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Motivation

Observation of black holes and neutron stars: a breakthrough

GW signals from
at  their ringdown

(LIGO /Virgo)

binaries
phase

Image of M87 black hole with
its light ring (from array of radio

telescopes, EHT)

Observation of star trajectories
orbiting SgrA central black hole

(GRAVITY)

- Alternatives to GR black holes and stars as precise rulers of departure from GR!?

- Other compact objects like wormholes!?




No hairs in GR

e (Gravitational collapse ->

¢ Black holes eat or expel surrounding matter

¢ Their stationary phase is characterised by a limited number of charges
e No details about collapse

e Black holes are bald

% No hair theorems/arguments dictate that adding degrees of freedom lead to
trivial (General Relativity) or singular solutions.

% E.g.In the standard scalar-tensor theories BH solutions are GR black holes

with constant scalar.
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Schwarzschild solution

& Schwarzschild solution (static and spherically symmetric):

dr? 2M
L2402, fr)=1- 2

ds® = —f(r)dt2 + ) .

» The zero of f(r) is the horizon of the black hole (r, = 2M).

&# An event horizon is a surface of no return. Nothing can escape the event
horizon.

& An interior of the event horizon hides the curvature singularity at » = 0.
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Kerr SO'UtiOn Kerr'63

» Rotating vacuum black holes in General Relativity are described by the Kerr
metric.

¢ In Boyer-Lindquist coordinates:

2M 4aMr sin” in”
ds? = — (1 — r) de2 — 24T / sin” 0 (r* +a*)? — a’Asin® 0] dy?

didy +
p? p? p?

,02
- Zdﬁ + p?df?

where M is the mass, a is the angular momentum and
p* =1r? 4 a*cos’ 0

A=r’+a®—2Mr

* A ring singularity at p = V72 + a2 cos?20 =0, i.e.
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Properties of the Kerr metric

The metric is stationary and axi-symmetric, which corresponds to 2 Killing
directions

Et) = O and E(p) = Oy

The spacetime is circular, i.e. symmetric under the reflection (¢, ) — (—t, —¢),
because the Killing fields verify the condition

‘f(t) A g(90) A df(t) — f(t) A f(go) A df(go) =0.

The Kerr spacetime also admits a nontrivial Killing 2-tensor K verifying the
equation

VK, =0

This defines a third nontrivial constant of motion along geodesics (Carter’s
constant). The geodesic equations thus reduce to a first order system.



Important surfaces in the Kerr metric

Ring singularity

Ergoregion

-Inner horizon

Event horizon

Static limit

from d'Inverno's book



How to construct exact black hole solutions
in modified gravity?

Conformal
symmetry




Horndeski theory Horndeski 1974
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Degenerate higher order Scalar-Tensor theories (DHOST)

Langlois&Noui, Crisostomi+'16

(o )Z)\

S = /d%\/i( f(o, X)R + K(¢, X) — G3(¢7X)D¢+2Ai(¢aX L

\\\¥ '+£ﬂn[9uua¢hJ 4///

L= gb,u,l/gbluya Lo = <D¢)27 £3 — gb,ul/gb'uqbyqub?
Li=0ud"¢" buar  Ls = (dud"d")”
X = gbugb,u

$ One subclass of DHOST (subclass la) is phenomenologically interesting [Langlois,

Noui; Crisostomi+'16]:
A2 — AZ (A17 AS)

Ay = Ay (A4, As)
As = A5 (Aq, As)



From DHOST to DHOST

Under a disformal transformation

Juv — C(9, X)g;u/ + D(¢, X)alugba,/gb

[ DHOST $ DHOSTJ [Achour+,Crisostomi+'16]

More precisely,

SprosT| G, ¢ = SprosT|guw + D(X)0,00,9, 0] = SprosT|guw, @)

N\ =2 -

SDHOST [QW, ¢] =+ Smatter[g,uz/a \Ijmatter] SDHOST [g,ul/a ¢] - Smatter[gluy; \Ijmatter]

\ Coupling to matter is different: we get a different theory /




Hairy solutions in ST theories

—_-----.

N

Shift symmetry ¢ — ¢-+const.
Parity symmetry ¢ — —¢

Ex.: GQ(X), G4(X), F4(X)
k-essence, G** 0,00, ¢

Other cases:
no parity symmetry
no shift symmetry

Conformal “symmetry”
Ex.: (0¢)% + % R¢? JUPCELLALD

. Rotating stationary
Non-stealth

No conformal
invariance



Shift symmetry



Static configurations in shift symmetric case

& Shift symmetry of the theory implies conserved current
V,J" =0,

_ S
where J#* = 5(0,.0)°

& Assumption of staticity of both metric and scalar field then leads to automatic first
integral

J" = const,

where const=0 usually to avoid divergence of the norm of the current J? at the horizon.

X = const

& Static solutions in theory with "John” term G*”0,¢0,¢ [Rinaldi'l2; Anabalon+'13;
Minamitsuji'l3; EB, Charmousis’13] divergence of the scalar at the horizon, inside
the horizon the scalar solution does not exist.

# Static and time-dependent solutions in the theories that evade a no-hair theorem [EB,
Charmousis & Lehébel'l7].



Shift symmetry and time dependence

The ansatz ¢ = gt + ...

S = /d4£ (guy, 09, ...X@%, 0%, ) goes through EOMs, leaving no
t-dependence (only q).

T, is t-independent.

Static configurations
with time-dependent scalar

Similar ideas

Accretion of perfect fluid Boson stars, Kerr BHs with
in test-field approximation Comp|ex scalar hair
¢ = qt + ..., where ¢ is Qb _ f(?“, e)e—i(wt—ngo)

"scalar potential”




Shift symmetry and time dependence

The ansatz ¢ = gt + ...

S = /d4£ (guy, 09, ...X@%, 0%, ) goes through EOMs, leaving no
t-dependence (only q).

T, is t-independent.

Static configurations
with time-dependent scalar

Shift symmetry of the theory implies conserved cur-
rent V,J" = 0. Need to impose

J =0

because J" o E°.

Linear time-dependence ¢ = qt + ¥ (r, 0):

» Possibility to build non-trivial solutions

* Matching to cosmology

& Static (stationary) metric



Example of exact solution

EB, Charmousis’13

& Subclass of Horndeski theory:

_ / d'2/—g (R — 2\ — X + BGH D, 68,6)

& Simple (stealth) solution reads

oM
f:h—l——+—3775r gb:qti/dr—\/l—
T

+Ap

Secondary hair ¢? = Cnﬁn

* X = g"0,00,0 = —q? is constant for such solutions [KobayashisTanahashi'14].
Leads to nice generalization to include arbitrary G5 and Gy.

& Also there are further generalisations to beyond Horndeski, DHOST.



Example of exact solution

EB, Charmousis’13

& Subclass of Horndeski theory:

_ / d'2/—g (R — 2\ — X + BGH D, 68,6)

& Simple (stealth) solution reads

oM
f:h—l——+—3775r gb:qti/dr—\/l—
T

+Ap

Secondary hair ¢? = Cnﬁn

» Disformal transformation ¢, = g, + D(X)¢,¢,, e.g. to get the speed of gravity =
speed<ﬁ:tht[EB, Charmousis, Esposito-Farese, Lehébel]:

A coordinate change shows that

_— 5
Juv = Guv C+ g <p>\ 5 Pufr D(spherical stealth) = spherical stealth




Geodesics in Kerr and Carter constant

& Hamilton-Jacobi equation for geodesics:
dS , 05 05 2
= o

* We have 3 obvious constants of motion, energy F, angular momentum L,
and the mass of the particle m.

The HJ functional is written: S = —Et+ L,p + S(r,0).

g & B. Carter demonstrated that S(r,0) = S,.(r) + Sy(#) and:

S, —i/—dr s@:i/\/éde

R(?“) — [E (7"2 + a2) — aLz}2 — A [Q T (aE . Lz)2 4 mzrﬂ
L.

sin? 60

2
O(0) = —sin* (aE — > + {Q + (aE — L,)? — m%a? cos? 9}

N\

& The 4th constant of integration Q is Carter’'s constant.



Rotating solution?

A X\ g

Charmousis+’19

The idea is to associate the scalar ¢ with the geodesics in Kerr space.

Hamilton-Jacobi equation

v 2
gﬁéerraﬂsaws — —m
If we assume for the scalar X = gi. 0,$0,¢ = —¢* (like in spherical symmetry), one

can look for the solution ¢ = S.

Ensure that there is no backreaction so Kerr solution remains to be valid.
Restricts considerably the class of the DHOST theories.

Choose geodesics such that ¢ is regular everywhere (at least outside the horizon).
Fix constants of integration of geodesics.



Stealth Kerr solution in DHOST

Charmousis+'19

# A stealth Kerr solution, where the metric is Kerr and the scalar field such that

g = JKerr
X = g""0,90,¢0 = Xy = const.

t+ / \/ZMTXQJFTQ)GIT}

¢ =q

& The metric gkerr is regular everywhere apart from the ring singularity and

& The scalar field is regular at r > 0.



Cosmological black holes

EB, Charmousis, Lecoeur’23

» Time-dependent solutions with ¢ = gt + ¥ (r, 8) with flat asymptotic:
Guv — My and ¢ = gt as r — oo.

» Perform a conformal transformation of the solution g, — g, = C (¢) g,

C(DHOST) = DHOST.

* ¢ plays a role of conformal time of expanding universe:
asymptotically 7., — ., = C (¢) nu with C(@) = ai ry (@)

& Choice of C' corresponds to a cosmological evolution.

» Regular ¢ (at the horizon) leads to regular resulting conformal solution.

¢ Black hole embedded in FLRW universe.



Cosmological black holes

EB, Charmousis, Lecoeur’23

» Non-stationary metrics, treat in terms of trapping (apparent) horizons.
Expansions, null geodesics congruences: 242 formalism by [Hayward'94].

& Spherically symmetric case: the seed metric is that of [charmousis+'19] with zero rotation

parameter:
[Culetu'12] spacetime, partially treated in [sato,Maeda,Harada'22].

6 T T T T T 0
J L
| .

T /Al

Rotating case is more complicated

Seed Kerr-dS is another generalization



Disformed Kerr black hole

Anson, EB, Charmousis, Hassaine’20
[see also Achour+'20]

& Starting from the stealth Kerr solution, we perform the transformation:

t+ / \/QMT(AG’Q +T2)dr}

guu _ g(Kerr) = 8 gb@,,qb

_ where D and g are constants.

AN

® The line element is now

oI 2Mr(a? 4 r2) 2A — 9N (1 + D)rD(a? + 72
d§2:_<1— T)dtQQD\/ dtdr + 2 o D)l 357 s

02 A A2
4v/1+ DMar sin
_ i+ DMarsin®f g, S0 i (7 + %) — a?Asin? 0| dig? + p*d6?
p p?

with M = M /(1 + D) and the rescaling t — /1 + Dt
\_ J




Disformed Kerr black hole

Anson, EB, Charmousis, Hassaine’20

& The solution is not Ricci-flat, but the only singularity is at p = 0, like Kerr.

* Non-circular space-time, meaning that the metric cannot be written in a form that is
invariant under (t,¢) — (—t, —)

» The spacetime is globally causal, since there is ¢(t,r) which serves as a global time.

& Asymptotically, the disformal metric approaches Kerr
~2 2
ds® = dsgkery

D S2 0 52 1 73/2 | ~2 -
e [(9 (a ) d72 + O (Q ) a;dTdz' + O (“ ) @jdx@daﬂ]

1+ D rs r2

$ There are three important surfaces: static limit (egrosphere), stationary limit and the
event horizon (in case of Kerr spacetime the two latter coinside).



Disformed Kerr black hole

Anson, EB, Charmousis, Hassaine’20

& Ergosphere (static limit): static timelike observers can no longer exist, the Killing vector
[* = (1,0,0,0) becomes null. l.e. g =0, or

g =0 = TE:M+\/M2—aZCOSQH

& Stationary observers, i.e. constant (7,0), with a 4-velocity u = 0; + w0,,. They exist if
u? <0, they cease to exist at the surface gy, — 97, = 0, i.e.

~ 2M Da?rsin? 6
P(r,0) =r°+a* —2Mr + =0
N p*(r,0)
P(Ry(0),0) = 0 is the stationary limit. Cannot be the event horizon for since it is not

null.

® Event horizon
R'(0)* + P(R,0) =0
To have a smooth solution, we must impose

R(0) =R (5)=0.



Disformed Kerr metric

horizon

D

stationary
limit

ergosphere



Conformal symmetry



BBMB solution

& Scalar field with non-minimal coupling:

Bocharova, Bronnikov, Melnikov'70; Bekenstein'74

S:/ﬁ%yigea—%%WW¢—%fwﬁ

® The BBMB solution is

M\’ dr? M
d&:-(ym—>dﬂ+ L 10202, =4
r (1-4) oM

* Properties: Metric of the extremal Reissner-Nordstrom; scalar diverges at r;, = M; it
is unique; hair with the choice + due to the discrete symmetry ¢ — —o.



BBMB solution

Bocharova, Bronnikov, Melnikov'70; Bekenstein'74

Scalar field with non-minimal coupling:

1 1
,SZ/Q%ng@% ¥LWW¢—Efw‘

The BBMB solution is

M\? dr?
d¥=—<km—>dﬂ+ s+
" (1=

M
r— M

0, o=+

scalar diverges at r;, = M; it
etry ¢ — —a.

Properties: Metric of the extremal Reissner-Nordstrd
is unique; hair with the choice & due to the discré¥

The key in finding the solution is in the conformal invariance of the scalar part of the
action, g, — €*?g,, and ¢ — e ¢ = Sy — Sy + b.t.
As a consequence of the invariance

R =0 (pure geometric constraint)

1
(o = gqu = ¢ =0 (first integral)

This allows to derive the most general asymptotically flat solution [xanthopoulos &

Zannias'91]



MTZ SOIUtion Martinez, Troncoso, Zanelli'03

& Self-interacting scalar:
4 1 L9 4
S=[|dzv—g|R-— 2A—§8Ngb8“¢ — 12R¢ — ao

® The MT/Z solution is

2 2
d32:—f(’r)dt2+%—l—r2dﬂz, f(r):(l—%> —%TQ, ¢ =+ M

& BH solution for A > 0 provided that o = —A/72.

» There is a geometric constraint as well:

R =4A (pure geometric constraint)

1
(¢ = ER(b +4a¢® =0p #0 (not a first integral)



Lessons from above solutions

Two key ingredients that help to find exact solutions:

Pure geometric constraint (thanks to conformal invariance
of the scalar field action). Restricts the allowed possible
spacetimes

Scalar equation is simple to integrate

However the requirement of conformal invariance can be
relaxed to ask for conformal invariance of scalar EOM.



Generalization of the action

Lu-Pang'20, Fernandes'21l

# Generalized action:
S = / d*z\/—¢ {R — 2A—653 ((6¢)2 + %Rgﬁ) — 2)\¢*
v 2 4
- s 122000 20001

—

o @3 ¢
where G = R? — 4R,,, R + RM,/QBR“’/O‘B is the Gauss-Bonnet invariant.

® The a— contribution breaks the conformal invariance of the action for the scalar.
The scalar field equation remains conformally invariant.

¢ Look for the solution

dr?
f(r)

ds® = —f(r)dt* + +r2dO?, ¢ = é(r).



Geometric constraint from conformal EOM

Conformal invariance of the scalar EOM = pure geometric constraint:
R—2\+2G =0

From which the solution for f(r) immediately follows:

O 1i\/1+4a(%—£+é>

rs rd 3

Geometric constraint comes from conformal
symmetry of the scalar EOM, without conformal
invariance of the scalar action.

Non-Noetherian scalar field

[Ayon-Beato & Hassaine'23]



Geometric constraint from conformal EOM

Scalar field equation is has a "simple” form to integrate (assuming o # 0):

(%) (s16o =6 (14 L) ) =0

Two disconnected branches of solutions [Fernandes'21]

Extensions: [Babichev, Charmousis, Hassaine Lecoeur'22]
& Slowly rotating solutions
$ Radiating solutions (Vaidya-like)
* Wormbholes by disformal transformation

* Gravitational monopole-like solution



Rotating solution Fernandes’23

¥ Kerr-Schild ansatz:
ds? = ds2., + H(x) (I,dz")?

where H is a scalar (to look for) and [* is the tangent vector to a geodesic null
congruence.

& The solution contains arbitrary functions M (6) and ¢(#) (a sign of strong coupling?)

Very similar to the disformed Kerr solution:

® Non-circular

* The horizon is given by a similar equation.



No symmetry (but simple scalar EOM?)

EB, Charmousis, Hassaine & Lecoeur '23

Give up the requirement of the symmetries?
But construct a theory that yields a similar scalar field equation with factorization.

S— [dlov=g {1+ W (@) R JW(0)(V6) + Z(0) 4V (6) G+ V2 () G V,6¥.0

+V5(0) (V)" + Vi (6) D0 (V9)*

The case before corresponds to

W =—08e?* V,=128e*?, Z=-2X*"—2A, V=—-a¢p, Vo=da=V,, V3=2a.

-

Look for the solution

dr?

ds® = —f(r)dt +f(7°)

+r2dQ°, ¢ = ¢(r).




No symmetry (but simple scalar EOM?)

EB, Charmousis, Hassaine & Lecoeur '23

Give up the requirement of the symmetries?
But construct a theory that yields a similar scalar field equation with factorization.

S= [atev=g { L+ W @) R 310 (0) (6 + Z(0) +V (0)G + V2 (0) G V,6V,0
+V3(6) (V9)* + Va (¢) 06 (Ve)* |

' e

» The combination E} — E" = 0 can be factorized:
1/
o 1}

provided specific relations between the potentials (still leaving 3 arbitrary potentials at
this step Z, V and W).

T2W¢ + 4 (1 — f) Vg + ZfTVQQb/ + fT2V4 (¢/)2:| = 0,

* Fix the potentials Z, V and W so that the remaining 2 equations admit the solution

for f = f(r)



Conclusions

% Use symmetries of gravity theories to construct analytic solutions.
% Shift symmetry of a theory leads to a conserved current.
% Conformal symmetry leads to a geometric constraint.

% General disformal transformation as a way to construct new
solutions.



