GW generation in dark energy EFTs

Established by the European Commission

ERC-2018-COG GRAMS 815673

Marco Crisostomi

GWs meet EFTs Benasque 23/08/23

arXiv:2008.07546 (JCAP)

Based on:

arXiv:2105.13992 (PRD)

arXiv:2207.00443 (JCAP)

Enrico Barausse

Lotte ter Haar

Miguel Bezares

arXiv:2009.03354 (PRL)

arXiv:2107.05648 (PRL)

arXiv:2207.03437 (PRD)

Carlos Palenzuela

Guillermo Lara

Ricard Aguilera-Miret

Baker, Psaltis, Skordis '15

Baker, Psaltis, Skordis '15

Baker, Psaltis, Skordis '15

Tests of Gravity

Parameter	Effect	Limit	Remarks
$\gamma - 1$	time delay	$2.3 imes10^{-5}$	Cassini tracking
	light deflection	$2 imes 10^{-4}$	VLBI
$\beta - 1$	perihelion shift	$8 imes 10^{-5}$	$J_{2\odot} = (2.2 \pm 0.1) \times 10^{-7}$
	Nordtvedt effect	$2.3 imes10^{-4}$	$\eta_{ m N} = 4eta - \gamma - 3 \text{ assumed}$
5	spin precession	4×10^{-9}	millisecond pulsars
$lpha_1$	orbital polarization	10^{-4}	Lunar laser ranging
		4×10^{-5}	PSR J1738+0333
$lpha_2$	spin precession	$2 imes 10^{-9}$	millisecond pulsars
α_3	pulsar acceleration	4×10^{-20}	pulsar \dot{P} statistics
51		$2 imes 10^{-2}$	combined PPN bounds
5^{2}	binary acceleration	4×10^{-5}	$\ddot{P}_{\rm p}$ for PSR 1913+16
53	Newton's 3rd law	10^{-8}	lunar acceleration
54			not independent [see Eq. $(7$

C. Will LLR '14

Baker, Psaltis, Skordis '15

Baker, Psaltis, Skordis '15

Baker, Psaltis, Skordis '15

Baker, Psaltis, Skordis '15

Screening Mechanisms

PHYSICS LETTERS

TO THE PROBLEM OF NONVANISHING GRAVITATION MASS

A. I. VAINSHTEIN

Institute of Nuclear Physics, Novosibirsk, USSR

Revised manuscript received 17 February 1972

Large distances modification and screening

1) We do want a sizeable modification at cosmological scales

$$L = M_{Pl}^2 R$$

Very light mode

 $L = M_{Pl}^2 R - \frac{1}{2} (\partial \phi)^2 + \frac{\beta}{4\Lambda^4} (\partial \phi)^4$

$$\frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2$$

 $H^2 \sim m^2$

 $M_{Pl}^2 H^2 \sim \Lambda^4$

Large distances modification and screening

2) We do not want a modification at short scales

$$L = -\frac{1}{2} (\partial \phi)^2 +$$

 ϕ'/Λ^2 f

$$\phi_{lin}' \sim \frac{1}{r^2}$$

$$\phi'_{non-lin} \sim \frac{1}{r^{2/3}}$$

Large distances modification and screening

Nicolis & Rattazzi '04 De Rham & Ribeiro '14 Brax & Valageas '14

Summary

Well-posedness ?

Cauchy problem

Unique solution that depends continuously on the initial data

Strong hyperbolicity

Characteristic matrix

Complete set of eigenvectors and real eigenvalues

$$^{k} \partial_{k} \mathbf{u} = \mathbf{S}(\mathbf{u})$$

Weak hyperbolicity

Real eigenvalues but incomplete set of eigenvectors

Well-posedness?

Cauchy problem

GR in **ADM** formulation is not well-posed!

Unique solution that depends continuously on the initial data

Well-posedness? **CCZ4** formalism

$$R_{ab} + \nabla_a Z_b + \nabla_a Z_b = 8\pi \left(T_{ab} - \frac{1}{2}g_a \right)$$

 $\partial_t \tilde{\gamma}_{ij} = \beta^k \partial_k \tilde{\gamma}_{ij} + \tilde{\gamma}_{ik} \partial_j \beta^k + \tilde{\gamma}_{kj} \partial_i \beta^k - \frac{2}{3} \tilde{\gamma}_{ij} \partial_k \beta^k - 2\alpha \left(\tilde{A}_{ij} - \frac{\lambda_0}{3} \tilde{\gamma}_{ij} tr \tilde{A} \right) - \frac{\kappa_c}{3} \alpha \tilde{\gamma}_{ij} \ln \tilde{\gamma},$ $\partial_t \tilde{A}_{ij} = \beta^k \partial_k \tilde{A}_{ij} + \tilde{A}_{ik} \partial_j \beta^k + \tilde{A}_{kj} \partial_i \beta^k - \frac{2}{2} \tilde{A}_{ij} \partial_k \beta^k - \frac{\kappa_c}{2} \alpha \,\tilde{\gamma}_{ij} \, tr \tilde{A}$ $+\chi \left[\alpha \left({}^{(3)}R_{ij} + \nabla_i Z_j + \nabla_j Z_i - 8\pi S_{ij} \right) - \nabla_i \nabla_j \alpha \right]^{\mathrm{TF}} + \alpha \left(tr \hat{K} \tilde{A}_{ij} - 2\tilde{A}_{ik} \tilde{A}^k{}_j \right),$ $\partial_t \chi = \beta^k \partial_k \chi + \frac{2}{3} \chi \left[\alpha (tr \hat{K} + 2\Theta) - \partial_k \beta^k \right],$ $\partial_t tr\hat{K} = \beta^k \partial_k tr\hat{K} - \nabla_i \nabla^i \alpha + \alpha \left[\frac{1}{3} \left(tr\hat{K} + 2\Theta \right)^2 + \tilde{A}_{ij} \tilde{A}^{ij} + 4\pi \left(\tau + trS \right) + \kappa_z \Theta \right]$ $+2Z^i\nabla_i\alpha,$ $\partial_t \Theta = \beta^k \partial_k \Theta + \frac{\alpha}{2} \left[{}^{(3)}R + 2\nabla_i Z^i + \frac{2}{3} tr^2 \hat{K} + \frac{2}{3} \Theta \left(tr \hat{K} - 2\Theta \right) - \tilde{A}_{ij} \tilde{A}^{ij} \right] - Z^i \nabla_i \alpha$ $-\alpha \left[8\pi \tau + 2\kappa_z \Theta \right],$ $\partial_t \hat{\Gamma}^i = \beta^j \partial_j \hat{\Gamma}^i - \hat{\Gamma}^j \partial_j \beta^i + \frac{2}{3} \hat{\Gamma}^i \partial_j \beta^j + \tilde{\gamma}^{jk} \partial_j \partial_k \beta^i + \frac{1}{3} \tilde{\gamma}^{ij} \partial_j \partial_k \beta^k$ $-2\tilde{A}^{ij}\partial_j\alpha + 2\alpha \left[\tilde{\Gamma}^i{}_{jk}\tilde{A}^{jk} - \frac{3}{2\gamma}\tilde{A}^{ij}\partial_j\chi - \frac{2}{3}\tilde{\gamma}^{ij}\partial_jtr\hat{K} - 8\pi\tilde{\gamma}^{ij}S_i\right]$ $+2\alpha \left[-\tilde{\gamma}^{ij}\left(\frac{1}{3}\partial_{j}\Theta+\frac{\Theta}{\alpha}\partial_{j}\alpha\right)-\frac{1}{\chi}Z^{i}\left(\kappa_{z}+\frac{2}{3}\left(tr\hat{K}+2\Theta\right)\right)\right],$

 $g_{ab} trT
ight) + \kappa_z \left(n_a Z_b + n_b Z_a - g_{ab} n^c Z_c \right)$

$$\begin{aligned} \partial_t \alpha &= \beta^i \partial_i \alpha - \alpha^2 f \, tr \hat{K}, \\ \partial_t \beta^i &= \beta^j \partial_j \beta^i + g \, B^i, \\ \partial_t B^i &= \beta^j \partial_j B^i - \eta B^i + \partial_t \hat{\Gamma}^i - \beta^j \partial_j \hat{\Gamma}^i, \end{aligned}$$

1+log slicing Gamma-driver shift condition

> O(20) equations with Thousands terms

 $\gamma^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = 0$

$\partial_t \mathbf{u} + \mathbf{A}^k \partial_k \mathbf{u} = \mathbf{S}(\mathbf{u})$ $\mathbf{u} \equiv (\partial_t \phi, \partial_r \phi)$

Well-posedness?

 $S = \int d^4x \sqrt{-g} \left| \frac{K}{16\pi G} + K(X) \right| \qquad K(X) = -\frac{1}{2}X + \frac{\beta}{4\Lambda^4}X^2 - \frac{\gamma}{8\Lambda^8}X^3$

 $X \equiv \nabla_{\mu} \phi \nabla^{\mu} \phi$

 $\gamma^{\mu\nu} \equiv g^{\mu\nu} + \frac{2K''(X)}{K'(X)} \nabla^{\mu} \phi \nabla^{\nu} \phi$

$$V_{\pm} = -\frac{\gamma^{tr}}{\gamma^{tt}} \pm \sqrt{\frac{-\det(\gamma^{\mu\nu})}{(\gamma^{tt})^2}} \stackrel{<}{\neq} 0$$

$$\det(\gamma^{\mu\nu}) = -\frac{1}{\alpha^2 g_{rr}} \left(1 + \frac{2K''}{K'}X\right)$$

Well-posedness?

Caustics / shocks

$$\partial_t u + u \partial_x u = 0 \qquad u = h(p)$$

Finite difference

Screened NS

Screened NS

Mass-Radius curves

 r_{\star}/km

Screened NS

Evolution: stellar oscillations

$$\phi_{22} \simeq -\alpha \sqrt{16\pi G} \partial_t^2 \varphi + O\left(\frac{1}{r^2}\right)$$

Evolution: stellar oscillations

 ϕ_{22} , SNR $\propto \Lambda$

For Ad LIGO at 8 kpc

For LISA at 8 kpc, $SNR(\Lambda_{DE}) \sim 30-40$

21

2 body problem

0.1 0.5 1.0 3.0 5.0 7.0

Boskovic & Barausse '23

SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure

AMR

Exploring application, numerical, parallel computing, and software issues associated with structured adaptive mesh refinement

3D simulations

Clone wiki

History

View

Generates parallel code for 3+1 simulations

Simflowny is a cloud-based open environment for scientific dynamical models, composed by a semantic Domain Specific Language and a friendly Integrated Development Environment, which automatically generates parallel code for simulation frameworks.

Initial Data

Langage Objet pour la RElativité NumériquE

3D simulations

SAMRAI

- different processors \rightarrow faster simulations
- Adaptive mesh refinement

[-1500, 1500]³ km

• Parallelization: divide the domain in patches to be evolved in parallel in

Binary NSs merger

Binary NSs merger

Binary NSs merger

Conclusions

- Screening mechanisms allow to reconcile large and short distances
- Test them in the dynamical regime of binary mergers
- Long overdue
- Interesting deviations from GR