separated from the localized regime (bright region with
a1 # 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density
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Many-body localization phase transition
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We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2
chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and
thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected
in this nonlocalized, “ergodic” phase. For strong random field the eigenstates are localized with only short-
range entanglement. We roughly locate the localization transition and examine some of its finite-size scaling,
finding that this quantum phase transition at nonzero temperature might be showing infinite-randomness scal-
ing with a dynamic critical exponent z→!.
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I. INTRODUCTION

As originally proposed in Anderson’s seminal paper,1 an
isolated quantum system of many interacting degrees of free-
dom with quenched disorder may be localized and thus ge-
nerically fail to approach local thermal equilibrium, even in
the limits of long time and large systems, and for energy
densities well above the system’s ground state. In the same
paper, Anderson also treated the localization of a single-
particlelike quantum degree of freedom and it is this single-
particle localization, without interactions, that has received
most of the attention in the half century since then. Much
more recently, Basko, et al.2 have presented a very thorough
study of many-body localization with interactions at nonzero
temperature and the topic is now receiving more attention;
see, e.g., Refs. 3–13.

Many-body localization at nonzero temperature is a
quantum-phase transition that is of very fundamental interest
to both many-body quantum physics and statistical mechan-
ics: it is a quantum “glass transition,” where equilibrium
quantum statistical-mechanics breaks down. In the localized
phase the system fails to thermally equilibrate. These funda-
mental questions about the dynamics of isolated quantum
many-body systems are now relevant to experiments since
such systems can be produced and studied with strongly in-
teracting ultracold atoms.14 And they may become relevant
for certain systems designed for quantum-information
processing.15,16 Also, many-body localization may be under-
lying some highly nonlinear low-temperature current-voltage
characteristics measured in certain thin films.17

II. MODEL

Many-body localization appears to occur for a wide vari-
ety of particle, spin or qubit models. Anderson’s original
proposal was for a spin system;1 the specific simple model
we study here is also a spin model, namely, the Heisenberg
spin-1/2 chain with random fields along the z direction5

H = #
i=1

L

$hiŜi
z + JS!̂ i · S!̂ i+1% , !1"

where the static-random fields hi are independent random
variables at each site i, each with a probability distribution

that is uniform in $−h ,h%. Except when stated otherwise, we
take J=1. The chains are of length L with periodic boundary
conditions. This is one of the simpler models that shows a
many-body localization transition. Since we will be studying
the system’s behavior by exact diagonalization, working with
this one-dimensional model that has only two states per site
allows us to probe longer length scales than would be pos-
sible for models on higher dimensional lattices or with more
states per site. We present evidence that at infinite tempera-
ture, "=1 /T=0, and in the thermodynamic limit, L→!, the
many-body localization transition at h=hc&3.5#1.0 does
occur in this model. The usual arguments that forbid phase
transitions at nonzero temperature in one dimension do not
apply here since they rely on equilibrium-statistical mechan-
ics, which is exactly what is failing at the localization tran-
sition. We also present indications that this phase transition
might be in an infinite-randomness universality class with an
infinite dynamical critical exponent z→!.

Our model has two global conservation laws: total energy,
which is conserved for any isolated quantum system with a
time-independent Hamiltonian and total Ŝz. The latter conser-
vation law is not essential for localization and its presence
may affect the universality class of the phase transition. For
convenience, we restrict our attention to states with zero total
Ŝz.

For simplicity, we consider infinite temperature, where all
states are equally probable !and where the sign of the inter-
action J does not matter". The many-body localization tran-
sition also occurs at finite temperature; by working at infinite
temperature we remove one parameter from the problem and
use all the eigenstates from the exact diagonalization !within
the zero total Ŝz sector" of each realization of our Hamil-
tonian. We see no reason to expect that the nature of the
localization transition differs between infinite and finite non-
zero temperature, although it is certainly different at strictly
zero temperature.18 Note that this is a quantum-phase transi-
tion that occurs at nonzero !even infinite" temperature. Like
the more familiar ground-state quantum-phase transitions,
this transition is a sharp change in the properties of the
many-body eigenstates of the Hamiltonian, as we discuss
below. But unlike ground-state phase transitions, the many-
body localization transition at nonzero temperature appears
to be only a dynamical-phase transition that is invisible in
the equilibrium thermodynamics.4
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Localization of interacting fermions at high temperature
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We suggest that if a localized phase at nonzero temperature T!0 exists for strongly disordered and weakly
interacting electrons, as recently argued, it will also occur when both disorder and interactions are strong and
T is very high. We show that in this high-T regime, the localization transition may be studied numerically
through exact diagonalization of small systems. We obtain spectra for one-dimensional lattice models of
interacting spinless fermions in a random potential. As expected, the spectral statistics of finite-size samples
cross over from those of orthogonal random matrices in the diffusive regime at weak random potential to
Poisson statistics in the localized regime at strong randomness. However, these data show deviations from
simple one-parameter finite-size scaling: the apparent mobility edge “drifts” as the system’s size is increased.
Based on spectral statistics alone, we have thus been unable to make a strong numerical case for the presence
of a many-body localized phase at nonzero T.
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I. INTRODUCTION

Although Anderson’s original paper on localization1 is
mostly remembered for its ground-breaking results about
single particles in random potentials, one goal of that paper
was to learn about transport properties of highly excited
many-body eigenstates, e.g., quantum diffusion of nuclear
moments. This latter goal was mostly neglected in subse-
quent research on localization and metal-insulator transi-
tions. However, these questions have been recently brought
to our attention by Basko, et al.2 who present detailed argu-
ments that interacting electrons in static random potentials
can have a true metal-insulator transition at a nonzero critical
temperature. Thus, these systems are argued to have an insu-
lating phase, with strictly zero Ohmic conductivity, even at a
nonzero temperature. For some work on these questions pub-
lished before Basko et al. see, for example, Refs. 3–9.

In practice, few transport measurements are possible with-
out first equilibrating the sample with its environment in or-
der to establish a steady state !by removing Joule heat". In
metals, this coupling to the environment, provided it is not
too strong, does not affect the conductivity !nonlinear trans-
port is another story altogether, see, e.g., Ref. 10". In Ander-
son insulators, however, the heat bath plays a far less subtle
role: it is what permits transport. Conduction occurs by
variable-range hopping, which is an inelastic process requir-
ing a heat bath that can locally supply or absorb the energy
needed to permit hopping of the charge carriers between lo-
calized states that are not precisely degenerate. At the heart
of this extreme sensitivity of the dynamics of a localized
insulator to the coupling with its environment is its inability
to self-equilibrate. It is therefore useful to turn the issue
around by distinguishing conductors from true T!0 insula-
tors by whether the many-particle system itself constitutes a
heat bath. For example, one might ask whether external local
probes can deposit limitless amounts of energy or if they
tend to saturate the spectrum. Similarly, whether or not at-
tached leads themselves can effectively remove heat from the

sample will generally depend on heat conductivity of the
sample itself. Thus, we see that whether or not a quantum
system of many interacting degrees of freedom constitutes a
heat bath is not only a very fundamental question, but also
one of some practical relevance.

To the extent that one of the most successful theories of
nature, namely, thermodynamics, is founded on the assump-
tion of ergodicity, we expect true insulators !where this as-
sumption is strongly violated" to be rare and require fine
tuning of some sort. The noninteracting Anderson insulator is
one example, where the unrealistic condition of no interpar-
ticle interactions is crucial. Remarkably, the authors of Ref. 2
argue that a nonzero temperature Anderson insulator can be
stable against the dephasing effects of interparticle interac-
tions, making this state a sufficiently realistic possibility to
be taken seriously and looked for in experiments !provided
decoherence from the rest of the universe can be ignored to a
good approximation".

The calculations of Ref. 2 are based on a low-energy ef-
fective Hamiltonian whose connection with the parameters
of the original model of interacting electrons in a random
potential could not be established analytically. Thus, it is
interesting and likely worthwhile to test their results using
other methods and to try to learn more about the nature of
the proposed T!0 diffusive-to-insulating phase transition
and about the range of models that may exhibit it. We report
here on one such attempt. To start, we observe that applica-
tion of the quantitative estimates of the localization transition
in Ref. 2 to a lattice model with finite entropy and energy
densities !i.e., finite number of states at each site" implies
that the aforementioned localized phase and, therefore, the
phase transition to the diffusive state can persist all the way
to infinite temperature. This seemingly innocuous observa-
tion has at least two important practical implications. First,
by adapting familiar high-temperature expansion techniques,
we can more or less rigorously rule out the possibility that
such a transition is accompanied by a thermodynamic signa-
ture both at infinite temperature and by continuity at any
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Out of equilibrium dynamics

subregions A and B. But the total amount of entanglement
entropy generated remains finite as t ! 1 (Fig. 1), and the
fluctuations of particle number eventually saturate as well
(see below). The entanglement entropy for the pure state
of the whole system is defined as the von Neumann entropy
S ¼ "tr!A log!A ¼ "tr!B log!B of the reduced density
matrix of either subsystem. We always form the two biparti-
tions by dividing the system at the center bond.

The type of evolution considered here can be viewed as a
‘‘global quench’’ in the language of Calabrese and Cardy
[14] as the initial state is the ground state of an artificial
Hamiltonian with local fields. Evolution from an initial
product state with zero entanglement can be studied effi-
ciently via time-dependent matrix product state methods
until a time where the entanglement becomes too large for
a fixed matrix dimension. Since entanglement cannot
increase purely by local operations within each subsystem,
its growth results only from propagation across the

subsystem boundary, even though there is no conserved
current of entanglement.
The first question we seek to answer is whether there is

any qualitatively different behavior of physical quantities
when a small interaction

Hint ¼ Jz
X

i

Szi S
z
iþ1 (2)

is added. With Heisenberg couplings between the spins
(Jz ¼ J?), the model is believed to have a dynamical tran-
sition as a function of the dimensionless disorder strength
"=Jz [4,5,7]. This transition is present in generic eigenstates
of the system and hence exists at infinite temperature at
some nonzero ". The spin conductivity, or equivalently
particle conductivity after the Jordan-Wigner transforma-
tion, is zero in the many-body localized phase and nonzero
for small enough"=Jz. However, with exact diagonalization
the system size is so limited that it has not been possible to
estimate the location in the thermodynamic limit of the
transition of eigenstates or conductivities.
We find that entanglement growth shows a qualitative

change inbehavior at infinitesimalJz. Instead of the expected
behavior that a small interaction strength leads to a small
delay in saturation and a small increase infinal entanglement,
we find that the increase of entanglement continues to times
orders of magnitude larger than the initial localization time
in the Jz ¼ 0 case (Fig. 1). This slowgrowth of entanglement
is consistent with prior observations for shorter times and
larger interactions Jz ¼ 0:5J? and Jz ¼ J? [12,13],
although the saturation behavior was unclear. Note that ob-
serving a sudden effect of turning on interactions requires
large systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to affect the
behavior significantly. We next explain briefly the methods
enabling large systems to be studied.
Numerical methodology.—To simulate the quench, we

use the time evolving block decimation (TEBD) [15,16]
method which provides an efficient method to perform a
time evolution of quantum states, jc ðtÞi ¼ UðtÞjc ð0Þi, in
one-dimensional systems. The TEBD algorithm can be seen
as a descendant of the density matrix renormalization group
[17] method and is based on a matrix product state (MPS)
representation [18,19] of the wave functions. We use a
second-order Trotter decomposition of the short time propa-
gator Uð!tÞ ¼ expð"i!tHÞ into a product of term which
acts only on two nearest-neighbor sites (two-site gates).After
each application, the dimension of the MPS increases. To
avoid an uncontrolled growth of the matrix dimensions,
the MPS is truncated by keeping only the states which have
the largest weight in a Schmidt decomposition.
In order to control the error, we check that the neglected

weight after each step is small (< 10"6). Algorithms of
this type are efficient because they exploit the fact that the
ground-state wave functions are only slightly entangled
which allows for an efficient truncation. Generally the
entanglement grows linearly as a function of time which

FIG. 1 (color online). (a) Entanglement growth after a quench
starting from a site factorized Sz eigenstate for different inter-
action strengths Jz (we consider a bipartition into two half chains
of equal size). All data are for " ¼ 5 and L ¼ 10, except for
Jz ¼ 0:1 where L ¼ 20 is shown for comparison. The inset
shows the same data but with a rescaled time axis and subtracted
Jz ¼ 0 values. (b) Saturation values of the entanglement entropy
as a function of L for different interaction strengths Jz. The inset
shows the approach to saturation.
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A local measurement at time t is affected only by the
degrees of freedom within its light cone. The opening angle
of the light cone, or spreading velocity, is determined by
model parameters. For lattice models with short-range
interactions, the time evolution operator U ¼ expð−iHtÞ
has a Trotter-Suzuki decomposition with a checkerboard
structure: Within the LCRG, a light cone out of the infinite
checkerboard is sufficient to compute the time evolution of
local observables in an infinite system [28,34].
To treat disorder, one straightforward possibility for a

finite system is to compute the time evolution for one
particular disorder configuration, and then repeat the
calculation for many different configurations to obtain
the disorder average. Here, we instead use purification
for an infinite system in order to perform the full disorder
average in a single run [25], at the expense of enlarging the
Hilbert space. Specifically, for the XXZ chain, an ancilla
spin-1=2, ~si;anc, is added to each lattice site with an Ising
coupling,Dis

z
i↦2Dszi s

z
i;anc. The state of s

z
i;anc ¼ $1=2 now

determines the local Zeeman field Di ¼ $D. There is no
coupling between different ancilla spins; hence, they
have no dynamics and represent static disorder. The
time evolution of the disorder average is given by the
evolution from a prepared product state jψ0i ⊗ jdisi in
the enlarged Hilbert space of spins and ancillas, where
jdisi ¼ ⊗

j
ðj↑ij þ j↓ijÞ=

ffiffiffi
2

p
is the fully mixed state for the

ancillas. The disorder-averaged expectation value of an
operator O is then obtained by measuring the expectation
value of the operator O ⊗ 1anc in the enlarged Hilbert
space. Although the local Hilbert-space dimension is
doubled, the LCRG algorithm works even more efficiently
for strongly disordered systems than for clean systems, and
real times up to Jt ∼ 100 are reached in our simulations,
where we keep the truncation error in each renormalization
group step smaller than 10−8 by dynamically increasing the
number of kept states up to 20 000. Responsible for these
long simulation times is the slow logarithmic growth of the
entanglement entropy, Sent, for Δ ≠ 0, see Fig. 2. Here,
Sent ¼ −TrρB ln ρB, where ρB is the reduced density matrix
obtained by cutting the infinite chain, A ⊗ B, of spins and
ancillas in half. Since entanglement in the static ancillas
is mediated by the spins, Sent has the same functional
dependence on time as the disorder-averaged entanglement
entropy of a spin-only system [26]. The logarithmic
increase for Δ ≠ 0 is the same behavior as seen for the
XXZ model with the magnetic fields Di drawn from a box
distribution [20], and is a hallmark of a MBL phase. On the
other hand, Sent saturates for Δ ¼ 0 and infinite binary
disorder, see the inset of Fig. 2. The latter behavior can be
easily understood by noting that Sent for a block of size
n ≤ l of a finite chain segment of spins and ancillas with
length l is bounded, Sent ≤ n ln 4. Since pl decreases
exponentially, a strict bound for Sent at all times exists
[26]. This is different from the case of strong bond disorder,
where Sent ∼ ln ln t [22].

In Figs. 3(a) and 3(b) we show ΔnðtÞ for strong and
intermediate disorder. In all cases shown, ΔnðtÞ does not
decay to zero, indicating that the system does not thermal-
ize. The strong reduction of the variance of ΔnðtÞ with
increasing Δ [see Fig. 3(c)] is a clear experimental
indication that localization in an interacting system is
observed.
To further support our findings of a MBL phase for the

XXZ model with binary disorder, we have also calculated
the level statistics for finite chains of up to N ¼ 14 sites in
the Sz ¼ 0 sector by exact diagonalization of all 2N possible
disorder realizations. In the integrable XXZ chain without
disorder, a full set of local integrals of motion exists, which
allows us to completely classify the eigenvalues by the
corresponding quantum numbers. The spectrum is there-
fore uncorrelated and the corresponding level statistics
Poissonian, PðsÞ ¼ expð−sÞ, in terms of the level spacing
s. Disorder breaks integrability, so that the level-spacing
distribution, if the many-body states are extended, will
follow a Wigner distribution, PðsÞ¼ðπs=2Þexpð−πs2=4Þ.
This can also be understood as a crossover from integrability
to quantum chaos [35]. However, once localization sets in,
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FIG. 2 (color online). Sent for the XXZ chain (2) in the strongly
disordered case D ¼ 4000. For small Δ we find asymptotically
SentðtÞ ∼ ln t (dashed lines are fits for t > 20). Inset: SentðtÞ
saturates for Δ ¼ 0 and infinite disorder.

FIG. 3 (color online). XXZ chain: (a) ΔnðtÞ for D ¼ 4000 with
averages (dashed lines).D ¼ 1.5: (b)ΔnðtÞ, (c) variance ofΔnðtÞ
for t > 5, and (d) PðrÞ for chains of lengthN ¼ 14 (symbols) and
PðrÞ ¼ 2=ð1þ rÞ2 (solid lines).

PRL 113, 217201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 NOVEMBER 2014

217201-3

Figure 44: Reprinted from [428] (Top) and from [474] (Bottom).

Entanglement entropy time t ⇠ L1/z in the subdi↵usive regime with z ⇠ ⇠

diverging close to the MBL transition.
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An important and incompletely answered question is whether a closed quantum system of many

interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states

is studied numerically for a system of interacting spinless fermions in one dimension described by the

random-field XXZHamiltonian. Interactions induce a dramatic change in the propagation of entanglement

and a smaller change in the propagation of particles. For even weak interactions, when the system is

thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive

behavior but grows without limit in an infinite system: interactions act as a singular perturbation on

the localized state with no interactions. The significance for proposed atomic experiments is that local

measurements will show a large but nonthermal entropy in the many-body localized state. This entropy

develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.
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One of the most remarkable predictions of quantum
mechanics is that an arbitrarily weak random potential is
sufficient to localize all energy eigenstates of a single
particle moving in one dimension [1,2]. In experiments
on electronic systems, observation of localization is lim-
ited to low temperatures because the interaction of an
electron with its environment results in a loss of quantum
coherence and a crossover to classical transport. Recent
work has proposed that, if there are electron-electron
interactions but the electronic system is isolated from
other degrees of freedom (such as phonons), there can
be a ‘‘many-body localization transition’’ even in a one-
dimensional system for which all the single-particle states
are localized [3–8].

Two important developments may enable progress on
many-body localization beyond past efforts using analyti-
cal perturbation theory. The first is that numerical methods
like matrix-product-state based methods and large scale
exact diagonalizations enable studies of some, not all,
important quantities in large systems. The second is that
progress in creating atomic systems where interactions
between particles are strong but the overall many-atom
system is highly phase coherent [9] suggests that this
many-body localization transition may be observable in
experiments [10,11]. Note that many-body localization is
connected to the problem of thermalization in closed quan-
tum systems as a localized system does not thermalize.

The goal of the present Letter is to show that the many-
body localized phase differs qualitatively, even for weak
interactions, from the conventional, noninteracting local-
ized phase. The evolution of two quantities studied, the
entanglement entropy and particle number fluctuations,
show logarithmically slow evolution more characteristic
of a glassy phase; however, the long-term behavior of these

quantities is quite different. The growth of the entangle-
ment entropy has previously been observed [12,13] to
show roughly logarithmic evolution for smaller systems
and stronger interactions. We seek, here, to study this
behavior systematically over a wide range of time scales
(up to t ! 109J"1

? ), showing that the logarithmic growth
begins for arbitrarily weak interactions. We show that the
entanglement growth does not saturate in the thermody-
namic limit, and obtain additional quantities that distin-
guish among possible mechanisms. Further discussion of
our conclusions appears after the model, methods, and
numerical results are presented.
Model system.—One-dimensional (1D) s ¼ 1

2 spin chains
are a natural place to look for many-body localization [4] as
they are equivalent to 1D spinless lattice fermions. To start,
consider the XX model with random z directed magnetic
fields so that the total magnetization Sz is conserved:

H0 ¼ J?
X

i

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ

X

i

hiS
z
i : (1)

Here, the fields hi are drawn independently from the interval
[" !, !]. The eigenstates are equivalent via the Jordan-
Wigner transformation to Slater determinants of free fermi-
ons with nearest-neighbor hopping and random on-site
potentials; particle number in the fermionic representation
is related to Sz in the spin representation, so the z directed
magnetic field is essentially a random chemical potential.
Now every single-fermion state is localized by any !> 0,
and the dynamics of this spin Hamiltonian are localized
as well: a local disturbance at time t ¼ 0 propagates only
to some finite distance (the localization length) as t ! 1. As
an example, consider the evolution of a randomly chosen Sz

basis state. The coupling J? allows ‘‘particles’’ (up spins) to
move, and entanglement entropy to develop, between two
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =
Ne �No

Ne +No

, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

Ĥ =� J

X

i,�

⇣
ĉ
†

i,�
ĉi+1,� + h.c.

⌘

+�
X

i,�

cos(2⇡�i+ �)ĉ†
i,�

ĉi,� + U

X

i

n̂i,"n̂i,#.

(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ

†

i,�
(ĉi,�) denotes the creation (annihilation) operator for a fermion

in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ

†

i,�
ĉi,� is the local number operator

(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed

2
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by the ratio of lattice periodicities b, disorder
strength D, and phase offset f. Finally,U represents
the on-site interaction energy, and

ˇ

ni;s ¼

ˇ

c †i;s

ˇ

ci;s
is the local number operator (Fig. 1C).
This quasirandom model is special in that for

almost all irrational b (37), all single-particle
states become localized at the same critical dis-
order strength D/J = 2 (38). For larger disorder
strengths, the localization length decreases mono-
tonically. Such a transition was indeed ob-
served experimentally in a noninteracting bosonic
gas (30). In contrast, truly random disorder will
lead to single-particle localization in one dimen-
sion already for arbitrarily small disorder strengths.
Previous numerical work indicatesMBL in quasi-
random systems to be similar to that obtained for
a truly random potential (36).

Experiment

We experimentally realized the Aubry-André
model by superimposing on the primary, short
lattice (ls = 532 nm) a second, incommensu-
rate disorder lattice with ld = 738 nm (thus, b =
ls/ld ≈ 0.721) and control J, D, and f via lattice
depths and relative phase between the two lat-
tices (37). The interactions (U) between atoms
in the two different spin states j↑i and j↓i are
tuned via a magnetic Feshbach resonance (37).
In total, this provides independent control of
U, J, and D and enables us to continuously tune
the system from an Anderson insulator in the
noninteracting case to the MBL regime for inter-
acting particles.
An additional long lattice (ll = 1064 nm = 2ls)

forms a period-two superlattice (39, 40) together
with the short lattice and is used during the prep-
aration of the initial CDW state and during de-
tection (37). Deep lattices along the orthogonal
directions [l⊥= 738nmandV⊥=36(1)ER] create an
array of decoupled 1D tubes. Here, ER ¼ h2=
ð2ml2latÞ denotes the recoil energy, with h being
Planck’s constant, m the mass of the atoms, and
llat the respective wavelength of the lattice lasers.
We used a two-component degenerate Fermi

gas of 40K atoms, consisting of an equal mixture

of 90 × 103 to 110 × 103 atoms in each of the two
lowest hyperfine states jF ;mFi ¼ j 92 ;−

9
2i ≡ j↓i

and j 92 ;−
7
2i ≡ j↑i, at an initial temperature of

0.20(2) TF, where TF is the Fermi temperature.
The atoms were initially prepared in a finite
temperature band insulating state (41), with
up to 100 atoms per tube in the long and or-
thogonal lattices.We then split each lattice site by
ramping up the short lattice in a tilted con-
figuration (37) and subsequently ramped down
the long lattice. This creates a CDW, in which
there are no atoms on odd lattice sites but zero,
one, or two atoms on each even site (40, 42). This
initial CDW is then allowed to evolve for a given
time in the 8.0(2)ER deep short lattice at a
specific interaction strength U in the presence of
disorder D. In a final step, we detected the num-
ber of atoms on even and odd lattice sites by
using a band-mapping technique that maps them
to different bands of the superlattice (37, 42).
This allows us to directly measure the imbalance
I , as defined in Eq. 1, in much larger systems
than what is numerically feasible.

Results

We tracked the time evolution of the imbal-
ance I for various interactions U and disorder
strengths D (Fig. 2). At short times, the imbal-
ance exhibits some dynamics consisting of a fast
decay followed by a few damped oscillations.
After a few tunneling times t = h/(2pJ), the im-
balance approaches a stationary value. In a clean
system (D/J = 0), and for weak disorder, the sta-
tionary value of the imbalance approaches zero.
For stronger disorder, however, this behavior
changes dramatically, and the imbalance attains
a nonvanishing stationary value that persists for
all observation times. Because the imbalancemust
decay to zero on approaching thermal equilib-
rium at these high energies, the nonvanishing
stationary value of I directly indicates non-
ergodic dynamics. Deep in the localized phase,
in which unbiased numerical density-matrix re-
normalization group (DMRG) calculations are
feasible because of the slowentanglement growth,

we found the stationary value obtained in the
simulations to be in very good agreement with
the experimental result. These simulations were
performed for a single homogeneous tube with-
out any trapping potentials (37). The stronger
damping of oscillations observed in the exper-
iment can be attributed to a dephasing caused
by variations in J between different 1D tubes
(37, 42).
We experimentally observed an additional

very slow decay of I on a time scale of several
hundred tunneling times for all interaction
strengths, which we attribute to the fact that
our system is not perfectly closed owing to small
background gas losses, technical heating, pho-
ton scattering, and coupling to neighboring
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Fig. 1. Schematics of the many-
body system, initial state, and
phase diagram. (A) Initial state of
our system consisting of a CDW, in
which all atoms occupy even sites
(e) only. For an interacting many-body
system, the evolution of this state over
time depends on whether the system is
ergodic or not. (B) Schematic phase
diagram for the system. In the ergodic,
delocalized phase (white), the initial
CDWquickly decays,whereas it persists
for long times in the nonergodic, local-
ized phase (yellow).The striped area
indicates the dependence of the
transition on the doublon fraction, with
the black solid line indicating the case of no doublons.The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction,
extracted from the data in Fig. 4.The gray arrows depict the postulated pattern of renormalization group flows controlling the localization transition. For U = 0, as
well as in the limit of infinite U with no doublons present (37), the transition is controlled by the noninteracting Aubry-André critical point, represented by the
unstable gray fixed points. Generically, however, it is governed by the MBL critical point (48), shown in red. The U = 0 and U = ∞ as well as the D/J = 0 limits
represent special integrable cases that are not ergodic (51, 52). (C) A schematic representation of the three terms in the Aubry-André Hamiltonian (Eq. 2).

Fig. 2. Time evolution of an initial CDW. A CDW,
consisting of fermionic atoms occupying only even
sites, is allowed to evolve in a lattice with an ad-
ditional quasirandom disorder potential. After var-
iable times, the imbalance I between atoms on
odd and even sites is measured. Experimental
time traces (circles) and DMRG calculations for
a single homogeneous tube (lines) (37) are shown
for various disorder strengths D. Each experi-
mental data point denotes the average of six dif-
ferent realizations of the disorder potential, and
the error bars show the SD of the mean. The
shaded region indicates the time window used
to characterize the stationary imbalance in the
rest of the analysis.
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finite-size e↵ects, limiting their reliability to deep inside
the phases, where correlation lengths are short.

In light of these challenges, theoretical e↵orts have fo-
cused on phenomenological approaches that abandon a
microscopically faithful treatment in favor of a coarse-
grained description.29–35 These approaches were designed
to identify the physical mechanism that drives the tran-
sition and build an e↵ective model which could then be
solved numerically for large system sizes. Nonetheless,
both the choice of a consistent model and the interpreta-
tion of its results in the context of the MBL transition
have presented challenges. Despite being based on the
same philosophy of coarse graining many-body resonances
in a strong disorder approach, various proposed renor-
malization group (RG) approaches di↵er significantly in
their procedures and their link to the microscopic physics.
Thus, a consistent picture of the critical point is missing.

In this paper, we formulate a unifying scaling theory
for the MBL transition that has a Kosterlitz-Thouless
form. We show that the basic features of KT scaling
emerge from a phenomenological description of the pro-
liferation of ‘quantum avalanches’45 that drive the MBL
transition. As such, this picture is independent of any
specific microscopic model. Specifically, we show that the
avalanche process combined with a natural choice of scal-
ing variables immediately leads to KT critical behavior.
The KT picture implies that the MBL critical point is
the terminus of a line of RG fixed points characterized
by an exactly marginal scaling variable. We discuss how
this picture resolves many shortcomings of previous de-
scriptions. However, it also raises questions about the
physics beyond avalanches in the MBL phase away from
the transition. Thus, in Section III, we propose two dis-
tinct scenarios for the MBL phase distinguished by how
the KT scaling is linked to a Gri�ths description of the
fractal rare thermal regions.

Several numerically tractable e↵ective models have been
previously proposed as a route to accessing scaling proper-
ties of the MBL transition. These include models designed
to capture quantum avalanche processes,31,33 as well as
ones where avalanches were not an apparent feature.29

However, the transitions studied in those works were not
identified as KT-like; this is perhaps unsurprising in light
of the notorious di�culties in observing KT scaling even
in classical equilibrium models. In light of the KT pic-
ture, we now revisit two of these models, in both cases
dramatically increasing the available statistics or system
sizes compared to previous studies. In Section IV, we re-
consider the cluster RG of Ref. 31, referred to as ‘DVP’ in
what follows. By analysing thermal distributions that are
a direct output of this scheme we find an algebraic struc-
ture of thermal resonances in the MBL phase – strong
evidence for the KT flow. In Section V, we implement
the block RG of Ref. 29, referred to as ‘VHA’ in the
following, and also find results consistent with the KT
picture. We comment on how the results of Sections IV
and V may be accommodated within the two scenarios
proposed in Section III. Finally, we close in Section VI

with a summary of our main results and an overview of
new directions in the study of MBL transitions opened
by the present work.

II. PHENOMENOLOGICAL ARGUMENT FOR
KOSTERLITZ-THOULESS SCALING

A. Many-body delocalization via quantum
avalanches

Assuming a direct transition between the MBL and
delocalized phases, at the transition, eigenstates undergo
a complete rearrangement as the entanglement jumps
abruptly from area-law to volume-law.29–31,39,46 This is
quite unlike conventional critical points, which are driven
by fluctuations of a locally defined order parameter. Nu-
merical studies of the transition show strong asymmetry:
a strongly resonant thermal block can thermalize a local-
ized region far more e↵ectively than a localized region
can arrest the growth of the thermal block.47

The asymmetry between thermalization and localiza-
tion was formulated as an ‘avalanche’ process that we
briefly review following Ref. 45. Imagine a rare thermal
region of n0 spins (a ‘bubble’) in an otherwise localized
spin-1/2 chain. Such a rare thermal inclusion is unavoid-
able in a generic system, with uncorrelated disorder. It
will act as a small bath and will increase its size by ther-
malizing spins peripheral to it. Let us assume that the
bubble has absorbed a number n � 1 of l-bits to grow to
a new size n0 +n, but is still described by random matrix
theory and thus remains featureless. Further growth of
the bubble depends on the matrix element for flipping an
l-bit at distance n/2 from the new edge (see Fig. 1). This
is asymptotically given by � ⇠ e

�n/(2⇣)
/
p
2n0+n, where

2n0+n is the dimension of the bubble Hilbert space and
⇣ characterizes the exponential decay of typical matrix
elements with distance. This matrix element should be
compared to the level spacing of the bubble � ⇠ 2�(n0+n):

g =
�

�
⇠ exp

✓
�

n

2⇣
+

ln 2

2
(n+ n0)

◆
. (1)
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Figure 1. Quantum Avalanche.45 A thermal inclusion initially
consisting of n0 spins (red region) is in contact with a set of
l-bits (arrows). The inclusion thermalizes n l-bits (red arrows)
and thereby expands to a size n0 + n (yellow region) while
retaining its featureless ETH character. The e↵ective matrix
element to add the (n+ 1)th l-bit decays exponentially from
the boundary of the original inclusion.
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governed by resonant spots. Our scheme focuses on the dichotomy of MBL versus validity of the eigenstate
thermalization hypothesis. We show that a few natural assumptions imply that the system is localized with
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length tends to the inverse of the maximal entropy density at the transition, but there is a divergent length
scale related to the response to an inclusion of large ergodic spots. A mean-field approximation analytically
illustrates these results and predicts a power-law distribution for thermal inclusions at criticality.
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Introduction.—The phenomenology and theory of many-
body localization (MBL), i.e., the absence of thermalization
in interacting quantum systems [1–16], challenges our
understanding of statistical mechanics. In d ¼ 1, the main
outstanding issue is the nature of the transition [17–29] that
separates the MBL from the ergodic (thermalizing) phase.
To describe it, several phenomenological renormalization
schemes have been introduced [19,20,26,27], with partially
conflicting predictions.
In the present Letter, we develop a theory which is rooted

in two microscopic principles. The first principle, gov-
erning nonresonant couplings, is the spectral perturbation
theory. The second principle is the use of the randommatrix
theory for resonant couplings [30–36], which strikingly
predicts an “avalanche” instability: An infinite localized
system can be thermalized by a finite ergodic seed if the
typical localization length ζ exceeds a critical ζc [36].
We implement these principles in the form of a multistep
diagonalization procedure [37–42], described compactly
below and in more detail in the companion paper [43].
Analyzing first the general consequences of this scheme,

we find that the critical point must be localized with
probability one. This conclusion, which rests on a few
basic facts and does not involve any detailed analysis,
contrasts with predominantly numerical RG studies
[19,27], which reported the half-chain entanglement
entropy at the critical point to follow a (subthermal) volume
law. Our result instead implies that the bipartite entangle-
ment entropy of typical cuts is discontinuous at the
transition, as in Ref. [21], and that the typical localization
ζ does not diverge. The latter is a direct consequence of the
explicit upper bound ζ ≤ ζc [36]. On the other hand, we do
identify a length scale l⋆ that does diverge as ðζ − ζcÞ−1 as

one approaches the transition from the MBL side; see
Fig. 1. This is caused by the divergent susceptibility of the
sample to the insertion of large ergodic spots. In our
scheme, such spots trigger delocalization by an avalanche
instability, a central aspect that distinguishes our work from
previous approaches [19,20,26,27]. The validity of the
avalanche scenario and the associated bound on ζ were
recently verified through high-precision numerics [44], and
we show here that it leads to a consistent and physical
picture of the MBL transition. On the thermal side, instead,
we find no divergent correlation length, but only a
diverging crossover length Lþ, beyond which typical
samples appear thermal. Lþ is associated with a typical
timescale of local thermalization, tþ, that diverges qua-
siexponentially at the transition.

MBL phase Thermal phase

FIG. 1. Phase diagram where 1=ε quantifies the disorder
strength. ζ is the typical localization length. It is bounded
by the critical localization length ζc, which equals the inverse of
the entropy density. l⋆ quantifies the susceptibility to the
insertion of large ergodic spots. ξ̄ is the average eigenstate
correlation length and tþ a typical local thermalization time-
scale in the thermal phase.
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Probing the onset of quantum avalanches in a 
many-body localized system

Julian Léonard1,5,6, Sooshin Kim    1,6, Matthew Rispoli1, Alexander Lukin1, 
Robert Schittko1, Joyce Kwan1, Eugene Demler2, Dries Sels    3,4 & 
Markus Greiner1 

Strongly correlated systems can exhibit unexpected phenomena when 
brought in a state far from equilibrium. An example is many-body 
localization, which prevents generic interacting systems from reaching 
thermal equilibrium even at long times1,2. The stability of the many-body 
localized phase has been predicted to be hindered by the presence of  
small thermal inclusions that act as a bath, leading to the delocalization  
of the entire system through an avalanche propagation mechanism3–8.  
Here we study the dynamics of a thermal inclusion of variable size when  
it is coupled to a many-body localized system. We !nd evidence for 
accelerated transport of thermal inclusion into the localized region.  
We monitor how the avalanche spreads through the localized system and 
thermalizes it site by site by measuring the site-resolved entropy over time. 
Furthermore, we isolate the strongly correlated bath-induced dynamics 
with multipoint correlations between the bath and the system. Our results 
have implications on the robustness of many-body localized systems and 
their critical behaviour.

One of the founding principles of statistical physics is that a generic 
macroscopic system can equilibrate on its own. This means that local 
fluctuations in energy, magnetization or particle density can relax 
towards thermal equilibrium because interactions allow different parts 
of the system to serve as reservoirs to each other. This universal picture 
has been challenged by the idea of many-body localization (MBL), which 
suggests that systems with strong disorder can evade thermalization 
even in the presence of interactions1,2,9–15. In one-dimensional systems, 
a stable MBL phase can be argued as follows: matrix elements of local 
operators decay exponentially with separation between two points, 
whereas the density of states increases exponentially with the sys-
tem size. For strong disorder, matrix elements can, thus, be argued to 
decay faster than the density of states increases, ultimately inhibiting 
relaxation.

However, the existence of MBL remains a subject of debate, since 
it is unclear when those conditions are fulfilled16–24. For instance, by 

introducing a small region with weak disorder, part of the system may be 
delocalized and thus give rise to local operators with non-exponential 
decay25–33,33–36. Those local weakly disordered regions occur naturally 
in randomly disordered systems, when potential offsets on consecu-
tive lattice sites accidentally coincide25,28,29,37,38. The dynamics in MBL 
systems in the presence of a thermal region have been predicted to 
occur in so-called quantum avalanches, which imply that these regions 
grow by absorbing nearby disordered regions3–7. Under which condi-
tions quantum avalanches can arise, run out of steam or propagate 
without halt determines the fate of MBL at long evolution times. Their 
understanding is, thus, closely connected to discerning thermalization 
in interacting many-body systems.

Perturbative bath-induced relaxation can often be captured in the 
context of Fermi’s golden rule (Fig. 1a, left). In this picture, the relaxa-
tion rate Γ

i

= g
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i

ρ

bath

 at a distance of i sites away from the bath is given 
by the product of the bath’s constant density of states ρbath and coupling 
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But also some debates… 
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finite-size e↵ects, limiting their reliability to deep inside
the phases, where correlation lengths are short.

In light of these challenges, theoretical e↵orts have fo-
cused on phenomenological approaches that abandon a
microscopically faithful treatment in favor of a coarse-
grained description.29–35 These approaches were designed
to identify the physical mechanism that drives the tran-
sition and build an e↵ective model which could then be
solved numerically for large system sizes. Nonetheless,
both the choice of a consistent model and the interpreta-
tion of its results in the context of the MBL transition
have presented challenges. Despite being based on the
same philosophy of coarse graining many-body resonances
in a strong disorder approach, various proposed renor-
malization group (RG) approaches di↵er significantly in
their procedures and their link to the microscopic physics.
Thus, a consistent picture of the critical point is missing.

In this paper, we formulate a unifying scaling theory
for the MBL transition that has a Kosterlitz-Thouless
form. We show that the basic features of KT scaling
emerge from a phenomenological description of the pro-
liferation of ‘quantum avalanches’45 that drive the MBL
transition. As such, this picture is independent of any
specific microscopic model. Specifically, we show that the
avalanche process combined with a natural choice of scal-
ing variables immediately leads to KT critical behavior.
The KT picture implies that the MBL critical point is
the terminus of a line of RG fixed points characterized
by an exactly marginal scaling variable. We discuss how
this picture resolves many shortcomings of previous de-
scriptions. However, it also raises questions about the
physics beyond avalanches in the MBL phase away from
the transition. Thus, in Section III, we propose two dis-
tinct scenarios for the MBL phase distinguished by how
the KT scaling is linked to a Gri�ths description of the
fractal rare thermal regions.

Several numerically tractable e↵ective models have been
previously proposed as a route to accessing scaling proper-
ties of the MBL transition. These include models designed
to capture quantum avalanche processes,31,33 as well as
ones where avalanches were not an apparent feature.29

However, the transitions studied in those works were not
identified as KT-like; this is perhaps unsurprising in light
of the notorious di�culties in observing KT scaling even
in classical equilibrium models. In light of the KT pic-
ture, we now revisit two of these models, in both cases
dramatically increasing the available statistics or system
sizes compared to previous studies. In Section IV, we re-
consider the cluster RG of Ref. 31, referred to as ‘DVP’ in
what follows. By analysing thermal distributions that are
a direct output of this scheme we find an algebraic struc-
ture of thermal resonances in the MBL phase – strong
evidence for the KT flow. In Section V, we implement
the block RG of Ref. 29, referred to as ‘VHA’ in the
following, and also find results consistent with the KT
picture. We comment on how the results of Sections IV
and V may be accommodated within the two scenarios
proposed in Section III. Finally, we close in Section VI

with a summary of our main results and an overview of
new directions in the study of MBL transitions opened
by the present work.

II. PHENOMENOLOGICAL ARGUMENT FOR
KOSTERLITZ-THOULESS SCALING

A. Many-body delocalization via quantum
avalanches

Assuming a direct transition between the MBL and
delocalized phases, at the transition, eigenstates undergo
a complete rearrangement as the entanglement jumps
abruptly from area-law to volume-law.29–31,39,46 This is
quite unlike conventional critical points, which are driven
by fluctuations of a locally defined order parameter. Nu-
merical studies of the transition show strong asymmetry:
a strongly resonant thermal block can thermalize a local-
ized region far more e↵ectively than a localized region
can arrest the growth of the thermal block.47

The asymmetry between thermalization and localiza-
tion was formulated as an ‘avalanche’ process that we
briefly review following Ref. 45. Imagine a rare thermal
region of n0 spins (a ‘bubble’) in an otherwise localized
spin-1/2 chain. Such a rare thermal inclusion is unavoid-
able in a generic system, with uncorrelated disorder. It
will act as a small bath and will increase its size by ther-
malizing spins peripheral to it. Let us assume that the
bubble has absorbed a number n � 1 of l-bits to grow to
a new size n0 +n, but is still described by random matrix
theory and thus remains featureless. Further growth of
the bubble depends on the matrix element for flipping an
l-bit at distance n/2 from the new edge (see Fig. 1). This
is asymptotically given by � ⇠ e

�n/(2⇣)
/
p
2n0+n, where

2n0+n is the dimension of the bubble Hilbert space and
⇣ characterizes the exponential decay of typical matrix
elements with distance. This matrix element should be
compared to the level spacing of the bubble � ⇠ 2�(n0+n):
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Figure 1. Quantum Avalanche.45 A thermal inclusion initially
consisting of n0 spins (red region) is in contact with a set of
l-bits (arrows). The inclusion thermalizes n l-bits (red arrows)
and thereby expands to a size n0 + n (yellow region) while
retaining its featureless ETH character. The e↵ective matrix
element to add the (n+ 1)th l-bit decays exponentially from
the boundary of the original inclusion.
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We propose a multiscale diagonalization scheme to study disordered one-dimensional chains, in
particular, the transition between many-body localization (MBL) and the ergodic phase, expected to be
governed by resonant spots. Our scheme focuses on the dichotomy of MBL versus validity of the eigenstate
thermalization hypothesis. We show that a few natural assumptions imply that the system is localized with
probability one at criticality. On the ergodic side, delocalization is induced by a quantum avalanche seeded
by large ergodic spots, whose size diverges at the transition. On the MBL side, the typical localization
length tends to the inverse of the maximal entropy density at the transition, but there is a divergent length
scale related to the response to an inclusion of large ergodic spots. A mean-field approximation analytically
illustrates these results and predicts a power-law distribution for thermal inclusions at criticality.
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Introduction.—The phenomenology and theory of many-
body localization (MBL), i.e., the absence of thermalization
in interacting quantum systems [1–16], challenges our
understanding of statistical mechanics. In d ¼ 1, the main
outstanding issue is the nature of the transition [17–29] that
separates the MBL from the ergodic (thermalizing) phase.
To describe it, several phenomenological renormalization
schemes have been introduced [19,20,26,27], with partially
conflicting predictions.
In the present Letter, we develop a theory which is rooted

in two microscopic principles. The first principle, gov-
erning nonresonant couplings, is the spectral perturbation
theory. The second principle is the use of the randommatrix
theory for resonant couplings [30–36], which strikingly
predicts an “avalanche” instability: An infinite localized
system can be thermalized by a finite ergodic seed if the
typical localization length ζ exceeds a critical ζc [36].
We implement these principles in the form of a multistep
diagonalization procedure [37–42], described compactly
below and in more detail in the companion paper [43].
Analyzing first the general consequences of this scheme,

we find that the critical point must be localized with
probability one. This conclusion, which rests on a few
basic facts and does not involve any detailed analysis,
contrasts with predominantly numerical RG studies
[19,27], which reported the half-chain entanglement
entropy at the critical point to follow a (subthermal) volume
law. Our result instead implies that the bipartite entangle-
ment entropy of typical cuts is discontinuous at the
transition, as in Ref. [21], and that the typical localization
ζ does not diverge. The latter is a direct consequence of the
explicit upper bound ζ ≤ ζc [36]. On the other hand, we do
identify a length scale l⋆ that does diverge as ðζ − ζcÞ−1 as

one approaches the transition from the MBL side; see
Fig. 1. This is caused by the divergent susceptibility of the
sample to the insertion of large ergodic spots. In our
scheme, such spots trigger delocalization by an avalanche
instability, a central aspect that distinguishes our work from
previous approaches [19,20,26,27]. The validity of the
avalanche scenario and the associated bound on ζ were
recently verified through high-precision numerics [44], and
we show here that it leads to a consistent and physical
picture of the MBL transition. On the thermal side, instead,
we find no divergent correlation length, but only a
diverging crossover length Lþ, beyond which typical
samples appear thermal. Lþ is associated with a typical
timescale of local thermalization, tþ, that diverges qua-
siexponentially at the transition.

MBL phase Thermal phase

FIG. 1. Phase diagram where 1=ε quantifies the disorder
strength. ζ is the typical localization length. It is bounded
by the critical localization length ζc, which equals the inverse of
the entropy density. l⋆ quantifies the susceptibility to the
insertion of large ergodic spots. ξ̄ is the average eigenstate
correlation length and tþ a typical local thermalization time-
scale in the thermal phase.
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timescale of local thermalization, tþ, that diverges qua-
siexponentially at the transition.

MBL phase Thermal phase

FIG. 1. Phase diagram where 1=ε quantifies the disorder
strength. ζ is the typical localization length. It is bounded
by the critical localization length ζc, which equals the inverse of
the entropy density. l⋆ quantifies the susceptibility to the
insertion of large ergodic spots. ξ̄ is the average eigenstate
correlation length and tþ a typical local thermalization time-
scale in the thermal phase.
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Probing the onset of quantum avalanches in a 
many-body localized system

Julian Léonard1,5,6, Sooshin Kim    1,6, Matthew Rispoli1, Alexander Lukin1, 
Robert Schittko1, Joyce Kwan1, Eugene Demler2, Dries Sels    3,4 & 
Markus Greiner1 

Strongly correlated systems can exhibit unexpected phenomena when 
brought in a state far from equilibrium. An example is many-body 
localization, which prevents generic interacting systems from reaching 
thermal equilibrium even at long times1,2. The stability of the many-body 
localized phase has been predicted to be hindered by the presence of  
small thermal inclusions that act as a bath, leading to the delocalization  
of the entire system through an avalanche propagation mechanism3–8.  
Here we study the dynamics of a thermal inclusion of variable size when  
it is coupled to a many-body localized system. We !nd evidence for 
accelerated transport of thermal inclusion into the localized region.  
We monitor how the avalanche spreads through the localized system and 
thermalizes it site by site by measuring the site-resolved entropy over time. 
Furthermore, we isolate the strongly correlated bath-induced dynamics 
with multipoint correlations between the bath and the system. Our results 
have implications on the robustness of many-body localized systems and 
their critical behaviour.

One of the founding principles of statistical physics is that a generic 
macroscopic system can equilibrate on its own. This means that local 
fluctuations in energy, magnetization or particle density can relax 
towards thermal equilibrium because interactions allow different parts 
of the system to serve as reservoirs to each other. This universal picture 
has been challenged by the idea of many-body localization (MBL), which 
suggests that systems with strong disorder can evade thermalization 
even in the presence of interactions1,2,9–15. In one-dimensional systems, 
a stable MBL phase can be argued as follows: matrix elements of local 
operators decay exponentially with separation between two points, 
whereas the density of states increases exponentially with the sys-
tem size. For strong disorder, matrix elements can, thus, be argued to 
decay faster than the density of states increases, ultimately inhibiting 
relaxation.

However, the existence of MBL remains a subject of debate, since 
it is unclear when those conditions are fulfilled16–24. For instance, by 

introducing a small region with weak disorder, part of the system may be 
delocalized and thus give rise to local operators with non-exponential 
decay25–33,33–36. Those local weakly disordered regions occur naturally 
in randomly disordered systems, when potential offsets on consecu-
tive lattice sites accidentally coincide25,28,29,37,38. The dynamics in MBL 
systems in the presence of a thermal region have been predicted to 
occur in so-called quantum avalanches, which imply that these regions 
grow by absorbing nearby disordered regions3–7. Under which condi-
tions quantum avalanches can arise, run out of steam or propagate 
without halt determines the fate of MBL at long evolution times. Their 
understanding is, thus, closely connected to discerning thermalization 
in interacting many-body systems.

Perturbative bath-induced relaxation can often be captured in the 
context of Fermi’s golden rule (Fig. 1a, left). In this picture, the relaxa-
tion rate Γ

i

= g

2

i

ρ

bath

 at a distance of i sites away from the bath is given 
by the product of the bath’s constant density of states ρbath and coupling 
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Avalanches are hard to probe but 
MBL seems to be still a plausible option,      

perhaps at disorder strengths larger than expected
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II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—
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We consider a weakly interacting quantum spin chain with random local interactions. We prove that
many-body localization follows from a physically reasonable assumption that limits the extent of level
attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of
local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product
basis into a complete set of exact many-body eigenfunctions.
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In the past few years, there has been a surge of interest in
the phenomenon of many-body localization (MBL). In the
well-studied Anderson tight-binding model [1] a particle
moving in a sufficiently strong random potential is local-
ized; eigenstates decay exponentially away from localiza-
tion centers and transport is absent. A number of authors
have argued that localization persists in the presence of
weak interparticle interactions [2–8]. In particular, the
detailed perturbative analysis of [7] provided strong evi-
dence for MBL. More recently, numerical studies on one-
dimensional spin systems and particle systems [9–11] gave
evidence for a transition from a thermalized phase to a
many-body localized phase, as the strength of the disorder
increases. See [12] for a review of recent work on MBL.
On a theoretical level, it is important to get past

perturbative analysis, as rare regions with weak disorder
(Griffiths regions [13]) have the potential to spoil locali-
zation. Rigorous results on localization in many-body
systems include a proof of dynamical localization for an
isotropic random spin chain, using the Jordan-Wigner
transformation to reduce the problem to an equivalent
one-body Hamiltonian [14]. Localization in the ground
state of the interacting Aubry-André model was established
in [15].
In this Letter we establish rigorously that for a one-

dimensional disordered spin chain, MBL follows from a
physically reasonable assumption on level statistics. We
consider a random field, random transverse field, random
exchange Ising model on an interval Λ ¼ ½−K;K0#∩Z,

H ¼
XK0

i¼−K
hiS

z
i þ

XK0

i¼−K
γiSxi þ

XK0

i¼−K−1
JiS

z
iS

z
iþ1: ð1Þ

Here, Sx;zi are Pauli matrices, with Szi ≡ 1 for i∉Λ. We take
γi ¼ γΓi with γ small. Thus, the Hamiltonian is close to one
that is diagonal in the basis given by tensor products of Szi
eigenstates. We take the random variables hi, Γi, Ji to be
independent and bounded, with bounded probability den-
sities. This is a variant of the model considered in [10]. We
need to make an assumption of limited level attraction

(LLA) for the spectrum of H, for some values of ν > 0
and C < ∞.
Assumption LLAðν; CÞ. Consider the Hamiltonian H in

boxes of size n. Its eigenvalues satisfy

P
!
min
α≠β

jEα − Eβj < δ

"
≤ δνCn; ð2Þ

for all δ > 0 and all n.
Physically, this is a mild assumption specifying that with

high probability the minimum level spacing should be no
smaller than some exponential in the volume. Note that
random matrices normally have either neutral statistics
(ν ¼ 1, e.g., Poisson) or repulsive ones (ν > 1, e.g.,
Gaussian orthogonal ensemble). Our analysis works even
for attractive statistics, i.e., 0 < ν < 1. Mathematically,
techniques to prove estimates such as (2) are not yet
available for many-body systems, but a promising approach
is available for single-body Hamiltonians [16].
We give an explicit construction of a sequence of unitary

rotations that diagonalizes the Hamiltonian. Each rotation
is generated by quasilocal operators. This means that a
rotation generator that involves l spins is exponentially
small in l, with high probability. Resonant regions where
the required rotations are far from the identity are dilute; the
probability that two sites a distance D apart are in the same
resonant region decays faster than any power of D. These
rotations define a way to deform the original basis states
[tensor products of (1,0) or (0,1) at each site] into the exact
eigenstates. Away from resonant regions, each eigenstate
resembles the basis state it came from, and classical spin
configurations σ ¼ fσig ∈ f−1; 1gjΛj can be used as eigen-
state labels. This is made evident by the following result:
Theorem.—Let ν, C be fixed. There exists a κ > 0 such

that for γ sufficiently small, LLAðν; CÞ implies the follow-
ing estimates:

E avαjhSz0iαj ¼ 1 −OðγκÞ; ð3Þ

where E denotes the disorder average, avα denotes an
average over α, and h·iα denotes the expectation in the
eigenstate α. For any i ≠ j,
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For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
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basis into a complete set of exact many-body eigenfunctions.
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moving in a sufficiently strong random potential is local-
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tion centers and transport is absent. A number of authors
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isotropic random spin chain, using the Jordan-Wigner
transformation to reduce the problem to an equivalent
one-body Hamiltonian [14]. Localization in the ground
state of the interacting Aubry-André model was established
in [15].
In this Letter we establish rigorously that for a one-

dimensional disordered spin chain, MBL follows from a
physically reasonable assumption on level statistics. We
consider a random field, random transverse field, random
exchange Ising model on an interval Λ ¼ ½−K;K0#∩Z,

H ¼
XK0

i¼−K
hiS

z
i þ

XK0

i¼−K
γiSxi þ

XK0

i¼−K−1
JiS

z
iS

z
iþ1: ð1Þ

Here, Sx;zi are Pauli matrices, with Szi ≡ 1 for i∉Λ. We take
γi ¼ γΓi with γ small. Thus, the Hamiltonian is close to one
that is diagonal in the basis given by tensor products of Szi
eigenstates. We take the random variables hi, Γi, Ji to be
independent and bounded, with bounded probability den-
sities. This is a variant of the model considered in [10]. We
need to make an assumption of limited level attraction

(LLA) for the spectrum of H, for some values of ν > 0
and C < ∞.
Assumption LLAðν; CÞ. Consider the Hamiltonian H in

boxes of size n. Its eigenvalues satisfy

P
!
min
α≠β

jEα − Eβj < δ

"
≤ δνCn; ð2Þ

for all δ > 0 and all n.
Physically, this is a mild assumption specifying that with

high probability the minimum level spacing should be no
smaller than some exponential in the volume. Note that
random matrices normally have either neutral statistics
(ν ¼ 1, e.g., Poisson) or repulsive ones (ν > 1, e.g.,
Gaussian orthogonal ensemble). Our analysis works even
for attractive statistics, i.e., 0 < ν < 1. Mathematically,
techniques to prove estimates such as (2) are not yet
available for many-body systems, but a promising approach
is available for single-body Hamiltonians [16].
We give an explicit construction of a sequence of unitary

rotations that diagonalizes the Hamiltonian. Each rotation
is generated by quasilocal operators. This means that a
rotation generator that involves l spins is exponentially
small in l, with high probability. Resonant regions where
the required rotations are far from the identity are dilute; the
probability that two sites a distance D apart are in the same
resonant region decays faster than any power of D. These
rotations define a way to deform the original basis states
[tensor products of (1,0) or (0,1) at each site] into the exact
eigenstates. Away from resonant regions, each eigenstate
resembles the basis state it came from, and classical spin
configurations σ ¼ fσig ∈ f−1; 1gjΛj can be used as eigen-
state labels. This is made evident by the following result:
Theorem.—Let ν, C be fixed. There exists a κ > 0 such

that for γ sufficiently small, LLAðν; CÞ implies the follow-
ing estimates:

E avαjhSz0iαj ¼ 1 −OðγκÞ; ð3Þ

where E denotes the disorder average, avα denotes an
average over α, and h·iα denotes the expectation in the
eigenstate α. For any i ≠ j,
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We study a new class of unconventional critical phenomena that is characterized by singularities only
in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the
recently proposed many-body localization-delocalization transition, in which transport coefficients vanish
at a critical temperature with no singularities in thermodynamic observables. Describing this purely
dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics
necessarily requires averaging over a large number of matrix elements between many-body eigenstates.
Here, we develop a real-space renormalization group method for excited states that allows us to overcome
this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-
field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden
in this model, using the real-space renormalization group method for excited states we find a finite-
temperature dynamical transition between two localized phases. The transition is characterized by
nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic) spin correlation
function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an
Edwards-Anderson-like order parameter in one of the localized phases.
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I. INTRODUCTION

Our ability to describe emergent behavior in many-body
systems relies, to a large extent, on the universality of
critical phenomena associated with phase transitions and
spontaneous symmetry breaking. Spontaneous symmetry
breaking plays an important role even in disordered
systems. For example, the spin-glass transition in classical
magnets with random interactions follows this paradigm: as
temperature drops, a specific frozen magnetization pattern
that breaks an Ising symmetry emerges [1,2]. In one
dimension, however, there are strong arguments, which
forbid spontaneous symmetry breaking and, more gener-
ally, thermodynamic phase transitions from occurring at
any nonvanishing temperature [3,4].

Do these arguments rule out the observation of critical
phenomena in one-dimensional systems at nonvanishing
temperature? A recent theoretical work, which generalizes
the phenomenon of Anderson localization [5] to interacting
many-body systems, suggests otherwise [6,7]. Its intriguing
prediction is that an isolated many-body system subject to
strong disorder can undergo a phase transition, from a state
with strictly zero (thermal) conductivity at low temperature
to a metallic phase above a critical temperature. This
transition has only dynamicalmanifestations and no thermo-
dynamic ones, and is, in this sense, a many-body extension
of the mobility edge [8] in the Anderson localization
transition in 3 D. A similar many-body transition was also
suggested to exist in the 1 D bosonic case [9], at infinite
temperatures as a function of disorder strength [10–12], and
in quasiperiodic systems without disorder [13]. Very little,
however, is known about the universality of such transitions.
In this paper, we uncover a wider class of unconventional

critical phenomena, whose existence was hinted by
the many-body localization transition example. By

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 4, 011052 (2014)

2160-3308=14=4(1)=011052(12) 011052-1 Published by the American Physical Society

Jordan
Wigner

ℋfree−fermions = ∑
i

(Ji [c†
i c†

i+1 + c†
i ci+1 − cic†

i+1 − cici+1] + hi [1 − 2c†
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II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—
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We consider a weakly interacting quantum spin chain with random local interactions. We prove that
many-body localization follows from a physically reasonable assumption that limits the extent of level
attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of
local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product
basis into a complete set of exact many-body eigenfunctions.
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In the past few years, there has been a surge of interest in
the phenomenon of many-body localization (MBL). In the
well-studied Anderson tight-binding model [1] a particle
moving in a sufficiently strong random potential is local-
ized; eigenstates decay exponentially away from localiza-
tion centers and transport is absent. A number of authors
have argued that localization persists in the presence of
weak interparticle interactions [2–8]. In particular, the
detailed perturbative analysis of [7] provided strong evi-
dence for MBL. More recently, numerical studies on one-
dimensional spin systems and particle systems [9–11] gave
evidence for a transition from a thermalized phase to a
many-body localized phase, as the strength of the disorder
increases. See [12] for a review of recent work on MBL.
On a theoretical level, it is important to get past

perturbative analysis, as rare regions with weak disorder
(Griffiths regions [13]) have the potential to spoil locali-
zation. Rigorous results on localization in many-body
systems include a proof of dynamical localization for an
isotropic random spin chain, using the Jordan-Wigner
transformation to reduce the problem to an equivalent
one-body Hamiltonian [14]. Localization in the ground
state of the interacting Aubry-André model was established
in [15].
In this Letter we establish rigorously that for a one-

dimensional disordered spin chain, MBL follows from a
physically reasonable assumption on level statistics. We
consider a random field, random transverse field, random
exchange Ising model on an interval Λ ¼ ½−K;K0#∩Z,

H ¼
XK0

i¼−K
hiS

z
i þ

XK0

i¼−K
γiSxi þ

XK0

i¼−K−1
JiS

z
iS

z
iþ1: ð1Þ

Here, Sx;zi are Pauli matrices, with Szi ≡ 1 for i∉Λ. We take
γi ¼ γΓi with γ small. Thus, the Hamiltonian is close to one
that is diagonal in the basis given by tensor products of Szi
eigenstates. We take the random variables hi, Γi, Ji to be
independent and bounded, with bounded probability den-
sities. This is a variant of the model considered in [10]. We
need to make an assumption of limited level attraction

(LLA) for the spectrum of H, for some values of ν > 0
and C < ∞.
Assumption LLAðν; CÞ. Consider the Hamiltonian H in

boxes of size n. Its eigenvalues satisfy

P
!
min
α≠β

jEα − Eβj < δ

"
≤ δνCn; ð2Þ

for all δ > 0 and all n.
Physically, this is a mild assumption specifying that with

high probability the minimum level spacing should be no
smaller than some exponential in the volume. Note that
random matrices normally have either neutral statistics
(ν ¼ 1, e.g., Poisson) or repulsive ones (ν > 1, e.g.,
Gaussian orthogonal ensemble). Our analysis works even
for attractive statistics, i.e., 0 < ν < 1. Mathematically,
techniques to prove estimates such as (2) are not yet
available for many-body systems, but a promising approach
is available for single-body Hamiltonians [16].
We give an explicit construction of a sequence of unitary

rotations that diagonalizes the Hamiltonian. Each rotation
is generated by quasilocal operators. This means that a
rotation generator that involves l spins is exponentially
small in l, with high probability. Resonant regions where
the required rotations are far from the identity are dilute; the
probability that two sites a distance D apart are in the same
resonant region decays faster than any power of D. These
rotations define a way to deform the original basis states
[tensor products of (1,0) or (0,1) at each site] into the exact
eigenstates. Away from resonant regions, each eigenstate
resembles the basis state it came from, and classical spin
configurations σ ¼ fσig ∈ f−1; 1gjΛj can be used as eigen-
state labels. This is made evident by the following result:
Theorem.—Let ν, C be fixed. There exists a κ > 0 such

that for γ sufficiently small, LLAðν; CÞ implies the follow-
ing estimates:

E avαjhSz0iαj ¼ 1 −OðγκÞ; ð3Þ

where E denotes the disorder average, avα denotes an
average over α, and h·iα denotes the expectation in the
eigenstate α. For any i ≠ j,
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We study a new class of unconventional critical phenomena that is characterized by singularities only
in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the
recently proposed many-body localization-delocalization transition, in which transport coefficients vanish
at a critical temperature with no singularities in thermodynamic observables. Describing this purely
dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics
necessarily requires averaging over a large number of matrix elements between many-body eigenstates.
Here, we develop a real-space renormalization group method for excited states that allows us to overcome
this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-
field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden
in this model, using the real-space renormalization group method for excited states we find a finite-
temperature dynamical transition between two localized phases. The transition is characterized by
nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic) spin correlation
function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an
Edwards-Anderson-like order parameter in one of the localized phases.
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I. INTRODUCTION

Our ability to describe emergent behavior in many-body
systems relies, to a large extent, on the universality of
critical phenomena associated with phase transitions and
spontaneous symmetry breaking. Spontaneous symmetry
breaking plays an important role even in disordered
systems. For example, the spin-glass transition in classical
magnets with random interactions follows this paradigm: as
temperature drops, a specific frozen magnetization pattern
that breaks an Ising symmetry emerges [1,2]. In one
dimension, however, there are strong arguments, which
forbid spontaneous symmetry breaking and, more gener-
ally, thermodynamic phase transitions from occurring at
any nonvanishing temperature [3,4].

Do these arguments rule out the observation of critical
phenomena in one-dimensional systems at nonvanishing
temperature? A recent theoretical work, which generalizes
the phenomenon of Anderson localization [5] to interacting
many-body systems, suggests otherwise [6,7]. Its intriguing
prediction is that an isolated many-body system subject to
strong disorder can undergo a phase transition, from a state
with strictly zero (thermal) conductivity at low temperature
to a metallic phase above a critical temperature. This
transition has only dynamicalmanifestations and no thermo-
dynamic ones, and is, in this sense, a many-body extension
of the mobility edge [8] in the Anderson localization
transition in 3 D. A similar many-body transition was also
suggested to exist in the 1 D bosonic case [9], at infinite
temperatures as a function of disorder strength [10–12], and
in quasiperiodic systems without disorder [13]. Very little,
however, is known about the universality of such transitions.
In this paper, we uncover a wider class of unconventional

critical phenomena, whose existence was hinted by
the many-body localization transition example. By
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Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in
highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the
characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to
symmetry protected topological phases. Understanding the nature of phase transitions between these
different forms of eigenstate order remains an essential open question. Here, we conjecture that no direct
transition between distinct MBL orders can occur in one dimension; rather, an ergodic phase always
intervenes. Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an
experimental protocol where the intervening ergodic phase can be diagnosed via the dynamics of local
observables.

DOI: 10.1103/PhysRevLett.126.100604

Traditionally, the classification of phases of matter
has focused on systems at or near thermal equilibrium.
Many-body localization (MBL) offers an alternative to this
paradigm [1–6]. In particular, owing to the presence of
strong disorder, MBL phases are characterized by their
failure to thermalize [7–10]. This dynamical property
imposes strong constraints on the structure of eigenstates;
namely, that they exhibit area-law entanglement and can be
described as the ground state of quasi-local Hamiltonians
[11,12]. Perhaps the most striking consequence is that such
systems can exhibit order—previously restricted to the
ground state—throughout their entire many-body spectrum
[12–17]. This offers a particularly tantalizing prospect for
near-term quantum simulators: The ability to observe pheno-
mena, such as coherent topological edge modes, without the
need to cool to the many-body ground state [18–22].
The presence of eigenstate order in the many-body

localized phase also raises a more fundamental question:
What is the nature of phase transitions between different
types of MBL order? This question highlights a delicate
balance between the properties of localization and phase
transitions. On the one hand, the stability of MBL is
contingent upon the existence of an extensive number of
quasilocal conserved quantities (“l-bits”) [11,23]. On the
other hand, the correlation length at a second-order phase
transition diverges [24]. Understanding and characterizing
this interplay remains an outstanding challenge. Indeed,
while certain studies suggest the presence of a direct
transition between distinct MBL phases [16,20,25–28],
others have found signatures of delocalization at the
transition [29–31].
In this Letter, we conjecture that any transition between

distinct MBL phases is invariably forbidden and that an

intervening ergodic phase always emerges [Fig. 1(a)]. This
conjecture is motivated by an extensive numerical study of
three classes of MBL transitions: (i) a symmetry-breaking
transition, (ii) a symmetry-protected topological (SPT)
transition, and (iii) a discrete time crystalline transition
(in a Floquet system). By systematically constructing the
various phase diagrams, we show that an intervening
ergodic region emerges for all numerically accessible
interaction strengths. Moreover, we demonstrate that this
emergent ergodicity is intimately tied to the presence of a
phase transition; a disorderless, symmetry-breaking field
suppresses the intervening ergodic phase. In addition to

(a) (b)

FIG. 1. (a) Phase diagram of the symmetry breaking model,
Eq. (1), as a function ofWJ=Wh and interaction strengthWV . For
all numerically accessible WV (outside the shaded region), we
observe a finite width ergodic region between the two different
MBL phases (PM and SG). At WV ¼ 0, the system is non-
interacting and exhibits a critical point atWJ=Wh ¼ 1 (red point).
(b) Phase diagram as a function of a symmetry breaking field Γ
and WJ=Wh for WV ¼ 0.3. With increasing Γ, the size of the
ergodic region decreases until the system remains localized for all
WJ=Wh. (inset) Schematic of the full phase diagram as a function
of WJ=Wh, WV and Γ.
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Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in
highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the
characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to
symmetry protected topological phases. Understanding the nature of phase transitions between these
different forms of eigenstate order remains an essential open question. Here, we conjecture that no direct
transition between distinct MBL orders can occur in one dimension; rather, an ergodic phase always
intervenes. Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an
experimental protocol where the intervening ergodic phase can be diagnosed via the dynamics of local
observables.
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Traditionally, the classification of phases of matter
has focused on systems at or near thermal equilibrium.
Many-body localization (MBL) offers an alternative to this
paradigm [1–6]. In particular, owing to the presence of
strong disorder, MBL phases are characterized by their
failure to thermalize [7–10]. This dynamical property
imposes strong constraints on the structure of eigenstates;
namely, that they exhibit area-law entanglement and can be
described as the ground state of quasi-local Hamiltonians
[11,12]. Perhaps the most striking consequence is that such
systems can exhibit order—previously restricted to the
ground state—throughout their entire many-body spectrum
[12–17]. This offers a particularly tantalizing prospect for
near-term quantum simulators: The ability to observe pheno-
mena, such as coherent topological edge modes, without the
need to cool to the many-body ground state [18–22].
The presence of eigenstate order in the many-body

localized phase also raises a more fundamental question:
What is the nature of phase transitions between different
types of MBL order? This question highlights a delicate
balance between the properties of localization and phase
transitions. On the one hand, the stability of MBL is
contingent upon the existence of an extensive number of
quasilocal conserved quantities (“l-bits”) [11,23]. On the
other hand, the correlation length at a second-order phase
transition diverges [24]. Understanding and characterizing
this interplay remains an outstanding challenge. Indeed,
while certain studies suggest the presence of a direct
transition between distinct MBL phases [16,20,25–28],
others have found signatures of delocalization at the
transition [29–31].
In this Letter, we conjecture that any transition between

distinct MBL phases is invariably forbidden and that an

intervening ergodic phase always emerges [Fig. 1(a)]. This
conjecture is motivated by an extensive numerical study of
three classes of MBL transitions: (i) a symmetry-breaking
transition, (ii) a symmetry-protected topological (SPT)
transition, and (iii) a discrete time crystalline transition
(in a Floquet system). By systematically constructing the
various phase diagrams, we show that an intervening
ergodic region emerges for all numerically accessible
interaction strengths. Moreover, we demonstrate that this
emergent ergodicity is intimately tied to the presence of a
phase transition; a disorderless, symmetry-breaking field
suppresses the intervening ergodic phase. In addition to

(a) (b)

FIG. 1. (a) Phase diagram of the symmetry breaking model,
Eq. (1), as a function ofWJ=Wh and interaction strengthWV . For
all numerically accessible WV (outside the shaded region), we
observe a finite width ergodic region between the two different
MBL phases (PM and SG). At WV ¼ 0, the system is non-
interacting and exhibits a critical point atWJ=Wh ¼ 1 (red point).
(b) Phase diagram as a function of a symmetry breaking field Γ
and WJ=Wh for WV ¼ 0.3. With increasing Γ, the size of the
ergodic region decreases until the system remains localized for all
WJ=Wh. (inset) Schematic of the full phase diagram as a function
of WJ=Wh, WV and Γ.
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at phase transitions between MBL phases

Sanjay Moudgalya,1 David A. Huse,1 and Vedika Khemani2

1Department of Physics, Princeton University, Princeton, NJ 08544, USA
2Department of Physics, Stanford University, Stanford, CA 94305, USA

(Dated: August 21, 2020)

We examine the stability of marginally Anderson localized phase transitions between localized
phases to the addition of many-body interactions, focusing in particular on the spin-glass to param-
agnet transition in a disordered transverse field Ising model in one dimension. We find evidence for
a perturbative instability of localization at finite energy densities once interactions are added, i.e.
evidence for the relevance of interactions - in a renormalization group sense - to the non-interacting
critical point governed by infinite randomness scaling. We introduce a novel diagnostic, the “suscep-
tibility of entanglement”, which allows us to perturbatively probe the e↵ect of adding interactions
on the entanglement properties of eigenstates, and helps us elucidate the resonant processes that can
cause thermalization. The susceptibility serves as a much more sensitive probe, and its divergence
can detect the perturbative beginnings of an incipient instability even in regimes and system sizes
for which conventional diagnostics point towards localization. We expect this new measure to be of
independent interest for analyzing the stability of localization in a variety of di↵erent settings.

I. INTRODUCTION

Many-body localization (MBL) was born in investiga-
tions of the stability of Anderson localization – the phe-
nomenon that strong enough disorder exponentially lo-
calizes non-interacting wavefunctions – to the addition
of interactions [1, 2]. This stability was demonstrated to
all orders in perturbation theory, following early precur-
sors [3–5]. While the non-perturbative stability of MBL
remains an open question in various settings [6–9], it has
been proven that a stable MBL phase can exist in lo-
cal, strongly-disordered one dimensional spin chains [10].
More generally, understanding the stability of phenom-
ena to small changes, such as the introduction of interac-
tions, is a central enterprise in theoretical physics. In this
work, we add to this important literature by examining
the e↵ect of interactions on marginally Anderson local-
ized critical points between Anderson localized phases.

While phases and phase transitions are traditionally
studied in the framework of equilibrium statistical me-
chanics, recent work has shown that there is a rich no-
tion of phase structure even within the out-of-equilibrium
MBL phase [11, 12]. Di↵erent MBL phases represent
distinct types of novel dynamical phenomena that may
be completely invisible to, or forbidden by, equilibrium
thermodynamics — a paradigmatic example being the re-
cently discovered Floquet MBL time-crystal phase [13–
15]. Localized phases can be understood as eigenstate
phases characterized by distinct patterns of long-range
order (LRO), both symmetry-breaking and topological,
in individual highly-excited MBL eigenstates [11, 12, 16–
19]; a phase transition between di↵erent localized phases
requires singular changes in the eigenspectrum proper-
ties. Indeed, the passage from localization to thermal-
ization is itself a dynamical phase transition involving a
singular change in the entanglement properties of highly
excited many-body eigenstates. While the nature of the

MBL-to-thermal phase transition has been a subject of
intense study [20–33], transitions between di↵erent MBL
phases have recently received considerably less attention
and are the focus of this work.
While our conclusions are quite general, for specificity,

the majority of our analysis will be presented for a disor-
dered transverse-field Ising model (TFIM) in one dimen-
sion. This model exhibits a localized, symmetry-broken
“spin-glass” (SG) phase with LRO, and a localized para-
magnetic (PM) phase with no order [11, 12, 22, 34, 35].
In the absence of interactions, the phase transition be-
tween the SG and PM phases is governed by an infinite-
randomness fixed point that is studied using the strong
disorder renormalization group (SDRG) [12, 35]. While
all single-particle (SP) eigenstates are exponentially lo-
calized in either phase, the critical point (CP) is only
marginally localized. The SP eigenstates corresponding
to SP energies E ! 0 are only stretched exponentially
localized at the CP, and both the SP density of states
and localization length diverge in this limit [35].
Once weak interactions are added, localization remains

stable deep in the PM and SG phases, on account of the
usual arguments for the stability of Anderson localiza-
tion with strong enough disorder. The stability of local-
ization near the CP, however, requires careful consider-
ation. The CP exhibits “marginal” Anderson localiza-
tion due to the presence of (weakly) extended states in
the SP spectrum, which could aid in the formation of
long-range “resonances” that make the CP more suscep-
tible to thermalization [6, 36]. We note that the instabil-
ity towards thermalization may be visible in a perturba-
tive treatment of the interactions [5, 36], or it may have
a subtler non-perturbative origin, in which case it will
only be detectable at asymptotically large system sizes
and times [6]. Previous SDRG studies of the interacting
Ising model explicitly treat interactions as irrelevant –
even at finite many-body energy densities – and so do
not consider the resonances that could destabilize the
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Jordan
Wigner

ℋfree−fermions = ∑
i

(Ji [c†
i c†

i+1 + c†
i ci+1 − cic†

i+1 − cici+1] + hi [1 − 2c†
i ci])

2

II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—

Duality transformation 

τz
i = σx

i σx
i+1 , τx

i =
i

∏
k=1

σz
k

symmetry (parity)ℤ2

ℙ = ∏
j

σz
j = (−1)∑i ni = ± 1⇒ ℋTFIM = ∑

i
(Jiτz

i + hiτx
i−1τ

x
i )

Particle number
is NOT conserved

MBL in disordered Ising chains ?



ℋ = − ∑
i

(Ji σx
i σx

i+1+hi σz
i ) +∑

i

gi (σx
i σx

i+2 + σz
i σz

i+1)
￼non − interacting ￼Interaction (ℤ2 sym. + duality)



 Phase diagram: Previous results/proposalsT = ∞

Parameswaran and Vasseur 

Rep. Prog. Phys. 81 082501 (2018)

Sahay, Machado, Ye, Laumann, Yao

Phys. Rev. Lett. 126, 100604 (2021).

Moudgalya, Huse, and Khemani

arXiv:2008.09113.

ℋ = − ∑
i

(Ji σx
i σx

i+1+hi σz
i ) +∑

i

gi (σx
i σx

i+2 + σz
i σz

i+1)
￼non − interacting ￼Interaction (ℤ2 sym. + duality)

https://iopscience.iop.org/article/10.1088/1361-6633/aac9ed/meta
https://arxiv.org/abs/2008.09113
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.100604


 Phase diagram: Previous results/proposalsT = ∞

Parameswaran and Vasseur 

Rep. Prog. Phys. 81 082501 (2018)

Sahay, Machado, Ye, Laumann, Yao

Phys. Rev. Lett. 126, 100604 (2021).

Moudgalya, Huse, and Khemani

arXiv:2008.09113.

ℋ = − ∑
i

(Ji σx
i σx

i+1+hi σz
i ) +∑

i

gi (σx
i σx

i+2 + σz
i σz

i+1)
￼non − interacting ￼Interaction (ℤ2 sym. + duality)

‣ Fate of the non-interacting “Infinite Randomness” critical point ?

‣ Possible direct transition between 2 different MBL phases ?

‣ Topological nature of the MBL Spin Glass phase ?

some key 
questions

https://iopscience.iop.org/article/10.1088/1361-6633/aac9ed/meta
https://arxiv.org/abs/2008.09113
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.100604


Non-interacting problem ℋTFIM = − ∑
i

(Ji σx
i σx

i+1+hi σz
i )



Non-interacting problem
‣Dirac fermions 

ℋTFIM =
L

∑
i=1

[Ji (c†
i c†

i+1 + c†
i ci+1 − cic

†
i+1 − cici+1) + hi (1 − 2c†

i ci)] =
L

∑
m=1

ϵm (ϕ†
mϕm −

1
2 )

Lieb-Schultz, Mattis (1961) ; Pfeuty (1970) …

2

II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—
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6. Topological properties

The Majorana representation of the QIC model in Eq. (11)
can be schematized as in Fig. 4. There, we clearly see that
in the limit of zero transverse magnetic field (h j = 0), two
perfectly localized zero mode operators are sitting at both
open ends  L = a1 and  R = bL , both commuting with
HMajorana. Such a property of unpaired Majorana fermions
will actually persist in the entire ordered regime of the QIC,
i.e. for � = ln J � ln h > 0.
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FIG. 4. Schematic representation of the QIC Hamiltonian with OBC
in terms of Majorana operators, see Eq. (11).

a. Zero-mode edge states— More precisely, two strong
zero mode operators  L/R can be explicitly constructed [].
Commuting with the Hamiltonian and being localized at both
edges, they read

 L =
LX

j=1

�Ljp
NL

a j and  R =
LX

j=1

�Rj
p
NR

bL+1�j (13)

where �L1 = �
R

1 = 1, while for j � 2

�Lj =
j�1Y

i=1

hi
Ji

and �Rj =
j�1Y

i=1

hL+1�i
JL�i

. (14)

The prefactors NR/L ensure normalization of the above oper-
ators, such that  † = 1 for each component:

NL/R =

LX

j=1

⇣
�L/Rj

⌘2
. (15)

Using the fact that [H , a j] = �2i
⇣
Jj�1bj�1 � h jbj

⌘
and

[H , bj] = 2i
⇣
Jja j+1 � h ja j

⌘
, one easily arrives at

⇥
H , L

⇤
=

2i
p
NL

h1h2 · · · hL

J1 J2 · · · JL�1
bL, (16)

⇥
H , R

⇤
= �

2i
p
NR

h1h2 · · · hL

J1 J2 · · · JL�1
a1. (17)

These commutators are exponentially small with the system
size L in the topological/ordered side where both left and
right operators can be normalized, such that ↵L/R , 0 when
L ! 1. In the disorder-free case, those expressions can be
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II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—

Kitaev (2001) ; Fendley (2012) …
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1
2 )
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6. Topological properties

The Majorana representation of the QIC model in Eq. (11)
can be schematized as in Fig. 4. There, we clearly see that
in the limit of zero transverse magnetic field (h j = 0), two
perfectly localized zero mode operators are sitting at both
open ends  L = a1 and  R = bL , both commuting with
HMajorana. Such a property of unpaired Majorana fermions
will actually persist in the entire ordered regime of the QIC,
i.e. for � = ln J � ln h > 0.
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a. Zero-mode edge states— More precisely, two strong
zero mode operators  L/R can be explicitly constructed [].
Commuting with the Hamiltonian and being localized at both
edges, they read

 L =
LX

j=1

�Ljp
NL

a j and  R =
LX

j=1

�Rj
p
NR

bL+1�j (13)

where �L1 = �
R

1 = 1, while for j � 2

�Lj =
j�1Y

i=1

hi
Ji

and �Rj =
j�1Y

i=1

hL+1�i
JL�i

. (14)

The prefactors NR/L ensure normalization of the above oper-
ators, such that  † = 1 for each component:

NL/R =

LX

j=1

⇣
�L/Rj

⌘2
. (15)

Using the fact that [H , a j] = �2i
⇣
Jj�1bj�1 � h jbj

⌘
and

[H , bj] = 2i
⇣
Jja j+1 � h ja j

⌘
, one easily arrives at

⇥
H , L

⇤
=

2i
p
NL

h1h2 · · · hL

J1 J2 · · · JL�1
bL, (16)

⇥
H , R

⇤
= �

2i
p
NR

h1h2 · · · hL

J1 J2 · · · JL�1
a1. (17)

These commutators are exponentially small with the system
size L in the topological/ordered side where both left and
right operators can be normalized, such that ↵L/R , 0 when
L ! 1. In the disorder-free case, those expressions can be

‣Majorana fermions 

2

II. JORDAN-WIGNER AND MAJORANA FERMIONS
DESCRIPTION OF THE QUANTUM ISING CHAIN

A. Models and main properties

The QIC model which describes one-dimensional interact-
ing spins in a transverse magnetic field is governed by the
following L-site Hamiltonian

HQIC = �

LX

j=1

⇣
Jj�x

j �
x
j+1 + h j�

z
j

⌘
, (1)

where �↵ are Pauli matrices, and both couplings Jj and fields
h j can be random.

1. Low-energy properties

2. Free-fermion diagonalization

Using the Jordan-Wigner transformation

�z
j = 1 � 2c†j cj (2)

�x
j = K j

⇣
c†j + cj

⌘
(3)

�y
j = iK j

⇣
c†j � cj

⌘
(4)

with K j =

j�1Y

k=1
�z
k, (5)

the QIC can be recasted onto a free-fermion Hamiltonian

H� =

LX

j=1

f
Jj

⇣
c†j c
†

j+1 + c†j cj+1 � cjc
†

j+1 � cjcj+1
⌘

+ h j

⇣
1 � 2c†j cj

⌘g
, (6)

as first studied several decades ago in the disorder-free case by
Lieb, Schultz, Mattis [? ] and Pfeuty [? ].

3. Symmetry

An important property of this model is that the total num-
ber of (Dirac) fermions Nf =

P
j c†j cj (directly related to the

total magnetization
P

j �
z
j in spin language) is not conserved,

but the parity of Nf is a conserved quantity. Therefore the
following parity operator

P =
Y

j

�z
j = (�1)Nf , (7)

which has eigenvalues p = ±1, commutes with H , thus con-
ferring a global Z2 symmetry to the problem.

This QIC model was later revisited in the context of topo-
logical order by Kitaev [? ] who introduced two Majoranas

fermions [1] a j and bj

a j = c†j + cj = K j�
x
j (8)

bj = i(c†j � cj ) = K j�
y
j , (9)

such that

a jbj = i(1 � 2c†j cj ) = i�z
j , (10)

thus leading to a rewriting of the QIC as a Majorana chain
model

HMajorana = �i
LX

j=1

f
Jjbja j+1 + h ja jbj

g
. (11)

For finite size chains, the choice of boundary conditions is
crucial [2] and in the rest of this work, we will focus on open
boundary conditions (OBC). As nicely shown by Kitaev [? ],
and further discussed in Refs. [? ], a spontaneous breaking
of the Z2 spin-flip (or parity) symmetry can be described as
an example of topological order. With OBC, one can observe
the associated zero energy edge state, which in terms of Dirac
fermions, is bilocalized near both edges. Below we first discuss
the low-energy spectrum.

4. Diagonalization of the free-fermion problem

For the most general case where translational invariance
is absent, we use the Nambu formalism [? ] to solve the
general inhomogeneous free-fermion Hamiltonian Eq. (6), by
diagonalizing a 2L ⇥ 2L matrix (see Appendix ). We can
rewrite the quadratic Hamiltonian as follows

H� =

LX

m=1
✏m

 
�†m�m �

1
2

!
, (12)

where the single particle energies ✏m are taken positive, in
ascending order. The new fermionic operators are linear com-
bination of the original ones �†m =

PL
i=1 um

i c†i + vmi ci , where
um
i and vmi are real, the inverse transformation being given by

c†i =
PL

m=1 um
i �
†
m + v

m
i �m.

5. Low-energy levels and finite-size gaps

The ground-state corresponds to the fermionic vacuum with
energy E0 = �

PL
m=1 ✏m/2, and the very first excited states

correspond to single particle excitations: E1 = E0 + ✏1 and
E2 = E0 + ✏2.

a. Clean case— In Fig. 1 we show the two first gaps
above the GS for the clean QIC as a function of the distance to
the quantum critical point (QCP).

b. Random case—

Kitaev (2001) ; Fendley (2012) …

ℋOBC
Majorana = − i

L−1

∑
i=1

Jibiai+1 − i
L

∑
i=1

hiaibi

ΨLeft =
1

𝒩1/2 (a1 +
h1

J1
a2 + ⋯ +

L−1

∏
i=1

hi

Ji
aL) ΨRight =

1
𝒩1/2 (bL +

hL

JL−1
bL−1 + ⋯ +

L−1

∏
i=1

hi

Ji
b1)

(i) [ℋ, ΨLeft] =
2i

𝒩

h1h2⋯hL

J1J2⋯JL−1
bL ⟶ 0

(ii) 𝒪†
zm =

1
2 (ΨLeft − iΨRight)

(L → ∞) Create an exponentially small energy state
localized at the edges ⇒ topological order

𝒪†
zm maps between even and odd sectors(iii) {𝒪†

zm, ℙ̂} = 0

￼









  










finite
Randomness
Critical Point

δ = ln J − ln hOrderParamagnet

Anderson    Localized

localized
marginally

Fermions

Spins

Trivial

Disordered Magnetic

Non-interacting phase diagram

Topological



δ = ln J − ln h

ϵ = 0.5 (T = ∞)

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = |⟨σx
1 σx

L⟩ |

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = |⟨σx
L
4

σx
3L
4
⟩ |

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = ⟨σx
L
4

σx
3L
4
⟩

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = ⟨σx
1 σx

L⟩𝒞bulk

𝒞edge

ϵ = 0 (groundstate)

𝒞bulk

𝒞edge

Disorder 
“protects” 
magnetic 

order at ALL 
energies!

PRB 2013

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = ⟨σx
L
4

σx
3L
4
⟩

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = ⟨σx
1 σx

L⟩

C

C

‣ Bulk and End-End 
Spin Correlations

Infinite
Randomness
Critical Point

δ = ln J − ln hOrderParamagnet

Anderson    LocalizedFermions

Spins

Trivial

Disordered Magnetic

Non-interacting phase diagram

Topological



δ = ln J − ln h

ϵ = 0.5 (T = ∞)

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = |⟨σx
1 σx

L⟩ |

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = |⟨σx
L
4

σx
3L
4
⟩ |

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = ⟨σx
L
4

σx
3L
4
⟩

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = ⟨σx
1 σx

L⟩𝒞bulk

𝒞edge

ϵ = 0 (groundstate)

𝒞bulk

𝒞edge

Disorder 
“protects” 
magnetic 

order at ALL 
energies!

PRB 2013

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞bulk = ⟨σx
L
4

σx
3L
4
⟩

0

0.2

0.4

0.6

0.8
1
2
3
4

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
2
3
4

L = 128
L = 64
L = 32
L = 16

𝒞edge = ⟨σx
1 σx

L⟩

C

3

-1 -0.5 0 0.5 1
0

0.5

1

L=8
L=16
L=32
L=64
L=128
L=256
L=512
L=1024

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
-3

10
-2

10
-1

δ=0

0 500 1000
10

-12

10
-8

10
-4

δ=0.01
δ=0.02
δ=0.03
δ=0.04
δ=0.05
δ=0.06
δ=0.07
δ=0.08
δ=0.09
δ=0.10

Fir
stg

aps
� 1

,2

�

� 1
(L)

� 1
(L)

L

L

(a)

(b)

� = ln(J/h)

QCPTrivial PM Topological FM(c)

FIG. 1. Clean case. Two first gaps ✏1 (full lines) and ✏2 (dotted lines)
above the ground-state of the QIC. ED results for open chains of
various lengths L = 8, · · · , 1024, are plotted against � = ln (J/h) the
distance from the quantum critical point (QCP) separating the trivial
paramagnet (PM, � < 0), from the topological ordered ferromagnet
(FM � > 0). Inset (a) shows the power-law decay ✏1(L) / 1/L
at criticality with a dynamical exponent z = 1. Inset (b) shows
the exponential decay of the first gap in the topological FM regime
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6. Topological properties

The Majorana representation of the QIC model in Eq. (11)
can be schematized as in Fig. 4. There, we clearly see that
in the limit of zero transverse magnetic field (h j = 0), two
perfectly localized zero mode operators are sitting at both
open ends  L = a1 and  R = bL , both commuting with
HMajorana. Such a property of unpaired Majorana fermions
will actually persist in the entire ordered regime of the QIC,
i.e. for � = ln J � ln h > 0.
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FIG. 4. Schematic representation of the QIC Hamiltonian with OBC
in terms of Majorana operators, see Eq. (11).

a. Zero-mode edge states— More precisely, two strong
zero mode operators  L/R can be explicitly constructed [].
Commuting with the Hamiltonian and being localized at both
edges, they read

 L =
LX

j=1

�Ljp
NL

a j and  R =
LX

j=1

�Rj
p
NR

bL+1�j (13)

where �L1 = �
R

1 = 1, while for j � 2

�Lj =
j�1Y

i=1

hi
Ji

and �Rj =
j�1Y

i=1

hL+1�i
JL�i

. (14)

The prefactors NR/L ensure normalization of the above oper-
ators, such that  † = 1 for each component:

NL/R =

LX

j=1

⇣
�L/Rj

⌘2
. (15)

Using the fact that [H , a j] = �2i
⇣
Jj�1bj�1 � h jbj

⌘
and

[H , bj] = 2i
⇣
Jja j+1 � h ja j

⌘
, one easily arrives at

⇥
H , L

⇤
=

2i
p
NL

h1h2 · · · hL

J1 J2 · · · JL�1
bL, (16)

⇥
H , R

⇤
= �

2i
p
NR

h1h2 · · · hL

J1 J2 · · · JL�1
a1. (17)

These commutators are exponentially small with the system
size L in the topological/ordered side where both left and
right operators can be normalized, such that ↵L/R , 0 when
L ! 1. In the disorder-free case, those expressions can be

= i⟨a1 bL⟩

￼   probes Majorana edge modes𝒞edge
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2. Infinite randomness criticality at high energy

As expected from high-energy SDRG approaches [100–103], the zero-temperature quantum criticality
of the disordered quantum Ising chain Eq. (5) must remain unchanged at all energies, so far only confirmed
by a single numerical study [104]. Here we present and discuss our numerical results obtained for the 1D
random TFIM in Fig. 6. First, at criticality when � = ln J � ln h = 0, we check in the inset of Fig. 6 the
logarithmic scaling for the disorder-average entropy with open boundary conditions with a cut at half-chain
(see schematic picture in Fig. 6, top right)

SvN(L/2, ✏, � = 0) =
ln 2

12
lnL+ const(✏), (24)

where the only dependence on the energy density ✏ comes in the non-universal additive constant. We remind
that ground-state is at ✏ = 0, while ✏ = 0.5 corresponds to infinite-temperature states. Interestingly, we
also remark that const(0.5) ⇡ 2 ⇥ const(0). In a way similar to the previously discussed crossover from
clean to IRFP for the random-bod XX chain, we also observe the same e�ect here. However we will not
vary the disorder strength, but instead vary the control parameter � = ln J � ln h = 2 lnW , keeping
couplings and fields drawn from box distributions: PJ/h = Box[0 ,WJ/h] uniform between 0 and WJ/h,
with WJ = W�1

h = W .
In the main panel of Fig. 6, upon varying � the von-Neumann entropy displays qualitatively similar

behaviors for zero and infinite temperature: (i) area-law entanglement, even at high temperature ; (ii)
SvN ! ln 2 for positive �, signaling localization protected quantum-order [105] with a "cat-state" structure
for the eigenstates ; (iii) IRFP log scaling Eq. (24) at criticality (see inset).
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FIG. 6: Exact diagonalization results for the random TFIM Eq. (5) with open boundary conditions. Results are averaged
over several thousands of samples for various system lengths L, as indicated on the plot. The half-chain von-Neumann
entropy (see schematic picture, top right), is plotted against the control parameter � for (zero-temperature) ground-state
(✏ = 0, blue symbols) and infinite-temperature (✏ = 0.5, red symbols), in both cases showing qualitatively similar
behaviors (see text). Inset: the critical scaling at � = 0 takes the expected logarithmic form Eq. (24). Note also the
crossover between the clean case (✏ = 0, green symbols) and the asymptotic behavior.
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What are the effects of interactions?
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Abstract

We study Majorana chain with the shortest possible interaction term and in the presence

of hopping alternation. When formulated in terms of spins the model corresponds to the

transverse field Ising model with nearest-neighbor transverse and next-nearest-neighbor

longitudinal repulsion. The phase diagram obtained with extensive DMRG simulations

is very rich and contains six phases. Four gapped phases include paramagnetic, period-2

with broken translation symmetry, Z2 with broken parity symmetry and the period-2-Z2

phase with both symmetries broken. In addition there are two floating phases: gapless

and critical Luttinger liquid with incommensurate correlations, and with an additional

spontaneously broken Z2 symmetry in one of them. By analyzing an extended phase dia-

gram we demonstrate that, in contrast with a common belief, the Luttinger liquid phase

along the self-dual critical line terminates at a weaker interaction strength than the end

point of the Ising critical line that we find to be in the tri-critical Ising universality class.

We also show that none of these two points is a Lifshitz point terminating the incommen-

surability. In addition, we analyzed topological properties through Majorana zero modes

emergent in the two topological phases, with and without incommensurability. In the

weak interaction regime, a self-consistent mean-field treatment provides a remarkable

accuracy for the description of the spectral pairing and the parity switches induced by

the interaction.
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Figure 2: Phase diagram of the interacting Majorana chain model Eq. (4) as a func-
tion of coupling constants g and h, obtained from DMRG simulations. It contains
four gapped phases: Z2, paramagnetic, period-2 and Z2-period-2; and two critical
floating phases in Luttinger liquid universality class. See main text, Section 2.1 for
a brief description of each phase. The model is self-dual for h! 1/h and g ! g/h.
The floating phases are separated from the gapped ones by the Kosterlitz-Thouless
transitions (red lines) with indicated critical values of the Luttinger liquid parameters
Kc . The multicritical point at h = 0 and g ⇡ 0.4105 is in the eight-vertex universal-
ity class. Blue lines are Ising transition that terminates at g ⇡ 3 with the tri-critical
Ising point (blue star). For 0.29 Æ g Æ 1.3 the Ising transition is superposed with
the Luttinger liquid phase resulting in a critical line with central charge c = 3/2.
Dotted black line states for the disorder line above which the dominant wave-vector
is incommensurate.

1.3 Paper outline

The rest of the paper is organized as follows. In section 2 we overview the phase diagram
briefly discussing the properties of each phase and the nature of the quantum phase transi-
tions between them. In section 3 we discuss in more details the floating phases - Luttinger
liquid phases with incommensurate correlations and locate the boundaries of these phases
that corresponds to two Kosterlitz-Thouless phase transitions. We then discuss the multicrit-
ical point along h = 0 line that belongs to the universality class of the eight-vertex model.
Equipped with the understanding of the extended phase diagram we revise the nature of the
critical lines along h = 1 in the section 4. In particular we will provide numerical evidence
that there is no generalize commensurate-incommensurate transition predicted in Ref. [17],
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

DMRG results
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Figure 2: Phase diagram of the interacting Majorana chain model Eq. (4) as a func-
tion of coupling constants g and h, obtained from DMRG simulations. It contains
four gapped phases: Z2, paramagnetic, period-2 and Z2-period-2; and two critical
floating phases in Luttinger liquid universality class. See main text, Section 2.1 for
a brief description of each phase. The model is self-dual for h! 1/h and g ! g/h.
The floating phases are separated from the gapped ones by the Kosterlitz-Thouless
transitions (red lines) with indicated critical values of the Luttinger liquid parameters
Kc . The multicritical point at h = 0 and g ⇡ 0.4105 is in the eight-vertex universal-
ity class. Blue lines are Ising transition that terminates at g ⇡ 3 with the tri-critical
Ising point (blue star). For 0.29 Æ g Æ 1.3 the Ising transition is superposed with
the Luttinger liquid phase resulting in a critical line with central charge c = 3/2.
Dotted black line states for the disorder line above which the dominant wave-vector
is incommensurate.

1.3 Paper outline

The rest of the paper is organized as follows. In section 2 we overview the phase diagram
briefly discussing the properties of each phase and the nature of the quantum phase transi-
tions between them. In section 3 we discuss in more details the floating phases - Luttinger
liquid phases with incommensurate correlations and locate the boundaries of these phases
that corresponds to two Kosterlitz-Thouless phase transitions. We then discuss the multicrit-
ical point along h = 0 line that belongs to the universality class of the eight-vertex model.
Equipped with the understanding of the extended phase diagram we revise the nature of the
critical lines along h = 1 in the section 4. In particular we will provide numerical evidence
that there is no generalize commensurate-incommensurate transition predicted in Ref. [17],
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

3

Entanglement entropy— Before getting to the EE itself, we
start with a brief discussion of the boundary conditions, il-
lustrated for the non-interacting case in Fig. 2 (a). Instead
of open boundary conditions (OBC), most commonly used
in the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning the
boundary spins with a strong longitudinal field [51, 52], thus
artificially breaking the parity symmetry of the IMC Hamilto-
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FIG. 2. DMRG and ED results for the von-Neumann entropy scaling
as a function of sub-system size = for (a) non-interacting, and (b)
interacting Majorana fermions, Eq. (1). (a) 6 = 0, clean chain results
(upper data) illustrate how OBC ED data match with FBC DMRG
(after subtracting the boundary entropy ln

p
2). In the random case, a

similar agreement is observed for the disorder-average (after the same
subtraction), the dominant scaling being now controlled by Eq. (5)
with an "e�ective central charge" 2e� = ln 2

2 (grey line), a finite-size
bending down is observed when half-chain is approached. (b) 6 < 0
DMRG results shown for subsystems 2  =  #/3, various inter-
action strengths (indicated on the plot), and di�erent chain lengths
(colored symbols). The agreement with the IFRP scaling (grey line
Eq. (5) with 2e� = ln 2

2 ) is excellent in all cases, once the asymptotic
regime is reached beyond a finite crossover length scale [26, 50]. In-
set: 6-dependence of 2e� extracted from fits to the form Eq. (5) over
successive sliding windows ending at =max. All data agree with the
asymptotic log scaling controlled by the prefactor 2e� = ln 2

2 .

nian. As a result, the FBC entropy is reduced from its OBC
value by the A�eck-Ludwig boundary term [53], such that
(FBC

vN = (OBC
vN � ln

p
2, but does not loose its universal logarith-

mic scaling. This becomes clear in Fig. 2 (a) for free fermions
(6 = 0) where DMRG and exact diagonalization (ED) data
are successfully compared in the clean case. Interestingly, we
further observe that such a boundary entropy also shows up
for the free-fermion IRFP, as evidenced in the same panel (a)
of Fig. 2 where OBC ED data match with FBC DMRG after a
subtraction of the similar ln

p
2 term.

Let us now present the most important result of the paper,
displayed in Fig. 2 (b) where for finite interaction strengths
6 < 0, the disorder-average EEs show excellent agreement
with the non-interacting IFRP logarithmic growth Eq. (5), with
2e� = ln 2

2 . Remarkably, this remains true for the entire regime
of study �1  6  2. This is even more clear from the in-
set where the 6-dependence of 2e� is extracted from fits to
the form Eq. (5) over successive sliding windows. This result
deeply contrasts with previous works [14, 15] where a satura-
tion of EE was observed and interpreted as a consequence of
localization. There are two main causes for this disagreement,
both due to numerical limitations that most probably led to a
misinterpretation of earlier DMRG data. The first reason is
the number of kept DMRG states, which can be a major obsta-
cle [48]. The second, perhaps more interesting, comes from
the boundary conditions and our choice of FBC, which leads
to a significant reduction in EE, giving a decisive advantage to
our DMRG simulations [18].

It is furthermore noteworthy that all finite interaction results
show the same tendency to flow to the non-interacting IRFP
scaling, with a unique e�ective central charge fully compatible
with 2e� = ln 2

2 , even in the repulsive regime where the clean
case displays 2 = 3/2 for 0.29  6  1.3, as clearly visible
in Fig. 1 (b) for a comparison between clean and disordered
cases at 6 = 1.

Low-energy gap— In order to double-check the IRFP hypoth-
esis over the broad regime of interaction strengths, we also
focus on the lowest energy gap � above the ground-state, and
in particular we aim to check the very peculiar exponentially
activated scaling law defined by Eq. (3), which signals a dy-
namical exponent I = 1. In addition, the probability distri-
bution of these gaps is expected to display broadening and a
universal scaling form, as shown for free fermions [23, 54].

Here for the interacting model, we also observe, see Fig. 3
(a) for 6 = 0.5, a very clear broadening of the distributions
%(ln�) upon increasing the system size, which is a strong
evidence that I = 1, as predicted for the IRFP. Furthermore,
the same data show an excellent collapse in Fig. 3 (b) when
histogrammized against (ln�)/

p
# , without any adjustable

parameter. We have checked that this remains true for other
values of the interaction strength (in the range of study), as
shown for a few values of 6 in the inset of Fig. 3 (b). There,
one sees that the typical gap 4ln� perfectly obeys the activated
scaling law Eq. (3). The non-interacting case (ED data for
6 = 0) is also displayed for comparison.
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The quantum critical properties of interacting fermions in the presence of disorder are still not fully under-
stood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite
randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further
display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully
examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate
boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find
that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims.

Introduction— The interplay of disorder and interactions in
low dimensional systems is one of the most fascinating prob-
lem of condensed matter physics, with highly non-trivial open
questions, the many-body localization (MBL) being a remark-
able example [1, 2]. One of the key points of MBL physics
concerns the stability of a non-interacting Anderson insula-
tor against interactions at (in)finite temperature, a question
already raised in the pioneering works [3–5]. Since then, a
significant and flourishing activity has continued to explore
these questions, but with controversial predictions [6–11].

In this work, we propose to take a small detour by focusing
on the di�erent but closely related problem of the low-energy
properties of the interacting Majorana chain (IMC) model [12–
16] in the presence of disorder. It is governed by the following
one-dimensional (1D) Hamiltonian

H = �

’
9

�
iC 9W 9W 9+1 + 6W 9W 9+1W 9+2W 9+3

�
, (1)

with random couplings C 9 and constant interaction 6. The
operators W 9 are Majorana (real) fermions (W

9
= W†

9
and

{W8 , W 9 } = 2X8 9 ) from which Dirac (complex) fermions can be
constructed as pairs of Majoranas such that 22 9 = W2 9�1 + iW2 9 ,
yielding the Dirac fermions version of the IMC model Eq. (1)
which can also be seen as the interacting counterpart of the Ki-
taev chain model [17, 18]. There is a third possible formulation
in terms of Pauli matrices [18]

H =
’
✓

h
�✓f

G

✓
fG

✓+1 + ⌘✓f
I

✓
+ 6

⇣
fI

✓
fI

✓+1 + fG

✓
fG

✓+2

⌘i
, (2)

with �✓ = C2 9 and ⌘✓ = C2 9�1. In the absence of interactions
(6 = 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [19]. In the random
case, if couplings and fields are such that ln � = ln ⌘ (where
[· · · ] stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [20–22] describes the physics,
as carefully checked numerically both for ground-state [23, 24]
and excited states [25, 26].

Infinite-randomness hallmarks— To fix the context, we first
list some key properties of the 1D IRFP. (i) Time and space
are related in a strongly anisotropic way, with a dynamical
critical exponent I = 1. As a result the lowest energy gap �

does not self-average, is broadly distributed, and exponentially
suppressed with the chain length # , such that

ln� ⇠ �
p
# . (3)

(ii) There is also lack of self-averaging for the spin-spin cor-
relations: the average decays algebraically, while the typical
vanishes much faster, as a stretched exponential

hfG

✓
fG

✓+A
i ⇠ A

⇣p
5�3

⌘
/2

and ln hfG

✓
fG

✓+A
i ⇠ �

p
A . (4)

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the sub-
system length =, as in the clean case [27–29], following

(@ (=) =
2e�

6
ln(=) + B@ , (5)

for open boundaries, B@ being a non-universal constant. The
key object here is the so-called "e�ective central charge" 2e� ,
which for the IRFP is given by 2IRFP

e� = 2 ln 2 [30–34], where
2 is the central charge of the underlying clean fixed point.

Such an unbounded entanglement growth Eq. (5) strongly
contrasts with MBL or Anderson insulators for which a strict
area law is observed, even at infinite temperature, with an EE
bounded by the finite localization length [26, 35]. Here, the
IRFP is only marginally localized, i.e., that all single-particle
states have a finite localization length, except in the band center
where the localization is stretched exponential [36–38].

IRFP and interactions— Two historical examples of non-
interacting IRFPs are the 1D disordered TFI model [20, 21],
and the random-bond XX chain [37]. Interestingly, both mod-
els can be seen as the opposite sides of the same coin: non-
interacting Majorana (real) vs. Dirac (complex) fermions with
random hoppings. Although the e�ect of interactions was
quickly understood as irrelevant in a Renormalization Group
(RG) sense [37, 39] for free Dirac fermions, the story turned
out to be quite di�erent in the case of Majoranas. In his semi-
nal work, Fisher first suggested that interactions should also be
irrelevant at the IRFP in the Ising/Majorana case [21], but this
issue remained essentially unexplored for many years, before
re-emerging only recently in the MBL context [40–47]. There
at high energy, the IRFP was found to be destablized by weak
interactions towards a delocalized ergodic phase [44–46].
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

3

Entanglement entropy— Before getting to the EE itself, we
start with a brief discussion of the boundary conditions, il-
lustrated for the non-interacting case in Fig. 2 (a). Instead
of open boundary conditions (OBC), most commonly used
in the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning the
boundary spins with a strong longitudinal field [51, 52], thus
artificially breaking the parity symmetry of the IMC Hamilto-
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FIG. 2. DMRG and ED results for the von-Neumann entropy scaling
as a function of sub-system size = for (a) non-interacting, and (b)
interacting Majorana fermions, Eq. (1). (a) 6 = 0, clean chain results
(upper data) illustrate how OBC ED data match with FBC DMRG
(after subtracting the boundary entropy ln

p
2). In the random case, a

similar agreement is observed for the disorder-average (after the same
subtraction), the dominant scaling being now controlled by Eq. (5)
with an "e�ective central charge" 2e� = ln 2

2 (grey line), a finite-size
bending down is observed when half-chain is approached. (b) 6 < 0
DMRG results shown for subsystems 2  =  #/3, various inter-
action strengths (indicated on the plot), and di�erent chain lengths
(colored symbols). The agreement with the IFRP scaling (grey line
Eq. (5) with 2e� = ln 2

2 ) is excellent in all cases, once the asymptotic
regime is reached beyond a finite crossover length scale [26, 50]. In-
set: 6-dependence of 2e� extracted from fits to the form Eq. (5) over
successive sliding windows ending at =max. All data agree with the
asymptotic log scaling controlled by the prefactor 2e� = ln 2

2 .

nian. As a result, the FBC entropy is reduced from its OBC
value by the A�eck-Ludwig boundary term [53], such that
(FBC

vN = (OBC
vN � ln

p
2, but does not loose its universal logarith-

mic scaling. This becomes clear in Fig. 2 (a) for free fermions
(6 = 0) where DMRG and exact diagonalization (ED) data
are successfully compared in the clean case. Interestingly, we
further observe that such a boundary entropy also shows up
for the free-fermion IRFP, as evidenced in the same panel (a)
of Fig. 2 where OBC ED data match with FBC DMRG after a
subtraction of the similar ln

p
2 term.

Let us now present the most important result of the paper,
displayed in Fig. 2 (b) where for finite interaction strengths
6 < 0, the disorder-average EEs show excellent agreement
with the non-interacting IFRP logarithmic growth Eq. (5), with
2e� = ln 2

2 . Remarkably, this remains true for the entire regime
of study �1  6  2. This is even more clear from the in-
set where the 6-dependence of 2e� is extracted from fits to
the form Eq. (5) over successive sliding windows. This result
deeply contrasts with previous works [14, 15] where a satura-
tion of EE was observed and interpreted as a consequence of
localization. There are two main causes for this disagreement,
both due to numerical limitations that most probably led to a
misinterpretation of earlier DMRG data. The first reason is
the number of kept DMRG states, which can be a major obsta-
cle [48]. The second, perhaps more interesting, comes from
the boundary conditions and our choice of FBC, which leads
to a significant reduction in EE, giving a decisive advantage to
our DMRG simulations [18].

It is furthermore noteworthy that all finite interaction results
show the same tendency to flow to the non-interacting IRFP
scaling, with a unique e�ective central charge fully compatible
with 2e� = ln 2

2 , even in the repulsive regime where the clean
case displays 2 = 3/2 for 0.29  6  1.3, as clearly visible
in Fig. 1 (b) for a comparison between clean and disordered
cases at 6 = 1.

Low-energy gap— In order to double-check the IRFP hypoth-
esis over the broad regime of interaction strengths, we also
focus on the lowest energy gap � above the ground-state, and
in particular we aim to check the very peculiar exponentially
activated scaling law defined by Eq. (3), which signals a dy-
namical exponent I = 1. In addition, the probability distri-
bution of these gaps is expected to display broadening and a
universal scaling form, as shown for free fermions [23, 54].

Here for the interacting model, we also observe, see Fig. 3
(a) for 6 = 0.5, a very clear broadening of the distributions
%(ln�) upon increasing the system size, which is a strong
evidence that I = 1, as predicted for the IRFP. Furthermore,
the same data show an excellent collapse in Fig. 3 (b) when
histogrammized against (ln�)/

p
# , without any adjustable

parameter. We have checked that this remains true for other
values of the interaction strength (in the range of study), as
shown for a few values of 6 in the inset of Fig. 3 (b). There,
one sees that the typical gap 4ln� perfectly obeys the activated
scaling law Eq. (3). The non-interacting case (ED data for
6 = 0) is also displayed for comparison.
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The quantum critical properties of interacting fermions in the presence of disorder are still not fully under-
stood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite
randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further
display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully
examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate
boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find
that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims.

Introduction— The interplay of disorder and interactions in
low dimensional systems is one of the most fascinating prob-
lem of condensed matter physics, with highly non-trivial open
questions, the many-body localization (MBL) being a remark-
able example [1, 2]. One of the key points of MBL physics
concerns the stability of a non-interacting Anderson insula-
tor against interactions at (in)finite temperature, a question
already raised in the pioneering works [3–5]. Since then, a
significant and flourishing activity has continued to explore
these questions, but with controversial predictions [6–11].

In this work, we propose to take a small detour by focusing
on the di�erent but closely related problem of the low-energy
properties of the interacting Majorana chain (IMC) model [12–
16] in the presence of disorder. It is governed by the following
one-dimensional (1D) Hamiltonian

H = �

’
9

�
iC 9W 9W 9+1 + 6W 9W 9+1W 9+2W 9+3

�
, (1)

with random couplings C 9 and constant interaction 6. The
operators W 9 are Majorana (real) fermions (W

9
= W†

9
and

{W8 , W 9 } = 2X8 9 ) from which Dirac (complex) fermions can be
constructed as pairs of Majoranas such that 22 9 = W2 9�1 + iW2 9 ,
yielding the Dirac fermions version of the IMC model Eq. (1)
which can also be seen as the interacting counterpart of the Ki-
taev chain model [17, 18]. There is a third possible formulation
in terms of Pauli matrices [18]

H =
’
✓

h
�✓f

G

✓
fG

✓+1 + ⌘✓f
I

✓
+ 6

⇣
fI

✓
fI

✓+1 + fG

✓
fG

✓+2

⌘i
, (2)

with �✓ = C2 9 and ⌘✓ = C2 9�1. In the absence of interactions
(6 = 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [19]. In the random
case, if couplings and fields are such that ln � = ln ⌘ (where
[· · · ] stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [20–22] describes the physics,
as carefully checked numerically both for ground-state [23, 24]
and excited states [25, 26].

Infinite-randomness hallmarks— To fix the context, we first
list some key properties of the 1D IRFP. (i) Time and space
are related in a strongly anisotropic way, with a dynamical
critical exponent I = 1. As a result the lowest energy gap �

does not self-average, is broadly distributed, and exponentially
suppressed with the chain length # , such that

ln� ⇠ �
p
# . (3)

(ii) There is also lack of self-averaging for the spin-spin cor-
relations: the average decays algebraically, while the typical
vanishes much faster, as a stretched exponential

hfG

✓
fG

✓+A
i ⇠ A

⇣p
5�3

⌘
/2

and ln hfG

✓
fG

✓+A
i ⇠ �

p
A . (4)

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the sub-
system length =, as in the clean case [27–29], following

(@ (=) =
2e�

6
ln(=) + B@ , (5)

for open boundaries, B@ being a non-universal constant. The
key object here is the so-called "e�ective central charge" 2e� ,
which for the IRFP is given by 2IRFP

e� = 2 ln 2 [30–34], where
2 is the central charge of the underlying clean fixed point.

Such an unbounded entanglement growth Eq. (5) strongly
contrasts with MBL or Anderson insulators for which a strict
area law is observed, even at infinite temperature, with an EE
bounded by the finite localization length [26, 35]. Here, the
IRFP is only marginally localized, i.e., that all single-particle
states have a finite localization length, except in the band center
where the localization is stretched exponential [36–38].

IRFP and interactions— Two historical examples of non-
interacting IRFPs are the 1D disordered TFI model [20, 21],
and the random-bond XX chain [37]. Interestingly, both mod-
els can be seen as the opposite sides of the same coin: non-
interacting Majorana (real) vs. Dirac (complex) fermions with
random hoppings. Although the e�ect of interactions was
quickly understood as irrelevant in a Renormalization Group
(RG) sense [37, 39] for free Dirac fermions, the story turned
out to be quite di�erent in the case of Majoranas. In his semi-
nal work, Fisher first suggested that interactions should also be
irrelevant at the IRFP in the Ising/Majorana case [21], but this
issue remained essentially unexplored for many years, before
re-emerging only recently in the MBL context [40–47]. There
at high energy, the IRFP was found to be destablized by weak
interactions towards a delocalized ergodic phase [44–46].
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
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Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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Entanglement entropy— Before getting to the EE itself, we
start with a brief discussion of the boundary conditions, il-
lustrated for the non-interacting case in Fig. 2 (a). Instead
of open boundary conditions (OBC), most commonly used
in the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning the
boundary spins with a strong longitudinal field [51, 52], thus
artificially breaking the parity symmetry of the IMC Hamilto-
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FIG. 2. DMRG and ED results for the von-Neumann entropy scaling
as a function of sub-system size = for (a) non-interacting, and (b)
interacting Majorana fermions, Eq. (1). (a) 6 = 0, clean chain results
(upper data) illustrate how OBC ED data match with FBC DMRG
(after subtracting the boundary entropy ln

p
2). In the random case, a

similar agreement is observed for the disorder-average (after the same
subtraction), the dominant scaling being now controlled by Eq. (5)
with an "e�ective central charge" 2e� = ln 2

2 (grey line), a finite-size
bending down is observed when half-chain is approached. (b) 6 < 0
DMRG results shown for subsystems 2  =  #/3, various inter-
action strengths (indicated on the plot), and di�erent chain lengths
(colored symbols). The agreement with the IFRP scaling (grey line
Eq. (5) with 2e� = ln 2

2 ) is excellent in all cases, once the asymptotic
regime is reached beyond a finite crossover length scale [26, 50]. In-
set: 6-dependence of 2e� extracted from fits to the form Eq. (5) over
successive sliding windows ending at =max. All data agree with the
asymptotic log scaling controlled by the prefactor 2e� = ln 2

2 .

nian. As a result, the FBC entropy is reduced from its OBC
value by the A�eck-Ludwig boundary term [53], such that
(FBC

vN = (OBC
vN � ln

p
2, but does not loose its universal logarith-

mic scaling. This becomes clear in Fig. 2 (a) for free fermions
(6 = 0) where DMRG and exact diagonalization (ED) data
are successfully compared in the clean case. Interestingly, we
further observe that such a boundary entropy also shows up
for the free-fermion IRFP, as evidenced in the same panel (a)
of Fig. 2 where OBC ED data match with FBC DMRG after a
subtraction of the similar ln

p
2 term.

Let us now present the most important result of the paper,
displayed in Fig. 2 (b) where for finite interaction strengths
6 < 0, the disorder-average EEs show excellent agreement
with the non-interacting IFRP logarithmic growth Eq. (5), with
2e� = ln 2

2 . Remarkably, this remains true for the entire regime
of study �1  6  2. This is even more clear from the in-
set where the 6-dependence of 2e� is extracted from fits to
the form Eq. (5) over successive sliding windows. This result
deeply contrasts with previous works [14, 15] where a satura-
tion of EE was observed and interpreted as a consequence of
localization. There are two main causes for this disagreement,
both due to numerical limitations that most probably led to a
misinterpretation of earlier DMRG data. The first reason is
the number of kept DMRG states, which can be a major obsta-
cle [48]. The second, perhaps more interesting, comes from
the boundary conditions and our choice of FBC, which leads
to a significant reduction in EE, giving a decisive advantage to
our DMRG simulations [18].

It is furthermore noteworthy that all finite interaction results
show the same tendency to flow to the non-interacting IRFP
scaling, with a unique e�ective central charge fully compatible
with 2e� = ln 2

2 , even in the repulsive regime where the clean
case displays 2 = 3/2 for 0.29  6  1.3, as clearly visible
in Fig. 1 (b) for a comparison between clean and disordered
cases at 6 = 1.

Low-energy gap— In order to double-check the IRFP hypoth-
esis over the broad regime of interaction strengths, we also
focus on the lowest energy gap � above the ground-state, and
in particular we aim to check the very peculiar exponentially
activated scaling law defined by Eq. (3), which signals a dy-
namical exponent I = 1. In addition, the probability distri-
bution of these gaps is expected to display broadening and a
universal scaling form, as shown for free fermions [23, 54].

Here for the interacting model, we also observe, see Fig. 3
(a) for 6 = 0.5, a very clear broadening of the distributions
%(ln�) upon increasing the system size, which is a strong
evidence that I = 1, as predicted for the IRFP. Furthermore,
the same data show an excellent collapse in Fig. 3 (b) when
histogrammized against (ln�)/

p
# , without any adjustable

parameter. We have checked that this remains true for other
values of the interaction strength (in the range of study), as
shown for a few values of 6 in the inset of Fig. 3 (b). There,
one sees that the typical gap 4ln� perfectly obeys the activated
scaling law Eq. (3). The non-interacting case (ED data for
6 = 0) is also displayed for comparison.
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The quantum critical properties of interacting fermions in the presence of disorder are still not fully under-
stood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite
randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further
display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully
examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate
boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find
that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims.

Introduction— The interplay of disorder and interactions in
low dimensional systems is one of the most fascinating prob-
lem of condensed matter physics, with highly non-trivial open
questions, the many-body localization (MBL) being a remark-
able example [1, 2]. One of the key points of MBL physics
concerns the stability of a non-interacting Anderson insula-
tor against interactions at (in)finite temperature, a question
already raised in the pioneering works [3–5]. Since then, a
significant and flourishing activity has continued to explore
these questions, but with controversial predictions [6–11].

In this work, we propose to take a small detour by focusing
on the di�erent but closely related problem of the low-energy
properties of the interacting Majorana chain (IMC) model [12–
16] in the presence of disorder. It is governed by the following
one-dimensional (1D) Hamiltonian

H = �

’
9

�
iC 9W 9W 9+1 + 6W 9W 9+1W 9+2W 9+3

�
, (1)

with random couplings C 9 and constant interaction 6. The
operators W 9 are Majorana (real) fermions (W

9
= W†

9
and

{W8 , W 9 } = 2X8 9 ) from which Dirac (complex) fermions can be
constructed as pairs of Majoranas such that 22 9 = W2 9�1 + iW2 9 ,
yielding the Dirac fermions version of the IMC model Eq. (1)
which can also be seen as the interacting counterpart of the Ki-
taev chain model [17, 18]. There is a third possible formulation
in terms of Pauli matrices [18]

H =
’
✓

h
�✓f

G

✓
fG

✓+1 + ⌘✓f
I

✓
+ 6

⇣
fI

✓
fI

✓+1 + fG

✓
fG

✓+2

⌘i
, (2)

with �✓ = C2 9 and ⌘✓ = C2 9�1. In the absence of interactions
(6 = 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [19]. In the random
case, if couplings and fields are such that ln � = ln ⌘ (where
[· · · ] stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [20–22] describes the physics,
as carefully checked numerically both for ground-state [23, 24]
and excited states [25, 26].

Infinite-randomness hallmarks— To fix the context, we first
list some key properties of the 1D IRFP. (i) Time and space
are related in a strongly anisotropic way, with a dynamical
critical exponent I = 1. As a result the lowest energy gap �

does not self-average, is broadly distributed, and exponentially
suppressed with the chain length # , such that

ln� ⇠ �
p
# . (3)

(ii) There is also lack of self-averaging for the spin-spin cor-
relations: the average decays algebraically, while the typical
vanishes much faster, as a stretched exponential

hfG

✓
fG

✓+A
i ⇠ A

⇣p
5�3

⌘
/2

and ln hfG

✓
fG

✓+A
i ⇠ �

p
A . (4)

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the sub-
system length =, as in the clean case [27–29], following

(@ (=) =
2e�

6
ln(=) + B@ , (5)

for open boundaries, B@ being a non-universal constant. The
key object here is the so-called "e�ective central charge" 2e� ,
which for the IRFP is given by 2IRFP

e� = 2 ln 2 [30–34], where
2 is the central charge of the underlying clean fixed point.

Such an unbounded entanglement growth Eq. (5) strongly
contrasts with MBL or Anderson insulators for which a strict
area law is observed, even at infinite temperature, with an EE
bounded by the finite localization length [26, 35]. Here, the
IRFP is only marginally localized, i.e., that all single-particle
states have a finite localization length, except in the band center
where the localization is stretched exponential [36–38].

IRFP and interactions— Two historical examples of non-
interacting IRFPs are the 1D disordered TFI model [20, 21],
and the random-bond XX chain [37]. Interestingly, both mod-
els can be seen as the opposite sides of the same coin: non-
interacting Majorana (real) vs. Dirac (complex) fermions with
random hoppings. Although the e�ect of interactions was
quickly understood as irrelevant in a Renormalization Group
(RG) sense [37, 39] for free Dirac fermions, the story turned
out to be quite di�erent in the case of Majoranas. In his semi-
nal work, Fisher first suggested that interactions should also be
irrelevant at the IRFP in the Ising/Majorana case [21], but this
issue remained essentially unexplored for many years, before
re-emerging only recently in the MBL context [40–47]. There
at high energy, the IRFP was found to be destablized by weak
interactions towards a delocalized ergodic phase [44–46].
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

‣ Ground-state of the self-dual random model
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entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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Entanglement entropy— Before getting to the EE itself, we
start with a brief discussion of the boundary conditions, il-
lustrated for the non-interacting case in Fig. 2 (a). Instead
of open boundary conditions (OBC), most commonly used
in the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning the
boundary spins with a strong longitudinal field [51, 52], thus
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FIG. 2. DMRG and ED results for the von-Neumann entropy scaling
as a function of sub-system size = for (a) non-interacting, and (b)
interacting Majorana fermions, Eq. (1). (a) 6 = 0, clean chain results
(upper data) illustrate how OBC ED data match with FBC DMRG
(after subtracting the boundary entropy ln

p
2). In the random case, a

similar agreement is observed for the disorder-average (after the same
subtraction), the dominant scaling being now controlled by Eq. (5)
with an "e�ective central charge" 2e� = ln 2

2 (grey line), a finite-size
bending down is observed when half-chain is approached. (b) 6 < 0
DMRG results shown for subsystems 2  =  #/3, various inter-
action strengths (indicated on the plot), and di�erent chain lengths
(colored symbols). The agreement with the IFRP scaling (grey line
Eq. (5) with 2e� = ln 2

2 ) is excellent in all cases, once the asymptotic
regime is reached beyond a finite crossover length scale [26, 50]. In-
set: 6-dependence of 2e� extracted from fits to the form Eq. (5) over
successive sliding windows ending at =max. All data agree with the
asymptotic log scaling controlled by the prefactor 2e� = ln 2

2 .

nian. As a result, the FBC entropy is reduced from its OBC
value by the A�eck-Ludwig boundary term [53], such that
(FBC

vN = (OBC
vN � ln

p
2, but does not loose its universal logarith-

mic scaling. This becomes clear in Fig. 2 (a) for free fermions
(6 = 0) where DMRG and exact diagonalization (ED) data
are successfully compared in the clean case. Interestingly, we
further observe that such a boundary entropy also shows up
for the free-fermion IRFP, as evidenced in the same panel (a)
of Fig. 2 where OBC ED data match with FBC DMRG after a
subtraction of the similar ln

p
2 term.

Let us now present the most important result of the paper,
displayed in Fig. 2 (b) where for finite interaction strengths
6 < 0, the disorder-average EEs show excellent agreement
with the non-interacting IFRP logarithmic growth Eq. (5), with
2e� = ln 2

2 . Remarkably, this remains true for the entire regime
of study �1  6  2. This is even more clear from the in-
set where the 6-dependence of 2e� is extracted from fits to
the form Eq. (5) over successive sliding windows. This result
deeply contrasts with previous works [14, 15] where a satura-
tion of EE was observed and interpreted as a consequence of
localization. There are two main causes for this disagreement,
both due to numerical limitations that most probably led to a
misinterpretation of earlier DMRG data. The first reason is
the number of kept DMRG states, which can be a major obsta-
cle [48]. The second, perhaps more interesting, comes from
the boundary conditions and our choice of FBC, which leads
to a significant reduction in EE, giving a decisive advantage to
our DMRG simulations [18].

It is furthermore noteworthy that all finite interaction results
show the same tendency to flow to the non-interacting IRFP
scaling, with a unique e�ective central charge fully compatible
with 2e� = ln 2

2 , even in the repulsive regime where the clean
case displays 2 = 3/2 for 0.29  6  1.3, as clearly visible
in Fig. 1 (b) for a comparison between clean and disordered
cases at 6 = 1.

Low-energy gap— In order to double-check the IRFP hypoth-
esis over the broad regime of interaction strengths, we also
focus on the lowest energy gap � above the ground-state, and
in particular we aim to check the very peculiar exponentially
activated scaling law defined by Eq. (3), which signals a dy-
namical exponent I = 1. In addition, the probability distri-
bution of these gaps is expected to display broadening and a
universal scaling form, as shown for free fermions [23, 54].

Here for the interacting model, we also observe, see Fig. 3
(a) for 6 = 0.5, a very clear broadening of the distributions
%(ln�) upon increasing the system size, which is a strong
evidence that I = 1, as predicted for the IRFP. Furthermore,
the same data show an excellent collapse in Fig. 3 (b) when
histogrammized against (ln�)/

p
# , without any adjustable

parameter. We have checked that this remains true for other
values of the interaction strength (in the range of study), as
shown for a few values of 6 in the inset of Fig. 3 (b). There,
one sees that the typical gap 4ln� perfectly obeys the activated
scaling law Eq. (3). The non-interacting case (ED data for
6 = 0) is also displayed for comparison.

Resilient Infinite Randomness Criticality for a Disordered Chain of Interacting Majorana Fermions

Natalia Chepiga1 and Nicolas Laflorencie2

1Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France

The quantum critical properties of interacting fermions in the presence of disorder are still not fully under-
stood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite
randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further
display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully
examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate
boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find
that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims.

Introduction— The interplay of disorder and interactions in
low dimensional systems is one of the most fascinating prob-
lem of condensed matter physics, with highly non-trivial open
questions, the many-body localization (MBL) being a remark-
able example [1, 2]. One of the key points of MBL physics
concerns the stability of a non-interacting Anderson insula-
tor against interactions at (in)finite temperature, a question
already raised in the pioneering works [3–5]. Since then, a
significant and flourishing activity has continued to explore
these questions, but with controversial predictions [6–11].

In this work, we propose to take a small detour by focusing
on the di�erent but closely related problem of the low-energy
properties of the interacting Majorana chain (IMC) model [12–
16] in the presence of disorder. It is governed by the following
one-dimensional (1D) Hamiltonian

H = �

’
9

�
iC 9W 9W 9+1 + 6W 9W 9+1W 9+2W 9+3

�
, (1)

with random couplings C 9 and constant interaction 6. The
operators W 9 are Majorana (real) fermions (W

9
= W†

9
and

{W8 , W 9 } = 2X8 9 ) from which Dirac (complex) fermions can be
constructed as pairs of Majoranas such that 22 9 = W2 9�1 + iW2 9 ,
yielding the Dirac fermions version of the IMC model Eq. (1)
which can also be seen as the interacting counterpart of the Ki-
taev chain model [17, 18]. There is a third possible formulation
in terms of Pauli matrices [18]

H =
’
✓

h
�✓f

G

✓
fG

✓+1 + ⌘✓f
I

✓
+ 6

⇣
fI

✓
fI

✓+1 + fG

✓
fG

✓+2

⌘i
, (2)

with �✓ = C2 9 and ⌘✓ = C2 9�1. In the absence of interactions
(6 = 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [19]. In the random
case, if couplings and fields are such that ln � = ln ⌘ (where
[· · · ] stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [20–22] describes the physics,
as carefully checked numerically both for ground-state [23, 24]
and excited states [25, 26].

Infinite-randomness hallmarks— To fix the context, we first
list some key properties of the 1D IRFP. (i) Time and space
are related in a strongly anisotropic way, with a dynamical
critical exponent I = 1. As a result the lowest energy gap �

does not self-average, is broadly distributed, and exponentially
suppressed with the chain length # , such that

ln� ⇠ �
p
# . (3)

(ii) There is also lack of self-averaging for the spin-spin cor-
relations: the average decays algebraically, while the typical
vanishes much faster, as a stretched exponential

hfG

✓
fG

✓+A
i ⇠ A

⇣p
5�3

⌘
/2

and ln hfG

✓
fG

✓+A
i ⇠ �

p
A . (4)

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the sub-
system length =, as in the clean case [27–29], following

(@ (=) =
2e�

6
ln(=) + B@ , (5)

for open boundaries, B@ being a non-universal constant. The
key object here is the so-called "e�ective central charge" 2e� ,
which for the IRFP is given by 2IRFP

e� = 2 ln 2 [30–34], where
2 is the central charge of the underlying clean fixed point.

Such an unbounded entanglement growth Eq. (5) strongly
contrasts with MBL or Anderson insulators for which a strict
area law is observed, even at infinite temperature, with an EE
bounded by the finite localization length [26, 35]. Here, the
IRFP is only marginally localized, i.e., that all single-particle
states have a finite localization length, except in the band center
where the localization is stretched exponential [36–38].

IRFP and interactions— Two historical examples of non-
interacting IRFPs are the 1D disordered TFI model [20, 21],
and the random-bond XX chain [37]. Interestingly, both mod-
els can be seen as the opposite sides of the same coin: non-
interacting Majorana (real) vs. Dirac (complex) fermions with
random hoppings. Although the e�ect of interactions was
quickly understood as irrelevant in a Renormalization Group
(RG) sense [37, 39] for free Dirac fermions, the story turned
out to be quite di�erent in the case of Majoranas. In his semi-
nal work, Fisher first suggested that interactions should also be
irrelevant at the IRFP in the Ising/Majorana case [21], but this
issue remained essentially unexplored for many years, before
re-emerging only recently in the MBL context [40–47]. There
at high energy, the IRFP was found to be destablized by weak
interactions towards a delocalized ergodic phase [44–46].
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

‣ Ground-state of the self-dual random model
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
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, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

‣ Fate/stability of infinite randomness 
criticality against interaction?

‣ Signatures of topological order?

‣ Spectral pairing (Strong Zero Mode) 
vs. interactions?

‣ MBL(PM)— MBL(SG) transition?



but this is zero temperature physics…

… so what happens at high energy?
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

3

Entanglement entropy— Before getting to the EE itself, we
start with a brief discussion of the boundary conditions, il-
lustrated for the non-interacting case in Fig. 2 (a). Instead
of open boundary conditions (OBC), most commonly used
in the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning the
boundary spins with a strong longitudinal field [51, 52], thus
artificially breaking the parity symmetry of the IMC Hamilto-
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FIG. 2. DMRG and ED results for the von-Neumann entropy scaling
as a function of sub-system size = for (a) non-interacting, and (b)
interacting Majorana fermions, Eq. (1). (a) 6 = 0, clean chain results
(upper data) illustrate how OBC ED data match with FBC DMRG
(after subtracting the boundary entropy ln

p
2). In the random case, a

similar agreement is observed for the disorder-average (after the same
subtraction), the dominant scaling being now controlled by Eq. (5)
with an "e�ective central charge" 2e� = ln 2

2 (grey line), a finite-size
bending down is observed when half-chain is approached. (b) 6 < 0
DMRG results shown for subsystems 2  =  #/3, various inter-
action strengths (indicated on the plot), and di�erent chain lengths
(colored symbols). The agreement with the IFRP scaling (grey line
Eq. (5) with 2e� = ln 2

2 ) is excellent in all cases, once the asymptotic
regime is reached beyond a finite crossover length scale [26, 50]. In-
set: 6-dependence of 2e� extracted from fits to the form Eq. (5) over
successive sliding windows ending at =max. All data agree with the
asymptotic log scaling controlled by the prefactor 2e� = ln 2

2 .

nian. As a result, the FBC entropy is reduced from its OBC
value by the A�eck-Ludwig boundary term [53], such that
(FBC

vN = (OBC
vN � ln

p
2, but does not loose its universal logarith-

mic scaling. This becomes clear in Fig. 2 (a) for free fermions
(6 = 0) where DMRG and exact diagonalization (ED) data
are successfully compared in the clean case. Interestingly, we
further observe that such a boundary entropy also shows up
for the free-fermion IRFP, as evidenced in the same panel (a)
of Fig. 2 where OBC ED data match with FBC DMRG after a
subtraction of the similar ln

p
2 term.

Let us now present the most important result of the paper,
displayed in Fig. 2 (b) where for finite interaction strengths
6 < 0, the disorder-average EEs show excellent agreement
with the non-interacting IFRP logarithmic growth Eq. (5), with
2e� = ln 2

2 . Remarkably, this remains true for the entire regime
of study �1  6  2. This is even more clear from the in-
set where the 6-dependence of 2e� is extracted from fits to
the form Eq. (5) over successive sliding windows. This result
deeply contrasts with previous works [14, 15] where a satura-
tion of EE was observed and interpreted as a consequence of
localization. There are two main causes for this disagreement,
both due to numerical limitations that most probably led to a
misinterpretation of earlier DMRG data. The first reason is
the number of kept DMRG states, which can be a major obsta-
cle [48]. The second, perhaps more interesting, comes from
the boundary conditions and our choice of FBC, which leads
to a significant reduction in EE, giving a decisive advantage to
our DMRG simulations [18].

It is furthermore noteworthy that all finite interaction results
show the same tendency to flow to the non-interacting IRFP
scaling, with a unique e�ective central charge fully compatible
with 2e� = ln 2

2 , even in the repulsive regime where the clean
case displays 2 = 3/2 for 0.29  6  1.3, as clearly visible
in Fig. 1 (b) for a comparison between clean and disordered
cases at 6 = 1.

Low-energy gap— In order to double-check the IRFP hypoth-
esis over the broad regime of interaction strengths, we also
focus on the lowest energy gap � above the ground-state, and
in particular we aim to check the very peculiar exponentially
activated scaling law defined by Eq. (3), which signals a dy-
namical exponent I = 1. In addition, the probability distri-
bution of these gaps is expected to display broadening and a
universal scaling form, as shown for free fermions [23, 54].

Here for the interacting model, we also observe, see Fig. 3
(a) for 6 = 0.5, a very clear broadening of the distributions
%(ln�) upon increasing the system size, which is a strong
evidence that I = 1, as predicted for the IRFP. Furthermore,
the same data show an excellent collapse in Fig. 3 (b) when
histogrammized against (ln�)/

p
# , without any adjustable

parameter. We have checked that this remains true for other
values of the interaction strength (in the range of study), as
shown for a few values of 6 in the inset of Fig. 3 (b). There,
one sees that the typical gap 4ln� perfectly obeys the activated
scaling law Eq. (3). The non-interacting case (ED data for
6 = 0) is also displayed for comparison.
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The quantum critical properties of interacting fermions in the presence of disorder are still not fully under-
stood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite
randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further
display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully
examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate
boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find
that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims.

Introduction— The interplay of disorder and interactions in
low dimensional systems is one of the most fascinating prob-
lem of condensed matter physics, with highly non-trivial open
questions, the many-body localization (MBL) being a remark-
able example [1, 2]. One of the key points of MBL physics
concerns the stability of a non-interacting Anderson insula-
tor against interactions at (in)finite temperature, a question
already raised in the pioneering works [3–5]. Since then, a
significant and flourishing activity has continued to explore
these questions, but with controversial predictions [6–11].

In this work, we propose to take a small detour by focusing
on the di�erent but closely related problem of the low-energy
properties of the interacting Majorana chain (IMC) model [12–
16] in the presence of disorder. It is governed by the following
one-dimensional (1D) Hamiltonian

H = �

’
9

�
iC 9W 9W 9+1 + 6W 9W 9+1W 9+2W 9+3

�
, (1)

with random couplings C 9 and constant interaction 6. The
operators W 9 are Majorana (real) fermions (W

9
= W†

9
and

{W8 , W 9 } = 2X8 9 ) from which Dirac (complex) fermions can be
constructed as pairs of Majoranas such that 22 9 = W2 9�1 + iW2 9 ,
yielding the Dirac fermions version of the IMC model Eq. (1)
which can also be seen as the interacting counterpart of the Ki-
taev chain model [17, 18]. There is a third possible formulation
in terms of Pauli matrices [18]

H =
’
✓

h
�✓f

G

✓
fG

✓+1 + ⌘✓f
I

✓
+ 6

⇣
fI

✓
fI

✓+1 + fG

✓
fG

✓+2

⌘i
, (2)

with �✓ = C2 9 and ⌘✓ = C2 9�1. In the absence of interactions
(6 = 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [19]. In the random
case, if couplings and fields are such that ln � = ln ⌘ (where
[· · · ] stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [20–22] describes the physics,
as carefully checked numerically both for ground-state [23, 24]
and excited states [25, 26].

Infinite-randomness hallmarks— To fix the context, we first
list some key properties of the 1D IRFP. (i) Time and space
are related in a strongly anisotropic way, with a dynamical
critical exponent I = 1. As a result the lowest energy gap �

does not self-average, is broadly distributed, and exponentially
suppressed with the chain length # , such that

ln� ⇠ �
p
# . (3)

(ii) There is also lack of self-averaging for the spin-spin cor-
relations: the average decays algebraically, while the typical
vanishes much faster, as a stretched exponential

hfG

✓
fG

✓+A
i ⇠ A

⇣p
5�3

⌘
/2

and ln hfG

✓
fG

✓+A
i ⇠ �

p
A . (4)

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the sub-
system length =, as in the clean case [27–29], following

(@ (=) =
2e�

6
ln(=) + B@ , (5)

for open boundaries, B@ being a non-universal constant. The
key object here is the so-called "e�ective central charge" 2e� ,
which for the IRFP is given by 2IRFP

e� = 2 ln 2 [30–34], where
2 is the central charge of the underlying clean fixed point.

Such an unbounded entanglement growth Eq. (5) strongly
contrasts with MBL or Anderson insulators for which a strict
area law is observed, even at infinite temperature, with an EE
bounded by the finite localization length [26, 35]. Here, the
IRFP is only marginally localized, i.e., that all single-particle
states have a finite localization length, except in the band center
where the localization is stretched exponential [36–38].

IRFP and interactions— Two historical examples of non-
interacting IRFPs are the 1D disordered TFI model [20, 21],
and the random-bond XX chain [37]. Interestingly, both mod-
els can be seen as the opposite sides of the same coin: non-
interacting Majorana (real) vs. Dirac (complex) fermions with
random hoppings. Although the e�ect of interactions was
quickly understood as irrelevant in a Renormalization Group
(RG) sense [37, 39] for free Dirac fermions, the story turned
out to be quite di�erent in the case of Majoranas. In his semi-
nal work, Fisher first suggested that interactions should also be
irrelevant at the IRFP in the Ising/Majorana case [21], but this
issue remained essentially unexplored for many years, before
re-emerging only recently in the MBL context [40–47]. There
at high energy, the IRFP was found to be destablized by weak
interactions towards a delocalized ergodic phase [44–46].
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean and
disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges 2 = 1/2 and 3/2. Instead, the random case
displays a unique Infinite Randomness Criticality, as demonstrated by representative cases in the various panels. (a-b) show the von-Neumann
entanglement entropy (vN (=) scaling as a function of subsystem length =, for 6 = 0.2 and 6 = 1 for which the clean scalings (with 2 = 0.5 and
2 = 1.5) are compared with the disorder-average EE for various lengths # , which exhibit the IRFP scaling with 2e� = 0.5 ln 2 (see also Fig. 2

below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
⇣

ln�
p
#

⌘
, displayed

for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.

‣ Ground-state of the self-dual random model
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below). Panel (c) presents another smoking gun of IRFP with the universal collapse for the distribution of the lowest gap %
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for 6 = 1 and various system sizes # , see also Fig. 3. Panels (d-e) show the decay of the average and typical magnetizations, away form the
boundary, for two representative cases 6 = 0.5 and 6 = 2 showing perfect agreement with IRFP criticality, see also Fig. 4 for more details and
results. The yellow stars on top and bottom arrows denote the onset of incommensurability, further discussed in Fig. 5.

Despite these progress made at high energy, the status of the
ground-state of the disordered IMC model Eq. (1) is still con-
troversial, with rather intriguing recent conclusions [14, 15]
contrasting with previous claims [21]. Building on DMRG
simulations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction 6 > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets local-
ized and spontaneously breaks the duality symmetry of the
IMC Hamiltonian, for any 6 > 0. Results in the attractive
regime 6 < 0, again based on EE scaling, are more ambigu-
ous: Ref. [14] concludes that IRFP is stable, while Ref. [15]
states on the contrary that disorder becomes irrelevant and that
the clean fixed point physics is recovered.

Main results and phase diagram— Our work falls within this
puzzling and stimulating context. By pushing the limits of
DMRG simulations for disordered quantum systems [48], we
carefully and deeply explore the ground-state properties of the
IMC model Eq. (1) in the presence of both interactions and
randomness. Our main result, summarized in Fig. 1, is that the
IRFP is robust and stable to finite interactions. While in the
clean case [13, 16], a succession of critical phases is observed
upon varying 6, with central charges 2 = 1/2, 3/2, adding
disorder to the Majorana hopping terms is a relevant pertur-
bation. For the range of interactions considered in this work,

the non-interacting IRFP appears to be the unique attractive
fixed point, thus reinforcing the original expectation [21] that
interactions are therefore irrelevant to the free Majorana IRFP.

Our conclusions are based on the complementarity of key
observables used to probe the various aforementioned prop-
erties of the IRFP. This is exemplified in Fig. 1 where the
von-Neumann EE (a-b), the low-energy gap (c), and the av-
erage and typical order parameters (d-e) are displayed across
the various regimes of interaction strength, all panels showing
one of the smoking gun feature characteristic of the IRFP.

In the rest of the work, we present and discuss very carefully
our numerical results building on these three pivotal observ-
ables, several technical aspects being detailed in the supple-
mentary material [18]. Let us however mention that we simu-
late the IMC model Eq. (1) in its "magnetic" version Eq. (2),
and mostly focus on the repulsive 6 > 0 regime. Although in-
teresting e�ects are certainly expected away from it, we stick to
the self-dual line ln � = ln ⌘, independently drawing �8 and ⌘8
from a box [1�, , 1+,] with, = 0.9 [49]. A very important
issue, sometimes overlooked, concerns the number of random
samples which we take as large as possible (typically between
3000 and 8000). This is particularly meaningful at IRFPs
where rare events play a pivotal role, and broad distributions
are crucially important to describe the physics.
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We numerically explore Z2-symmetric random interacting Ising-Majorana chains at high energy. A very rich
phase diagram emerges with two topologically distinct many-body localization (MBL) regimes separated by a
much broader thermal phase than previously found. This is a striking consequence of the avalanche theory. We
further find MBL spin-glass order always associated to a many-body spectral pairing, presumably signaling a
strong zero mode operator which opens fascinating perspectives for MBL-protected topological qubits.
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Introduction—Many-body localization (MBL) in quan-
tum interacting systems has attracted a lot of attention over
the past two decades [1–10]. While the first (analytical)
studies addressed the fate of the noninteracting Anderson
insulator against weak interactions [3,4], most of the subse-
quent numerical studies have focused on strongly interacting
one-dimensional (1D) models, such as the random-field
Heisenberg chain [6,8], for which there is a global consensus
for an ergodicity-breaking transition [8,11–14]. In addition to
convincing experimental observations [15–18], the existence
of MBL has also been proven by Imbrie [19] for interacting
random Ising chains governed by HImbrie = HTFI + Vx. Here,

HTFI =
∑

i

Jiσ
x
i σ x

i+1 + hiσ
z
i , (1)

is the noninteracting transverse-field Ising (TFI) chain model,
further perturbed by interactions of the form Vx =

∑
i "

x
i σ

x
i

that explicitly breaks the Z2 symmetry of the TFI model.
So far, a few works [20–24] have considered MBL physics

with Z2-preserving interactions, i.e., where the parity operator
P =

∏
i σ

z
i commutes with the interacting Hamiltonian. How-

ever, the parity symmetry potentially allows for topologically
distinct MBL regimes: (i) a featureless localized phase with
unbroken parity and (ii) a Z2 broken quantum spin-glass or-
der, for which the observation of MBL-protected topological
order at all energies associated with Majorana edge states has
remained elusive since the seminal work of Huse et al. [25].

Very recently, two simultaneous works [22,23] have
numerically studied the high-energy properties of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Z2-symmetric random interacting Ising-Majorana (IM) chain
model

HIM =
∑

i

Jiσ
x
i σ x

i+1 + hiσ
z
i + g

(
σ z

i σ z
i+1 + σ x

i σ x
i+2

)
. (2)

They detected two distinct MBL phases, but without evidence
of topological order such as spectral pairing [26], separated by
an intervening ergodic region which was further argued [23]
to shrink into a single point of infinite randomness criticality
(IRC) [27] in the limit of vanishing interaction strength.

Despite the strong interest triggered by these studies, some
important issues remain widely open raising two crucial
questions: First, what does the avalanche theory of MBL
transitions [28] imply for this class of systems ? Second, can
MBL help to stabilize coherent topological qubits [29,30] ?

Main results—In order to address these critical questions,
we build on shift invert exact diagonalization (ED) to explore
the Z2-symmetric disordered and interacting Ising-Majorana
(IM) chain model Eq. (2) for which we provide the infinite-
temperature phase diagram in Fig. 1. The Kramers-Wannier
duality [31] leads to symmetric phase boundaries with two dif-
ferent MBL regimes in agreement with earlier works [22,23].
However, the global shape reported in Fig. 1 sharply con-
trasts with those previous findings: We observe the opening
of a broad ergodic window in the g → 0 limit, as a di-
rect consequence of the avalanche criterion when applied
to the noninteracting typical localization length ξ > ξ ∗ ≡
(ln 2)−1 [28].

We also demonstrate that the MBL quantum SG order
exhibits cat states for all energies with a global double de-
generacy of the many-body spectrum between the two parity
sectors. This is an example of MBL-protected topological
order with localized Majorana edge states, and we remark-
ably identify a unique phase having both MBL SG and a
paired spectrum, and hence a single transition towards er-
godicity occurring when the typical localization length also
exceeds the avalanche threshold ξ ∗. This global parity de-

2643-1564/2022/4(3)/L032016(7) L032016-1 Published by the American Physical Society
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3

Typical pairwise correlators C
typ(r) = eln Ci,i+r

0
[45] are

shown in Fig. 3 for three representative situations. (a) Deep
in the MBL SG regime, Ctyp(r) rapidly saturates to a roughly
size-independent finite value, thus testifying for magnetic or-
der. (b) In the middle of the thermal region we nicely verify
the 2�L behavior, expected from eigenstate thermalization hy-
pothesis (ETH) [46, 47]. (c) The MBL PM phase displays
short-range correlations, exponentially decaying with addi-
tional oscillations which can be understood in the limit Ji ⌧ 1
where the 2ndneighbor terms g�x

i �
x
i+2

dominates over nearest-
neighbor, thus strongly reducing odd-distant correlations.

Quantum (topological) order and spectral pairing— First
observed by Kitaev [35] for clean chains, the ordered phase of
free fermions (� > 0) has non-trivial topological properties,
with zero-energy modes (ZM) localized at the boundaries of
an open chain: the so-called "unpaired" Majorana edge states.
For random TFI chains, ZM operators commuting with HTFI

when � > 0 can also be explicitly defined [36, 48], but not
in the presence of interactions. Nevertheless, building on
the non-interacting limit, one expects end-to-end correlations
h�x

1
�x
Li to be a good proxy for Majorana edge modes [49].

In addition, ZM imply a double (even-odd) degeneracy of
the entire many-body spectrum [22, 36] (see Fig. 1), with an
exponentially small level splitting �parity ⇠ e�L/⇠, where ⇠
is the edge mode localization length. From a global spectro-
scopic point of view, this parity degeneracy competes with the
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FIG. 3. ED results for open IM chains at g = 0.5, showing the
decay of typical correlators Ctyp(r) for three representative cases.
(a) In the MBL SG regime (� = 6.58) spin-glass order is clear,
with a notable boundary enhancement. (b) Ergodic (� = 0): ETH
behavior is evident after a few sites: Ctyp(r >⇠ 5) ! 2�L (grey line).
(c) MBL PM (� = �6.58): we observe fast (even-odd oscillating
and size-independent) exponential decay C0 exp(�r/⇠), with fitting
parameters (C0, ⇠)even = (0.41, 0.35) and (C0, ⇠)odd = (3.2 ⇥
10�5, 0.408) for the available range (fits are shown by grey lines).

many-body level spacing �mb ⇠ e�sL (s is the entropy den-
sity) such that the spectral pairing is resolved only if�parity ⌧

�mb, i.e. for ⇠ < 1/s. In practice, the detection of the topo-
logical pairing is achieved using the (parity-mixed) gap ra-
tio [22, 43] r0i = min(�i,�i+1)/max(�i,�i+1), where the
individual gaps �i are computed within the many-body spec-
trum when both parity sectors are mixed. In the MBL topo-
logical regime, we expect r0 ⇠ �parity/�mb ! 0 if ⇠ < 1/s,
while Poisson statistics should arise when ⇠ > 1/s (as well as
for a non-topological MBL phase), where r0 = ln 4� 1 takes
the same value as the parity-resolved ratio r. Interestingly, the
ergodic regime also manifests in the mixed spectral statistics,
where two GOE blocks yield r0GOE2 ⇡ 0.4234, as shown
recently [50]. Table I summarizes these spectral features.

Ref. [22] conjectured that two types of MBL orders may
emerge, with and without spectral pairing. This issue is ad-
dressed in Fig. 4 where we show T = 1 (s = ln 2) results
for a vertical scan in the phase diagram, collected at � = 2.5.
Several estimates for the MBL SG — ergodic transition are
shown: (a-c) parity-resolved and parity-mixed gap ratios ; (d)
the von-Neuman entropy density ; (e-g) end-to-end correla-
tors. As previously observed (Fig. 2), here also the area to
volume-law entanglement transition coincides with the Pois-
son — GOE change in the parity-resolved spectral statistics,
both observed for gc = 0.23±0.03. In addition, boundary cor-
relations (capturing SG order and topological edge states) also
display a clear ordering transition in the same region, as estab-
lished by the best power-law fit |h�x

1
�x
Li| ⇠ L�!b obtained

at gc = 0.24 with !b ⇡ 0.17 (contrasting with free-fermions
where !b = 1 [51]). This presumably rules out the possibility
of an intermediate MBL PM regime [21, 22], a result also
strongly supported by the parity-mixed gap ratio r0 shown in
Fig. 4 (a, c). Indeed, one sees a unique MBL regime asso-
ciated to spectral pairing for g  gc, followed by an ergodic
phase where r takes its GOE value ⇡ 0.5307 together with its
parity-mixed counterpart r0 which saturates to its GOE2 value
⇡ 0.4234, as expected for two GOE blocks [50].

The infinite-temperature pairing transition signals that the
typical localization length ⇠ (controlling the parity gap decay)
has reached ⇠⇤ = (ln 2)�1, a value which strikingly coincides
with the so-called avalanche threshold [29]. At this stage, it
is very instructive to make a small detour to the other side of
the phase diagram (� < 0) where there is no topological MBL
order. Instead, both MBL PM and ergodic regimes have expo-
nential decaying end-to-end correlations |h�x

1
�x
Li| ⇠ e�L/⇠b ,

controlled by the localization length ⇠b, as we confirm in Fig. 4
(g). The g-dependence of ⇠b at � = �2.5, Fig. 4 (h), remark-
ably establishes that the MBL PM — ergodic transition (at
g ⇠ 0.2) is again characterized by ⇠b = ⇠⇤ = (ln 2)�1, furher
meeting the avalanche criterion [29].

Ergodic MBL MBL + paired spectrum
r0mixed 0.4234 (GOE2) ln 4� 1 eL(s�⇠�1) ! 0
rresolved 0.5307 (GOE) ln 4� 1 (Poisson)

TABLE I. Parity-mixed r0 and parity-resolved r values for the gap
ratios across the di�erent regimes.
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Typical pairwise correlators C
typ(r) = eln Ci,i+r

0
[45] are

shown in Fig. 3 for three representative situations. (a) Deep
in the MBL SG regime, Ctyp(r) rapidly saturates to a roughly
size-independent finite value, thus testifying for magnetic or-
der. (b) In the middle of the thermal region we nicely verify
the 2�L behavior, expected from eigenstate thermalization hy-
pothesis (ETH) [46, 47]. (c) The MBL PM phase displays
short-range correlations, exponentially decaying with addi-
tional oscillations which can be understood in the limit Ji ⌧ 1
where the 2ndneighbor terms g�x

i �
x
i+2

dominates over nearest-
neighbor, thus strongly reducing odd-distant correlations.

Quantum (topological) order and spectral pairing— First
observed by Kitaev [35] for clean chains, the ordered phase of
free fermions (� > 0) has non-trivial topological properties,
with zero-energy modes (ZM) localized at the boundaries of
an open chain: the so-called "unpaired" Majorana edge states.
For random TFI chains, ZM operators commuting with HTFI

when � > 0 can also be explicitly defined [36, 48], but not
in the presence of interactions. Nevertheless, building on
the non-interacting limit, one expects end-to-end correlations
h�x

1
�x
Li to be a good proxy for Majorana edge modes [49].

In addition, ZM imply a double (even-odd) degeneracy of
the entire many-body spectrum [22, 36] (see Fig. 1), with an
exponentially small level splitting �parity ⇠ e�L/⇠, where ⇠
is the edge mode localization length. From a global spectro-
scopic point of view, this parity degeneracy competes with the
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FIG. 3. ED results for open IM chains at g = 0.5, showing the
decay of typical correlators Ctyp(r) for three representative cases.
(a) In the MBL SG regime (� = 6.58) spin-glass order is clear,
with a notable boundary enhancement. (b) Ergodic (� = 0): ETH
behavior is evident after a few sites: Ctyp(r >⇠ 5) ! 2�L (grey line).
(c) MBL PM (� = �6.58): we observe fast (even-odd oscillating
and size-independent) exponential decay C0 exp(�r/⇠), with fitting
parameters (C0, ⇠)even = (0.41, 0.35) and (C0, ⇠)odd = (3.2 ⇥
10�5, 0.408) for the available range (fits are shown by grey lines).

many-body level spacing �mb ⇠ e�sL (s is the entropy den-
sity) such that the spectral pairing is resolved only if�parity ⌧

�mb, i.e. for ⇠ < 1/s. In practice, the detection of the topo-
logical pairing is achieved using the (parity-mixed) gap ra-
tio [22, 43] r0i = min(�i,�i+1)/max(�i,�i+1), where the
individual gaps �i are computed within the many-body spec-
trum when both parity sectors are mixed. In the MBL topo-
logical regime, we expect r0 ⇠ �parity/�mb ! 0 if ⇠ < 1/s,
while Poisson statistics should arise when ⇠ > 1/s (as well as
for a non-topological MBL phase), where r0 = ln 4� 1 takes
the same value as the parity-resolved ratio r. Interestingly, the
ergodic regime also manifests in the mixed spectral statistics,
where two GOE blocks yield r0GOE2 ⇡ 0.4234, as shown
recently [50]. Table I summarizes these spectral features.

Ref. [22] conjectured that two types of MBL orders may
emerge, with and without spectral pairing. This issue is ad-
dressed in Fig. 4 where we show T = 1 (s = ln 2) results
for a vertical scan in the phase diagram, collected at � = 2.5.
Several estimates for the MBL SG — ergodic transition are
shown: (a-c) parity-resolved and parity-mixed gap ratios ; (d)
the von-Neuman entropy density ; (e-g) end-to-end correla-
tors. As previously observed (Fig. 2), here also the area to
volume-law entanglement transition coincides with the Pois-
son — GOE change in the parity-resolved spectral statistics,
both observed for gc = 0.23±0.03. In addition, boundary cor-
relations (capturing SG order and topological edge states) also
display a clear ordering transition in the same region, as estab-
lished by the best power-law fit |h�x

1
�x
Li| ⇠ L�!b obtained

at gc = 0.24 with !b ⇡ 0.17 (contrasting with free-fermions
where !b = 1 [51]). This presumably rules out the possibility
of an intermediate MBL PM regime [21, 22], a result also
strongly supported by the parity-mixed gap ratio r0 shown in
Fig. 4 (a, c). Indeed, one sees a unique MBL regime asso-
ciated to spectral pairing for g  gc, followed by an ergodic
phase where r takes its GOE value ⇡ 0.5307 together with its
parity-mixed counterpart r0 which saturates to its GOE2 value
⇡ 0.4234, as expected for two GOE blocks [50].

The infinite-temperature pairing transition signals that the
typical localization length ⇠ (controlling the parity gap decay)
has reached ⇠⇤ = (ln 2)�1, a value which strikingly coincides
with the so-called avalanche threshold [29]. At this stage, it
is very instructive to make a small detour to the other side of
the phase diagram (� < 0) where there is no topological MBL
order. Instead, both MBL PM and ergodic regimes have expo-
nential decaying end-to-end correlations |h�x

1
�x
Li| ⇠ e�L/⇠b ,

controlled by the localization length ⇠b, as we confirm in Fig. 4
(g). The g-dependence of ⇠b at � = �2.5, Fig. 4 (h), remark-
ably establishes that the MBL PM — ergodic transition (at
g ⇠ 0.2) is again characterized by ⇠b = ⇠⇤ = (ln 2)�1, furher
meeting the avalanche criterion [29].

Ergodic MBL MBL + paired spectrum
r0mixed 0.4234 (GOE2) ln 4� 1 eL(s�⇠�1) ! 0
rresolved 0.5307 (GOE) ln 4� 1 (Poisson)

TABLE I. Parity-mixed r0 and parity-resolved r values for the gap
ratios across the di�erent regimes.
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Typical pairwise correlators C
typ(r) = eln Ci,i+r

0
[45] are

shown in Fig. 3 for three representative situations. (a) Deep
in the MBL SG regime, Ctyp(r) rapidly saturates to a roughly
size-independent finite value, thus testifying for magnetic or-
der. (b) In the middle of the thermal region we nicely verify
the 2�L behavior, expected from eigenstate thermalization hy-
pothesis (ETH) [46, 47]. (c) The MBL PM phase displays
short-range correlations, exponentially decaying with addi-
tional oscillations which can be understood in the limit Ji ⌧ 1
where the 2ndneighbor terms g�x

i �
x
i+2

dominates over nearest-
neighbor, thus strongly reducing odd-distant correlations.

Quantum (topological) order and spectral pairing— First
observed by Kitaev [35] for clean chains, the ordered phase of
free fermions (� > 0) has non-trivial topological properties,
with zero-energy modes (ZM) localized at the boundaries of
an open chain: the so-called "unpaired" Majorana edge states.
For random TFI chains, ZM operators commuting with HTFI

when � > 0 can also be explicitly defined [36, 48], but not
in the presence of interactions. Nevertheless, building on
the non-interacting limit, one expects end-to-end correlations
h�x

1
�x
Li to be a good proxy for Majorana edge modes [49].

In addition, ZM imply a double (even-odd) degeneracy of
the entire many-body spectrum [22, 36] (see Fig. 1), with an
exponentially small level splitting �parity ⇠ e�L/⇠, where ⇠
is the edge mode localization length. From a global spectro-
scopic point of view, this parity degeneracy competes with the
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FIG. 3. ED results for open IM chains at g = 0.5, showing the
decay of typical correlators Ctyp(r) for three representative cases.
(a) In the MBL SG regime (� = 6.58) spin-glass order is clear,
with a notable boundary enhancement. (b) Ergodic (� = 0): ETH
behavior is evident after a few sites: Ctyp(r >⇠ 5) ! 2�L (grey line).
(c) MBL PM (� = �6.58): we observe fast (even-odd oscillating
and size-independent) exponential decay C0 exp(�r/⇠), with fitting
parameters (C0, ⇠)even = (0.41, 0.35) and (C0, ⇠)odd = (3.2 ⇥
10�5, 0.408) for the available range (fits are shown by grey lines).

many-body level spacing �mb ⇠ e�sL (s is the entropy den-
sity) such that the spectral pairing is resolved only if�parity ⌧

�mb, i.e. for ⇠ < 1/s. In practice, the detection of the topo-
logical pairing is achieved using the (parity-mixed) gap ra-
tio [22, 43] r0i = min(�i,�i+1)/max(�i,�i+1), where the
individual gaps �i are computed within the many-body spec-
trum when both parity sectors are mixed. In the MBL topo-
logical regime, we expect r0 ⇠ �parity/�mb ! 0 if ⇠ < 1/s,
while Poisson statistics should arise when ⇠ > 1/s (as well as
for a non-topological MBL phase), where r0 = ln 4� 1 takes
the same value as the parity-resolved ratio r. Interestingly, the
ergodic regime also manifests in the mixed spectral statistics,
where two GOE blocks yield r0GOE2 ⇡ 0.4234, as shown
recently [50]. Table I summarizes these spectral features.

Ref. [22] conjectured that two types of MBL orders may
emerge, with and without spectral pairing. This issue is ad-
dressed in Fig. 4 where we show T = 1 (s = ln 2) results
for a vertical scan in the phase diagram, collected at � = 2.5.
Several estimates for the MBL SG — ergodic transition are
shown: (a-c) parity-resolved and parity-mixed gap ratios ; (d)
the von-Neuman entropy density ; (e-g) end-to-end correla-
tors. As previously observed (Fig. 2), here also the area to
volume-law entanglement transition coincides with the Pois-
son — GOE change in the parity-resolved spectral statistics,
both observed for gc = 0.23±0.03. In addition, boundary cor-
relations (capturing SG order and topological edge states) also
display a clear ordering transition in the same region, as estab-
lished by the best power-law fit |h�x

1
�x
Li| ⇠ L�!b obtained

at gc = 0.24 with !b ⇡ 0.17 (contrasting with free-fermions
where !b = 1 [51]). This presumably rules out the possibility
of an intermediate MBL PM regime [21, 22], a result also
strongly supported by the parity-mixed gap ratio r0 shown in
Fig. 4 (a, c). Indeed, one sees a unique MBL regime asso-
ciated to spectral pairing for g  gc, followed by an ergodic
phase where r takes its GOE value ⇡ 0.5307 together with its
parity-mixed counterpart r0 which saturates to its GOE2 value
⇡ 0.4234, as expected for two GOE blocks [50].

The infinite-temperature pairing transition signals that the
typical localization length ⇠ (controlling the parity gap decay)
has reached ⇠⇤ = (ln 2)�1, a value which strikingly coincides
with the so-called avalanche threshold [29]. At this stage, it
is very instructive to make a small detour to the other side of
the phase diagram (� < 0) where there is no topological MBL
order. Instead, both MBL PM and ergodic regimes have expo-
nential decaying end-to-end correlations |h�x

1
�x
Li| ⇠ e�L/⇠b ,

controlled by the localization length ⇠b, as we confirm in Fig. 4
(g). The g-dependence of ⇠b at � = �2.5, Fig. 4 (h), remark-
ably establishes that the MBL PM — ergodic transition (at
g ⇠ 0.2) is again characterized by ⇠b = ⇠⇤ = (ln 2)�1, furher
meeting the avalanche criterion [29].

Ergodic MBL MBL + paired spectrum
r0mixed 0.4234 (GOE2) ln 4� 1 eL(s�⇠�1) ! 0
rresolved 0.5307 (GOE) ln 4� 1 (Poisson)

TABLE I. Parity-mixed r0 and parity-resolved r values for the gap
ratios across the di�erent regimes.
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FIG. 4. Infinite-temperature ED re-
sults for the IM model Eq. (2) at
� = 2.5 (vertical scan in Fig. 1, except
for panel (g) at � = �2.5). All esti-
mates (a-e) agree for an MBL SG —
thermal transition for gc ⇠ 0.23 (see
text). Panel (f): log-log plot of the av-
erage boundary correlators |h�x

1 �x
Li|

for various values of g (as indicated
on the plot), with a critical decay best
described by a power-law with an ex-
ponent !b = 0.17 (line). Panels (b)
and (c) show a zoom of panel (a) for
the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.
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FIG. 5. ED results for the IM model Eq. (2) at � = 0, 0.5, 1:
vertical scans in Fig. 1 for weak interactions. Finite-size crossings
of SvN(L/2)/L (top panels) and r (bottom panel) display visible
finite-size drifts. The size-dependence of the crossing points (Insets:
squares for SvN(L/2)/L and circles for r), supports gc = 0 for
� = 0, 0.5 and gc ⇡ 0.05 for � = 1.

Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics
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FIG. 4. Infinite-temperature ED re-
sults for the IM model Eq. (2) at
� = 2.5 (vertical scan in Fig. 1, except
for panel (g) at � = �2.5). All esti-
mates (a-e) agree for an MBL SG —
thermal transition for gc ⇠ 0.23 (see
text). Panel (f): log-log plot of the av-
erage boundary correlators |h�x

1 �x
Li|

for various values of g (as indicated
on the plot), with a critical decay best
described by a power-law with an ex-
ponent !b = 0.17 (line). Panels (b)
and (c) show a zoom of panel (a) for
the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.

L=16
L=15
L=14
L=13
L=12
L=11
L=10
L=9

0.01 0.1

0.4

0.44

0.48

0.52

0.01 0.1 0.05 0.1 0.2

0.06

0.1

0.2

0 0.05 0.1
0

0.05

0.1

0 0.05 0.1
0

0.05

0.1

0 0.05 0.1
0

0.05
0.1

0.15

S v
N(L

/2)
/L

Av
era

ge
gap

rat
io

r

g g g

1/L 1/L1/L

� = 0 � = 0.5 � = 1

(a)

(d)

(b)

(e)

(c)

(f)

L = 16
L = 15
L = 14
L = 13
L = 12
L = 11
L = 10
L = 9

FIG. 5. ED results for the IM model Eq. (2) at � = 0, 0.5, 1:
vertical scans in Fig. 1 for weak interactions. Finite-size crossings
of SvN(L/2)/L (top panels) and r (bottom panel) display visible
finite-size drifts. The size-dependence of the crossing points (Insets:
squares for SvN(L/2)/L and circles for r), supports gc = 0 for
� = 0, 0.5 and gc ⇡ 0.05 for � = 1.

Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics
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Typical pairwise correlators C
typ(r) = eln Ci,i+r

0
[45] are

shown in Fig. 3 for three representative situations. (a) Deep
in the MBL SG regime, Ctyp(r) rapidly saturates to a roughly
size-independent finite value, thus testifying for magnetic or-
der. (b) In the middle of the thermal region we nicely verify
the 2�L behavior, expected from eigenstate thermalization hy-
pothesis (ETH) [46, 47]. (c) The MBL PM phase displays
short-range correlations, exponentially decaying with addi-
tional oscillations which can be understood in the limit Ji ⌧ 1
where the 2ndneighbor terms g�x

i �
x
i+2

dominates over nearest-
neighbor, thus strongly reducing odd-distant correlations.

Quantum (topological) order and spectral pairing— First
observed by Kitaev [35] for clean chains, the ordered phase of
free fermions (� > 0) has non-trivial topological properties,
with zero-energy modes (ZM) localized at the boundaries of
an open chain: the so-called "unpaired" Majorana edge states.
For random TFI chains, ZM operators commuting with HTFI

when � > 0 can also be explicitly defined [36, 48], but not
in the presence of interactions. Nevertheless, building on
the non-interacting limit, one expects end-to-end correlations
h�x

1
�x
Li to be a good proxy for Majorana edge modes [49].

In addition, ZM imply a double (even-odd) degeneracy of
the entire many-body spectrum [22, 36] (see Fig. 1), with an
exponentially small level splitting �parity ⇠ e�L/⇠, where ⇠
is the edge mode localization length. From a global spectro-
scopic point of view, this parity degeneracy competes with the

0.8

0.9

1

10
-5

10
-4

10
-3

0 2 4 6 8 10 12 14 16

10
-18

10
-12

10
-6

8 10 20

1

10g=0.0
g=0.10
g=0.20
g=0.22
g=0.24
g=0.26
g=0.28
g=0.30
g=0.32
g=0.34
g=0.36
g=0.38
g=0.40
g=0.50
g=0.60

. . . . . . . . . . . . . . . . .
.

0 0.1 0.2 0.3 0.4 0.5

1

L=16
L=15
L=14
L=13
L=12
L=11
L=10
L=9.

Ty
pic

al
pai

rw
ise

cor
rel

ato
rs

C
typ

(r)
r

(b) � = 0

(c) � = � 6.58

(a) � = 6.58

L
= 16

L
= 15

L
= 14

L
= 13

L
= 12

L
= 11

L
= 10

0.8

0.9

1

10
-5

10
-4

10
-3

0 2 4 6 8 10 12 14 16

10
-18

10
-12

10
-6

8 10 20

1

10
g=0.0
g=0.10
g=0.20
g=0.22
g=0.24
g=0.26
g=0.28
g=0.30
g=0.32
g=0.34
g=0.36
g=0.38
g=0.40
g=0.50
g=0.60

. . . . . . . . . . . . . . . . .
.

0 0.1 0.2 0.3 0.4 0.5

1

L=16
L=15
L=14
L=13
L=12
L=11
L=10
L=9.Ty

pic
al

Co
rre

lato
rs

exp
(ln

��x 1�
x r� )

r

(b) � = 0

(c) � = � 3.29

(a) � = 3.29

� S
G

�L
��

g = 0.00
g = 0.10
g = 0.20
g = 0.22
g = 0.24
g = 0.26
g = 0.28
g = 0.30
g = 0.32
g = 0.34
g = 0.36
g = 0.38
g = 0.40
g = 0.50
g = 0.60

L = 16
L = 15
L = 14
L = 13
L = 12
L = 11
L = 10
L = 9

L
= 16

L
= 15

L
= 14

L
= 13

L
= 12

L
= 11

L
= 10

� S
G(L

)

(d)

(e)

g

L

g = 0.5 � = 2.5

0.7

0.8

0.9

1

10
-5

10
-4

10
-3

0 2 4 6 8 10 12 14 16

10
-18

10
-12

10
-6

8 10 20

1

10g=0.0
g=0.10
g=0.20
g=0.22
g=0.24
g=0.26
g=0.28
g=0.30
g=0.32
g=0.34
g=0.36
g=0.38
g=0.40
g=0.50
g=0.60

. . . . . . . . . . . . . . . . .
.

0 0.1 0.2 0.3 0.4 0.5

1

L=16
L=15
L=14
L=13
L=12
L=11
L=10
L=9.Ty

pic
al

Co
rre

lato
rs

exp
(ln

��x 1�
x r� )

r

(b) � = 0

(c) � = � 3.29

(a) � = 3.29

� S
G

�L
��

g = 0.00
g = 0.10
g = 0.20
g = 0.22
g = 0.24
g = 0.26
g = 0.28
g = 0.30
g = 0.32
g = 0.34
g = 0.36
g = 0.38
g = 0.40
g = 0.50
g = 0.60

L = 16
L = 15
L = 14
L = 13
L = 12
L = 11
L = 10
L = 9

L
= 16

L
= 15

L
= 14

L
= 13

L
= 12

L
= 11

L
= 10

� S
G(L

)

(d)

(e)

g

L

g = 0.5 � = 2.5

2 �L

FIG. 3. ED results for open IM chains at g = 0.5, showing the
decay of typical correlators Ctyp(r) for three representative cases.
(a) In the MBL SG regime (� = 6.58) spin-glass order is clear,
with a notable boundary enhancement. (b) Ergodic (� = 0): ETH
behavior is evident after a few sites: Ctyp(r >⇠ 5) ! 2�L (grey line).
(c) MBL PM (� = �6.58): we observe fast (even-odd oscillating
and size-independent) exponential decay C0 exp(�r/⇠), with fitting
parameters (C0, ⇠)even = (0.41, 0.35) and (C0, ⇠)odd = (3.2 ⇥
10�5, 0.408) for the available range (fits are shown by grey lines).

many-body level spacing �mb ⇠ e�sL (s is the entropy den-
sity) such that the spectral pairing is resolved only if�parity ⌧

�mb, i.e. for ⇠ < 1/s. In practice, the detection of the topo-
logical pairing is achieved using the (parity-mixed) gap ra-
tio [22, 43] r0i = min(�i,�i+1)/max(�i,�i+1), where the
individual gaps �i are computed within the many-body spec-
trum when both parity sectors are mixed. In the MBL topo-
logical regime, we expect r0 ⇠ �parity/�mb ! 0 if ⇠ < 1/s,
while Poisson statistics should arise when ⇠ > 1/s (as well as
for a non-topological MBL phase), where r0 = ln 4� 1 takes
the same value as the parity-resolved ratio r. Interestingly, the
ergodic regime also manifests in the mixed spectral statistics,
where two GOE blocks yield r0GOE2 ⇡ 0.4234, as shown
recently [50]. Table I summarizes these spectral features.

Ref. [22] conjectured that two types of MBL orders may
emerge, with and without spectral pairing. This issue is ad-
dressed in Fig. 4 where we show T = 1 (s = ln 2) results
for a vertical scan in the phase diagram, collected at � = 2.5.
Several estimates for the MBL SG — ergodic transition are
shown: (a-c) parity-resolved and parity-mixed gap ratios ; (d)
the von-Neuman entropy density ; (e-g) end-to-end correla-
tors. As previously observed (Fig. 2), here also the area to
volume-law entanglement transition coincides with the Pois-
son — GOE change in the parity-resolved spectral statistics,
both observed for gc = 0.23±0.03. In addition, boundary cor-
relations (capturing SG order and topological edge states) also
display a clear ordering transition in the same region, as estab-
lished by the best power-law fit |h�x

1
�x
Li| ⇠ L�!b obtained

at gc = 0.24 with !b ⇡ 0.17 (contrasting with free-fermions
where !b = 1 [51]). This presumably rules out the possibility
of an intermediate MBL PM regime [21, 22], a result also
strongly supported by the parity-mixed gap ratio r0 shown in
Fig. 4 (a, c). Indeed, one sees a unique MBL regime asso-
ciated to spectral pairing for g  gc, followed by an ergodic
phase where r takes its GOE value ⇡ 0.5307 together with its
parity-mixed counterpart r0 which saturates to its GOE2 value
⇡ 0.4234, as expected for two GOE blocks [50].

The infinite-temperature pairing transition signals that the
typical localization length ⇠ (controlling the parity gap decay)
has reached ⇠⇤ = (ln 2)�1, a value which strikingly coincides
with the so-called avalanche threshold [29]. At this stage, it
is very instructive to make a small detour to the other side of
the phase diagram (� < 0) where there is no topological MBL
order. Instead, both MBL PM and ergodic regimes have expo-
nential decaying end-to-end correlations |h�x

1
�x
Li| ⇠ e�L/⇠b ,

controlled by the localization length ⇠b, as we confirm in Fig. 4
(g). The g-dependence of ⇠b at � = �2.5, Fig. 4 (h), remark-
ably establishes that the MBL PM — ergodic transition (at
g ⇠ 0.2) is again characterized by ⇠b = ⇠⇤ = (ln 2)�1, furher
meeting the avalanche criterion [29].

Ergodic MBL MBL + paired spectrum
r0mixed 0.4234 (GOE2) ln 4� 1 eL(s�⇠�1) ! 0
rresolved 0.5307 (GOE) ln 4� 1 (Poisson)

TABLE I. Parity-mixed r0 and parity-resolved r values for the gap
ratios across the di�erent regimes.
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FIG. 4. Infinite-temperature ED re-
sults for the IM model Eq. (2) at
� = 2.5 (vertical scan in Fig. 1, except
for panel (g) at � = �2.5). All esti-
mates (a-e) agree for an MBL SG —
thermal transition for gc ⇠ 0.23 (see
text). Panel (f): log-log plot of the av-
erage boundary correlators |h�x

1 �x
Li|

for various values of g (as indicated
on the plot), with a critical decay best
described by a power-law with an ex-
ponent !b = 0.17 (line). Panels (b)
and (c) show a zoom of panel (a) for
the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.
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FIG. 5. ED results for the IM model Eq. (2) at � = 0, 0.5, 1:
vertical scans in Fig. 1 for weak interactions. Finite-size crossings
of SvN(L/2)/L (top panels) and r (bottom panel) display visible
finite-size drifts. The size-dependence of the crossing points (Insets:
squares for SvN(L/2)/L and circles for r), supports gc = 0 for
� = 0, 0.5 and gc ⇡ 0.05 for � = 1.

Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics
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FIG. 4. Infinite-temperature ED re-
sults for the IM model Eq. (2) at
� = 2.5 (vertical scan in Fig. 1, except
for panel (g) at � = �2.5). All esti-
mates (a-e) agree for an MBL SG —
thermal transition for gc ⇠ 0.23 (see
text). Panel (f): log-log plot of the av-
erage boundary correlators |h�x

1 �x
Li|

for various values of g (as indicated
on the plot), with a critical decay best
described by a power-law with an ex-
ponent !b = 0.17 (line). Panels (b)
and (c) show a zoom of panel (a) for
the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.
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FIG. 5. ED results for the IM model Eq. (2) at � = 0, 0.5, 1:
vertical scans in Fig. 1 for weak interactions. Finite-size crossings
of SvN(L/2)/L (top panels) and r (bottom panel) display visible
finite-size drifts. The size-dependence of the crossing points (Insets:
squares for SvN(L/2)/L and circles for r), supports gc = 0 for
� = 0, 0.5 and gc ⇡ 0.05 for � = 1.

Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics

MBL-SG always associated 
with spectral pairing

Δparity ≪ 2−L ⇒ ξtyp <
1

ln 2

ERGODIC transition meets the 
Avalanche criterion

ξ*typ =
1

ln 2

2

finite-size e↵ects, limiting their reliability to deep inside
the phases, where correlation lengths are short.

In light of these challenges, theoretical e↵orts have fo-
cused on phenomenological approaches that abandon a
microscopically faithful treatment in favor of a coarse-
grained description.29–35 These approaches were designed
to identify the physical mechanism that drives the tran-
sition and build an e↵ective model which could then be
solved numerically for large system sizes. Nonetheless,
both the choice of a consistent model and the interpreta-
tion of its results in the context of the MBL transition
have presented challenges. Despite being based on the
same philosophy of coarse graining many-body resonances
in a strong disorder approach, various proposed renor-
malization group (RG) approaches di↵er significantly in
their procedures and their link to the microscopic physics.
Thus, a consistent picture of the critical point is missing.

In this paper, we formulate a unifying scaling theory
for the MBL transition that has a Kosterlitz-Thouless
form. We show that the basic features of KT scaling
emerge from a phenomenological description of the pro-
liferation of ‘quantum avalanches’45 that drive the MBL
transition. As such, this picture is independent of any
specific microscopic model. Specifically, we show that the
avalanche process combined with a natural choice of scal-
ing variables immediately leads to KT critical behavior.
The KT picture implies that the MBL critical point is
the terminus of a line of RG fixed points characterized
by an exactly marginal scaling variable. We discuss how
this picture resolves many shortcomings of previous de-
scriptions. However, it also raises questions about the
physics beyond avalanches in the MBL phase away from
the transition. Thus, in Section III, we propose two dis-
tinct scenarios for the MBL phase distinguished by how
the KT scaling is linked to a Gri�ths description of the
fractal rare thermal regions.

Several numerically tractable e↵ective models have been
previously proposed as a route to accessing scaling proper-
ties of the MBL transition. These include models designed
to capture quantum avalanche processes,31,33 as well as
ones where avalanches were not an apparent feature.29

However, the transitions studied in those works were not
identified as KT-like; this is perhaps unsurprising in light
of the notorious di�culties in observing KT scaling even
in classical equilibrium models. In light of the KT pic-
ture, we now revisit two of these models, in both cases
dramatically increasing the available statistics or system
sizes compared to previous studies. In Section IV, we re-
consider the cluster RG of Ref. 31, referred to as ‘DVP’ in
what follows. By analysing thermal distributions that are
a direct output of this scheme we find an algebraic struc-
ture of thermal resonances in the MBL phase – strong
evidence for the KT flow. In Section V, we implement
the block RG of Ref. 29, referred to as ‘VHA’ in the
following, and also find results consistent with the KT
picture. We comment on how the results of Sections IV
and V may be accommodated within the two scenarios
proposed in Section III. Finally, we close in Section VI

with a summary of our main results and an overview of
new directions in the study of MBL transitions opened
by the present work.

II. PHENOMENOLOGICAL ARGUMENT FOR
KOSTERLITZ-THOULESS SCALING

A. Many-body delocalization via quantum
avalanches

Assuming a direct transition between the MBL and
delocalized phases, at the transition, eigenstates undergo
a complete rearrangement as the entanglement jumps
abruptly from area-law to volume-law.29–31,39,46 This is
quite unlike conventional critical points, which are driven
by fluctuations of a locally defined order parameter. Nu-
merical studies of the transition show strong asymmetry:
a strongly resonant thermal block can thermalize a local-
ized region far more e↵ectively than a localized region
can arrest the growth of the thermal block.47

The asymmetry between thermalization and localiza-
tion was formulated as an ‘avalanche’ process that we
briefly review following Ref. 45. Imagine a rare thermal
region of n0 spins (a ‘bubble’) in an otherwise localized
spin-1/2 chain. Such a rare thermal inclusion is unavoid-
able in a generic system, with uncorrelated disorder. It
will act as a small bath and will increase its size by ther-
malizing spins peripheral to it. Let us assume that the
bubble has absorbed a number n � 1 of l-bits to grow to
a new size n0 +n, but is still described by random matrix
theory and thus remains featureless. Further growth of
the bubble depends on the matrix element for flipping an
l-bit at distance n/2 from the new edge (see Fig. 1). This
is asymptotically given by � ⇠ e

�n/(2⇣)
/
p
2n0+n, where

2n0+n is the dimension of the bubble Hilbert space and
⇣ characterizes the exponential decay of typical matrix
elements with distance. This matrix element should be
compared to the level spacing of the bubble � ⇠ 2�(n0+n):

g =
�

�
⇠ exp

✓
�

n

2⇣
+

ln 2

2
(n+ n0)

◆
. (1)
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Figure 1. Quantum Avalanche.45 A thermal inclusion initially
consisting of n0 spins (red region) is in contact with a set of
l-bits (arrows). The inclusion thermalizes n l-bits (red arrows)
and thereby expands to a size n0 + n (yellow region) while
retaining its featureless ETH character. The e↵ective matrix
element to add the (n+ 1)th l-bit decays exponentially from
the boundary of the original inclusion.
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FIG. 4. Infinite-temperature ED re-
sults for the IM model Eq. (2) at
� = 2.5 (vertical scan in Fig. 1, except
for panel (g) at � = �2.5). All esti-
mates (a-e) agree for an MBL SG —
thermal transition for gc ⇠ 0.23 (see
text). Panel (f): log-log plot of the av-
erage boundary correlators |h�x

1 �x
Li|

for various values of g (as indicated
on the plot), with a critical decay best
described by a power-law with an ex-
ponent !b = 0.17 (line). Panels (b)
and (c) show a zoom of panel (a) for
the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.
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FIG. 5. ED results for the IM model Eq. (2) at � = 0, 0.5, 1:
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finite-size drifts. The size-dependence of the crossing points (Insets:
squares for SvN(L/2)/L and circles for r), supports gc = 0 for
� = 0, 0.5 and gc ⇡ 0.05 for � = 1.

Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics
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the two gap ratios in the critical re-
gion. Panel (h): numerical estimate
for the localization length ⇠b (in units
of ln 2) extracted from the end-to-end
correlations at � = �2.5, displayed
in panel (g) for the same values of the
interaction strength as shown in panel
(f). The avalanche condition is found
⇠b = ⇠⇤ = (ln 2)�1 (orange line) at
criticality (g ⇠ 0.2), while deep in the
thermal regime we observe the ETH
result ⇠b ! 2⇠⇤, expected at large g.

Avalanche, infinite randomness and weak interactions— The
main idea behind the avalanche instability [29] is that a small
(rare) ergodic region embedded inside an otherwise localized
system can nucleate a growing ergodic surrounding (ultimately
thermalizing the whole system), only if the typical localization
length ⇠ > ⇠⇤ = (ln 2)�1, a critical threshold fixed by the
many-body spacing in the middle of the spectrum. So far, our
numerics have adhered this avalanche condition, for both sides
of the phase diagram, leading to the remarkable consequence
that MBL SG is always accompanied by spectral pairing.
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Building further on this, the condition ⇠ > ⇠⇤ is also
satisfied without interaction (where the typical localization
length is 1/� [25]) when |�| < ln 2. We therefore expect
ergodic instability upon infinitesimal interaction for such a
region [� ln 2, ln 2] surrounding IRC, thus extending the al-
ready discussed � = 0 case [24]. This is checked numerically
in Fig. 5 at � = 0, 0.5, 1, where bothSvN(L/2)/L and r expe-
rience strong drifts which only stop for a non-zero interaction
gc ⇡ 0.05 for � = 1. Our results for � = 0 in Fig. 5 (a, d),
which confirm Ref. [24], appear very similar to � = 0.5, see
Fig. 5 (b, e), thus supporting such a scenario.

Conclusions— The Z2-symmetric disordered and interact-
ing Ising-Majorana chain model Eq. (2) provides a very rich
infinite-temperature phase diagram, as shown in Fig. 1. First,
we confirm the emergence of two distinct MBL regimes,
separated by a broad ergodic phase, as already observed
in Refs. [23, 24]. Our key new result is that localization-
protected topological order which survives weak interactions
is always associated to many-body spectral pairing. Indeed,
the avalanche criterion ⇠ = (ln 2)�1 for ergodic instability is
the very same condition required to resolve spectral pairing on
top of the natural many-body spacing. A crucial consequence
of this finding is that weak interactions destabilize not only the
infinite randomness critical point towards thermalization, but
also its close vicinity, as long as the typical localization length
remains larger than the avalanche threshold.

Nevertheless, it is important to take a critical step back
on these conclusions, simply because our results come from
numerical simulations which are far from the thermodynamic
limit. This prompts us to remain careful, in particular we
cannot entirely exclude the existence of an intermediate
phase (thin green region in Fig. 1) where MBL SG could
occur without spectral pairing, while our finite-size numerics

‣ Finite size drift gc → 0

Consequences for the weakly 
interacting regime
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‣  Wide intervening ERGODIC regime

‣  Infinite Randomness unstable towards ergodicity

‣  Spectral-pairing transition = avalanche criterion


{‣Topological MBL-SG + spectral pairing
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‣  Two topologically different MBL phases 

‣  Wide intervening ERGODIC regime

‣  Infinite Randomness unstable towards ergodicity

‣  Spectral-pairing transition = avalanche criterion
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operator?
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