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Fig. 2.— The experimental version of the gravitational parameter space (axes the same as in Fig. 1). Curves are described in detail in
the text (§4). Some of the abbreviations in the figure are: PPN = Parameterized Post-Newtonian region, Inv. Sq. = laboratory tests of the
1/r2 behaviour of the gravitational force law, Atom = atom interferometry experiments to probe screening mechanisms, EHT = the Event
Horizon Telescope, ELT = the Extremely Large Telescope, DETF4 = a hypothetical ‘stage 4’ experiment according to the classification
scheme of the Dark Energy Task Force (Albrecht et al. 2006), Facility = a futuristic large radio telescope such as the Square Kilometre
Array.

4.1. Cosmology

Galaxy Surveys. In the lower section of the figure we
indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed

by cosmology is small, we stress that this is one of the
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FIG. 4. Constraints on the dynamical dark-energy w0 � wa model. The left panel shows the constraints on w0 and wa, while the right
panel shows constraints on the derived pivot value wp and again wa. Contours show 68% and 95% confidence regions. The pale blue
contours are DES 3⇥2pt, the purple contours is the low-z combination of 3⇥2pt+BAO+RSD+SN, the open red contours are for Planck, and
the open black contours represent everything combined. The pivot redshifts derived for the wp–wa are 0.24 for DES 3⇥2pt only, 0.21 for
3⇥2pt+BAO+RSD+SN, and 0.27 for all data constraints. The gray hatched region shows the part of parameter space removed by the prior that
requires w0 + wa < 0.
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FIG. 5. A more detailed look at how different data contribute
constraining power to w0 and wa. The purple contours showing
3⇥2pt+BAO+RSD+SN and black contours showing all data con-
straints are the same as those in Fig. 4. The green contours show con-
straints from the external low-z data alone (BAO+RSD+SN), while
the pink contours show constraints from Planck combined with low
redshift geometric probes only (BAO+SN). The gray hatched region
shows the excluded region where w0 + wa > 0.

DES with external data leads to modest improvements. The
constraints are

Ne↵  7.8 DES Y3

= 3.10+0.15
�0.16 DES Y3 + External.

(35)

Constraints on the number of relativistic species are given
in Fig. 7. The DES 3⇥2pt and BAO+RSD+SN constraints
both individually peak around Ne↵ ' 3, though we cau-
tion that these constraints are mainly shaped by prior pro-
jection effects. Both the 3⇥2pt and BAO+RSD+SN poste-
riors are unconstrained along Ne↵ � ⌦b and Ne↵ � h de-
generacy directions. Given our choice of priors, the upper
bounds on Ne↵ are shaped by the upper prior bound on h,
while the lower bound on Ne↵ are determined by the lower
prior bound for ⌦b. Both DES 3⇥2pt and RSD are sensitive
to the amplitude of the power spectrum, which is affected by
Ne↵ through changes in the redshift of matter-radiation equal-
ity, while BAO is additionally sensitive to a small phase shift
caused by Ne↵ ’s impact on the Silk damping scale. These
probes’ posteriors have different degeneracies between As and
Ne↵ , and the overlap between them rules out small Ne↵ val-
ues, while the upper bound is still primarily determined by
where the posterior intersects the ⌦b prior. The constraints are
still consistent with the standard-model value of Ne↵ . Once
the 3⇥2pt+BAO+RSD+SN data are combined with Planck,
the overall combined posterior shifts slightly compared to
the Planck-only constraints, but remain fully consistent with
Ne↵ ' 3.

Dark Energy Survey

Year 3 Results 

of a GW event and of its electromagnetic counterpart would put extremely strong limits on
|cT (z) � c|/c up to the redshift of the source, just as for GW170817/GRB 170817A.

Given the strong observational constraint from GW170817/GRB 170817A, and the lack
of explicit models where cT (z) evolves from a value equal to c within 15 digits at z < 0.01, to
a sensibly di↵erent value at higher redshift, in the following we will limit our analysis to the
case cT (z) = c. Note also that, if at higher redshift cT (z) should be sensibly di↵erent from
c, with LISA one would simply not see an electromagnetic counterpart even if it existed,
since the time delay of the electromagnetic and gravitational signal, over such distances,
would be huge. In that case the analysis of the present paper, that assumes standard sirens
with electromagnetic counterpart, would not be applicable, and one would have to resort to
statistical methods.4

2.2.4 Phenomenological parametrization of d gw

L
(z)/d em

L
(z)

In general, in modified gravity, both the cosmological background evolution and the cosmo-
logical perturbations are di↵erent with respect to GR. It is obviously useful to have phe-
nomenological parametrizations of these e↵ects, that encompass a large class of theories. In
modified gravity, the deviation of the background evolution from ⇤CDM is determined by
the DE density ⇢DE(z) or, equivalently, by the DE equation of state wDE(z). In principle
one could try to reconstruct the whole function wDE(z) from cosmological observations, but
current results are unavoidably not very accurate (see e.g. fig. 5 of [46]). The standard
approach is rather to use a parametrization for this function, that catches the qualitative
features of a large class of models. The most common is the Chevallier–Polarski–Linder
parametrization [47, 48], which makes use of two parameters (w0, wa),

wDE(a) = w0 + wa(1 � a) , (2.29)

corresponding to the value and the slope of the function at the present time. In terms of
redshift,

wDE(z) = w0 +
z

1 + z
wa . (2.30)

One can then analyze the cosmological data adding (w0, wa) to the standard set of cosmo-
logical parameters. Similarly, some standard parametrizations are used for describing the
modification from GR in the scalar perturbation sector, in order to compare with structure
formation and weak lensing, see e.g. [49, 50]. Here we are interested in tensor perturbations,
where the e↵ect is encoded in the non-trivial function d gw

L
(z)/d em

L
(z). Again, rather than

trying to reconstruct this whole function from the data, it is more convenient to look for a
simple parametrization that catches the main features of a large class of models in terms of
a small number of parameters. We shall adopt the 2-parameter parameterization proposed
in Ref. [16],

⌅(z) ⌘
d gw

L
(z)

d em

L
(z)

= ⌅0 +
1 � ⌅0

(1 + z)n
, (2.31)

which depends on the parameters ⌅0 and n, both taken to be positive. In terms of the scale
factor a = 1/(1 + z) corresponding to the redshift of the source,

d gw

L
(a)

d em

L
(a)

= ⌅0 + an(1 � ⌅0) . (2.32)

4At low-z, an alternative way to test an anomalous GW speed at LISA frequencies, cT (kLISA) 6= c, is
to measure the phase lag between GW and EM signals of continuous sources such as the LISA verification
binaries. This test can constrain the graviton mass [42, 43] as well as the propagation speed [44, 45].

– 9 –
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FIG. 9. Constraints on the ⌃0 � µ0 modified gravity parame-
ters, with axis ranges reflecting the parameters’ prior ranges. The
gray hatched region shows where samples are excluded by the µ0 <
2⌃0 + 1 requirement of MGCAMB: any overlap of contours with
that region is a reflection of KDE smoothing done by GETDIST.

for DES Y1 data in both DES-Y1Ext and Ref. [11]. As noted
in Ref. [11], this preference is driven by the excess smoothing
of high-` Planck measurements that that are captured by the
phenomenological AL parameter. These are the same features
that pull the Planck-only ⌦k constraints towards negative val-
ues. When all data are analyzed together, the ⌃0 constraints
are in agreement with those from 3⇥2pt, with the CMB mea-
surements contributing to tightening constraints primarily by
breaking the RSD posterior’s weak degeneracy between �8

and µ0.

F. Results: binned �8(z)

Finally, we report constraints on the binned �8(z) model.
We begin by examining the set of derived parameters �

[bin i]
8

(see Eqs. (27-29)), which correspond to the values of �8 in-
ferred from LSS observed in redshift bin i, and which we
showed in Sec. V C are more robust to model variations than
the sampled A

Plin
i parameters. These constraints are:

�
[bin 1]

8
= 0.75+0.05

�0.05,

�
[bin 2]

8
= 0.74+0.06

�0.07,

�
[bin 3]

8
= 0.70+0.06

�0.07, DES Y3

�
[bin 4]

8
= 0.70+0.10

�0.09,

(40)

and

�
[bin 1]

8
= 0.78+0.02

�0.02,

�
[bin 2]

8
= 0.79+0.04

�0.04,

�
[bin 3]

8
= 0.76+0.04

�0.04, DES Y3 + External

�
[bin 4]

8
= 0.86+0.04

�0.05,

�
[CMB]

8
= 0.792+0.015

�0.010,

(41)

Fig. 11 presents these constraints in comparison to ⇤CDM
constraints on �8. In that figure, the set of lighter, unfilled
data points show how the �

[bin i]
8

constraints change when
use the alternative hyperrank method of marginalizing over
source galaxy photo-z uncertainties. We find that hyperrank
induces non-negligible but still small (⇠ 0.5�) shifts in �

[bin i]
8

for the 3⇥2pt-only i 2 {2, 3} measurements, and all-data
i 2 {2, CMB} measurements, while a much larger, almost
3� shift occurs for the all-data constraint on �

[bin 1]

8
. As is

discussed in more detail in Appendices D 3 and D 4, the lack
of robustness of the lowest redshift is likely due to an inter-
action between the source n(z) and IA modeling which is
most significant at low redshifts. In the same Figure, we re-
port additional results to facilitate interpretation of how dif-
ferent structure growth observables contribute to constraints.
Namely, we show the combination of DES data with only ge-
ometric external data (3⇥2pt +BAO+SN) shifts constraints to
slightly higher S8 in both ⇤CDM and binned �8, but not as
much as the 3⇥2pt +BAO+RSD+SN data combination. Thus
the combined analyis’ shift towards higher �8, especially in
the highest redshift bin 4, seems to be primarily driven by the
RSD likelihood.

Fig. 12 translates these results to the inferred growth func-
tion �8(z). That figure compares marginalized constraints
when we vary the binned �8(z) amplitude parameters shown
with data points at a few example redshifts, to the 68% confi-
dence bands obtained from ⇤CDM fits to DES 3⇥2pt and all
data (3⇥2pt+BAO+RSD+SN+Planck).

All measurements are within approximately 1� of the
⇤CDM �8 estimate. The fact that the DES-only constraints
on �8(z) are consistently lower than Planck and that our com-
bined constraints find �

[bin 4]

8
to be higher than �

[bin i]
8

in the
other bins agrees with similar features seen in Refs. [171–
173]. In those works, analyses of DESI galaxies cross cor-
related with Planck lensing, eBOSS QSO clustering, and both
of those observables combined with DES Y1 3⇥2pt measure-
ments, respectively, suggest that the amplitude of structure at
z ⇠ 0.8 may be slightly higher compared to lower redshift
measurements, and thus hinting at a slower growth rate than
expected in ⇤CDM. However the trends seen in these refer-
ences, as well as that in our work, are only significant at the
⇠1� level and thus not strong enough to motivate any kind of
firm conclusion. We also note that a similar trend is not found
in Ref. [122]’s binned modified gravity study using DES Y1
and BOSS DR12 LSS data. It will be interesting to monitor
how new and more precise data constrain the time-evolution

Tests of Gravity10 Baker et al.

10-62 
 10-59 
 10-56 
 10-53 
 10-50 
 10-47 
 10-44 
 10-41 
 10-38 
 10-35 
 10-32 
 10-29 
 10-26 
 10-23 
 10-20 
 10-17 
 10-14 
 10-11 

Cu
rv

at
ur

e,
 ξ

 (c
m

-2
 )

10-12  10-10  10-8  10-6  10-4  10-2  100

Potential, ε

 DETF4
 Facility

 BAO

 ELT S stars

  LOFT +
  Athena

     PPN 
constraints

  Tidal streams
     (GAIA)

 AdLIGO

 eLISA

 A
 P

 Atom

 Triple

 Inv. Sq.

 EHT

 Sgr A*

 M87

 Planck

PTA

Fig. 2.— The experimental version of the gravitational parameter space (axes the same as in Fig. 1). Curves are described in detail in
the text (§4). Some of the abbreviations in the figure are: PPN = Parameterized Post-Newtonian region, Inv. Sq. = laboratory tests of the
1/r2 behaviour of the gravitational force law, Atom = atom interferometry experiments to probe screening mechanisms, EHT = the Event
Horizon Telescope, ELT = the Extremely Large Telescope, DETF4 = a hypothetical ‘stage 4’ experiment according to the classification
scheme of the Dark Energy Task Force (Albrecht et al. 2006), Facility = a futuristic large radio telescope such as the Square Kilometre
Array.

4.1. Cosmology

Galaxy Surveys. In the lower section of the figure we
indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed

by cosmology is small, we stress that this is one of the
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gravity; we choose the functions µ and ⌃, defined as

k
2 = � 4⇡Ga

2(1 + µ(a))⇢� , (7)
k
2( + �) =� 8⇡Ga

2(1 + ⌃(a))⇢� , (8)

where � is the comoving-gauge density perturbation. This ver-
sion of the parameterization was used in [24, 31, 91], and
benefits from the fact that ⌃ parametrizes the change in the
lensing response of massless particles to a given matter field,
while µ is linked to the change in the matter overdensity itself.
Therefore, weak lensing measurements are primarily sensitive
to ⌃ but also have some smaller degree of sensitivity to µ

via their tracing of the matter field, whereas galaxy clustering
measurements depend only on µ and are insensitive to ⌃.

To practically constrain µ and ⌃, we select a functional
form of

µ(z) = µ0
⌦⇤(z)

⌦⇤
, ⌃(z) = ⌃0

⌦⇤(z)

⌦⇤
(9)

where ⌦⇤(z) is the redshift-dependent dark energy density
(in the ⇤CDM model) relative to critical density, and ⌦⇤ is
its value today. This time dependence has been introduced
in [115], and is widely employed (see e.g. [24, 31, 91]). It
is motivated by the fact that in order for modifications to GR
to offer an explanation for the accelerated expansion of the
Universe, we would expect such modifications to become sig-
nificant at the same timescale as the acceleration begins. We
do not model any scale-dependence of µ and ⌃ since it has
been shown to have less impact on observables than the time-
dependence [99]. We therefore include only the parameters µ0

and ⌃0 (but, as explained in Sec. IV A, only quote constraints
on ⌃0).

Note that although our choice of parameterization is moti-
vated by the quasistatic limit of particular theories of gravity,
our analysis takes an approach which is completely divorced
from any given theory. We endeavor instead to make em-
pirical constraints on the parameters µ0 and ⌃0 as specified
by Eqs. (7), (8), and (9). Because we take this empirically-
driven approach, we include certain data elements in which
the quasistatic approximation would not be expected to hold,
most importantly the near-horizon scales for the ISW effect.
Although not rigorously theoretically justified, a similar ap-
proach with respect to inclusion of the ISW effect at large
scales was taken in, for example, [91]. Practically, this choice
has the benefit of providing an important constraint on ⌧ from
external CMB data, which is useful in breaking degeneracies.

We use CosmoSIS with a version of MGCamb8 [116, 117]
modified to include the ⌃, µ parametrization to compute the
linear matter power spectrum and the CMB angular power
spectra. For some sets of (⌃0, µ0) MGCamb returns an error;
we estimated this region of parameter space can be avoided by
imposing an additional hard prior µ0 < 1 + 2⌃0. We there-
fore implement this prior in order to avoid computations for
parameters not handled by MGCamb.

8 https://aliojjati.github.io/MGCAMB/mgcamb.html

To validate our modified-gravity analysis pipeline, we
compare the CosmoSIS results to that of another code,
CosmoLike [62]. We require that the two codes give the
same theory predictions for clustering and lensing observ-
ables, and the same constraints on cosmological parameters
given a simulated data vector. The comparison shows good
agreement, and details can be found in Appendix A.

Finally, because the (µ,⌃) description does not constitute
a complete theoretical model, its nonlinear clustering predic-
tions are not available to us even in principle. We therefore
restrict ourselves to the linear-only analysis. To do this, we
follow the Planck 2015 analysis [24] and consider the differ-
ence between the nonlinear and linear-theory predictions in
the standard ⇤CDM model at best-fit values of cosmological
parameters and with no modified gravity. Using the respective
data vector theory predictions, dNL and dlin, and full error co-
variance of DES Y1, C, we calculate the quantity

��
2 ⌘ (dNL � dlin)

T C�1 (dNL � dlin) (10)

and identify the single data point that contributes most to this
quantity. We remove that data point, and repeat the process
until ��

2
< 1. The resulting set of 334 (compared to the

original 457) data points that remain constitutes our fiducial
choice of linear-only scales.

IV. VALIDATION TESTS AND BLINDING

We subject our ⇤CDM extensions analyses to the same bat-
tery of tests for the impact of systematics as in Y1KP. The
principal goal is to ensure that all of our analyses are robust
with respect to the effect of reasonable extensions to models
of astrophysical systematics and approximations in our mod-
eling. As part of the same battery of tests, we also test that the
range of spatial scales that are used lead to unbiased cosmo-
logical results, and that motivated modifications to our model-
ing assumptions do not significantly change the inferred cos-
mology.

In these tests and the results below,9 sampling of the
posterior distribution of the parameter space is performed
with Multinest [118] and emcee [119] wrappers within
CosmoSIS10 [120] and CosmoLike [62]. While the conver-
gence of Multinest is intrinsic to the sampler and achieved
by verifying that the uncertainty in the Bayesian evidence is
below than some desired tolerance, we explicitly check the
convergence of emcee chains. In order to do so, we com-
pute the autocorrelation length of each walk, then continue
the walks until a large number of such lengths is reached11.

9 One important distinction from the data-based results in later sections is
that we sample a lower-precision version of the CMB lensing contribution
to constraints including external data when varying ⌦k , then modify the
posterior to the higher precision prediction via importance sampling. This
has a minor effect on the shape of the posterior.

10 https://bitbucket.org/joezuntz/cosmosis/
11 The recommended methods for convergence testing (as

well as the documentation for emcee) can be found in
https://emcee.readthedocs.io/
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Fig. 2.— The experimental version of the gravitational parameter space (axes the same as in Fig. 1). Curves are described in detail in
the text (§4). Some of the abbreviations in the figure are: PPN = Parameterized Post-Newtonian region, Inv. Sq. = laboratory tests of the
1/r2 behaviour of the gravitational force law, Atom = atom interferometry experiments to probe screening mechanisms, EHT = the Event
Horizon Telescope, ELT = the Extremely Large Telescope, DETF4 = a hypothetical ‘stage 4’ experiment according to the classification
scheme of the Dark Energy Task Force (Albrecht et al. 2006), Facility = a futuristic large radio telescope such as the Square Kilometre
Array.

4.1. Cosmology

Galaxy Surveys. In the lower section of the figure we
indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed

by cosmology is small, we stress that this is one of the
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Fig. 2.— The experimental version of the gravitational parameter space (axes the same as in Fig. 1). Curves are described in detail in
the text (§4). Some of the abbreviations in the figure are: PPN = Parameterized Post-Newtonian region, Inv. Sq. = laboratory tests of the
1/r2 behaviour of the gravitational force law, Atom = atom interferometry experiments to probe screening mechanisms, EHT = the Event
Horizon Telescope, ELT = the Extremely Large Telescope, DETF4 = a hypothetical ‘stage 4’ experiment according to the classification
scheme of the Dark Energy Task Force (Albrecht et al. 2006), Facility = a futuristic large radio telescope such as the Square Kilometre
Array.

4.1. Cosmology

Galaxy Surveys. In the lower section of the figure we
indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed

by cosmology is small, we stress that this is one of the
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FIG. 6. 90% upper bounds on the magnitude of the parametrized test coe�cients discussed in Sec. V A. The bounds were obtained with a
pipeline based on the model SEOBNRv4 ROM, combining all eligible GWTC-3 events, under the assumption that deviations take the same
value for all the events. Filled gray diamonds mark analogous results obtained with GWTC-2 data [11]; in this case, we also show bounds
obtained with a pipeline based on IMRPhenomPv2, that are marked by unfilled black diamonds. Horizontal stripes indicate constraints obtained
with individual events, with cold (warm) colors representing low (high) total mass events. The left and right panel show constraints on PN
deformation coe�cients, from �1PN to 3.5PN order. The best improvement with respect to the GWTC-2 bounds is achieved for the �1PN term,
thanks ot the inclusion of the NSBH candidate GW200115 042309.
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Along with this leading-order e↵ect, we have included higher-
order PN terms that appear through the inspiral phase [167,
204] of gravitational waveform.

While Kerr BHs have  = 1 [201–203], compact stars have
a value of  that di↵ers from the BH value, determined by the
star’s mass and internal composition. Numerical simulations
of spinning neutron stars show that the value of  can vary be-
tween ⇠2 and ⇠14 for these systems [205–207]. Moreover, for
currently available models of spinning boson stars,  can have
values ⇠10–150 [208–211]. More exotic stars like gravastars
can even take negative values for  [212]. Hence, an indepen-
dent measurement of  from gravitational-wave observations
can be used to distinguish black holes from other exotic ob-

jects [213–216]. However, to fully understand the nature of
compact objects, one may also include e↵ects such as the tidal
deformations that arise due to the external gravitational field
[217–220] and tidal heating [221–226] along with the spin-
induced deformations, an extensive study of these e↵ects is not
in the scope of this paper.

For a spinning compact binary system, the coe�cients i,
i = 1, 2 represent the primary and secondary components’
spin-induced quadrupole moment parameters. The correlation
of i with the masses and spin parameters of the binary are
evident from Eq. (6), which makes the simultaneous estima-
tion of 1 and 2 hard. The higher-order terms present at the
3PN order help break this degeneracy, but are not enough to
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indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed
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‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
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tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
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Each survey is delineated by two lines, whose separa-
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tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
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have added a point to represent recent measurements of
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1) We do want a sizeable modification at cosmological scales

Very light mode
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I. INTRODUCTION

Modifying General Relativity (GR) adding a single
scalar degree of freedom is the most simple and popu-
lar modification of GR that can be performed. This kind
of modification goes under the name of scalar-tensor the-
ories. These theories can be divided in two broad classes:
without derivative self-interactions (i.e. Brans–Dicke like
theories [? ]) and with derivative self-interactions of the
scalar field. The latter, with at most two derivatives per
scalar field in the action, have been recently classified in
the framework of degenerate higher-order scalar-tensor
(DHOST) theories [? ? ? ] (which include Horndeski [? ]
and beyond Horndeski [? ] theories). When the theory is
in the perturbative regime, such derivative self-couplings
are not expected to be important, since they all are irrel-
evant operators suppressed by an appropriate power of
the UV cutoff. However, in the non-linear regime those
operators give a novel important effect known as screen-
ing. Moreover, several subset of DHOST theories have
been proved to be radiatively stable [? ], so that they
can develop large non-linearities but remaining quantum-
mechanically stable.

In this paper we concentrate on theories with only first
derivatives of the scalar field. In absence of gravity these
are known as P (X) theories, where X ⌘ (@�)2 is the
kinetic term of the scalar field; whereas when gravity is
taken into account they are usually called K-essence the-
ories. A first nice property of such Lagrangians is that
they provide second order equations of motion and there-
fore are automatically free from Ostrogradsky instabili-
ties. Secondly, they enjoy a kinetic screening mechanisms
on local scales dubbed K-mouflage [? ]. K-essence the-
ories have been widely applied both in early and late
time cosmology. They were introduced in the context of
K-inflation [? ] and then used to explain the present
accelerated expansion of the Universe (self-acceleration)
[? ? ]. Particular functions of X attracted special at-
tention as the Dirac–Born–Infeld (DBI) models [? ? ],
which arise in the action for D branes in string theory,
and the ghost condensate [? ], which allows for bouncing
cosmologies.

However, when K-essence is formulated as a Cauchy
problem, it is still not clear whether the evolution system
is well-posed; namely, according to Hadamard definition,
if there exists a unique solution that depends continu-
ously on the initial data. Understanding this point is

fundamental if we want to seriously consider K-essence
to describe real astrophysical objects as (neutron) stars
or black holes. Recently, several papers have analysed
this problem using numerical simulations [? ? ? ] and
concluded that well-posedness is not always guaranteed.
However a quantitative estimation of the regime of well-
posedness is still missing (see [? ] for a recent attempt).

In this paper we first point to consider a subset of the
parameter space that avoids a change of character at fi-
nite time, then we introduce a criterion to establish when
an initial configuration lies within the regime of well-
posedness and therefore can be safely evolved. Moreover,
we write the scalar field evolution equation as a conserva-
tion law, this allows us to use numerical methods specific
for intrinsically non-linear PDEs which might generate
shocks even from smooth initial data.

The paper is organised as follow: in Section II we re-
view the key features of P (X) theories, i.e. K-essence in
absence of gravity; this is sufficient to recap the most im-
portant properties and issues without the complication
of gravity. In Section III we reintroduce gravity, set the
stage to perform numerical evolutions, and discuss our
criterion to establish the regime of well-posedness. In
Section IV we present our numerical setup and in Sec-
tion V we show the results of our numerical simulations.
Finally, in Section VI, we draw our conclusions. We use
the mostly plus signature and denote spacetime indices
with greek letters and spatial indices with latin letters.

II. P (X) THEORIES: A SHORT REVIEW

By definition, P (X) theories have a single derivative
per scalar field and enjoy the shift symmetry: �(x) !

�(x) + c, where c is constant. The lowest-order La-
grangian is therefore given by

L = �
1

2
(@�)2 +

�

4⇤4
(@�)4 +

a

MPl
� T , (1)

where � and a are dimensionless coefficients of ⇠ O(1),
MPl is the Planck mass that set the strength of the cou-
pling with matter, and ⇤ is the strong coupling scale of
the effective field theory (EFT). The coupling with the
matter energy density T breaks the shift symmetry, but
as long as MPl � ⇤ it does softly.
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The equation of motion (eom) read

⇤� �
�

⇤4
@µ

⇥
(@�)2@µ�

⇤
+

a

MPl
T = 0 . (2)

A. Kinetic screening

Let us now assume a static and spherically symmetric
configuration � = �(r), and a point-like matter source
T = �m �(r) of mass m. Thanks to the shift symmetry
the equation of motion can be integrated once and gives

�0
�

�

⇤4
�03 =

a m

4⇡r2MPl
. (3)

The above equation can be solved analytically for �0,
however (being it a cubic equation) the solution is not
particularly illuminating. It is more useful to look at it
in two extreme regimes.

• Far away from the source.
In this regime �0/⇤2

⌧ 1 and therefore the cubic
term in eq. (3) is negligible compared to the linear
one. The solution reads

�0
lin '

a m

4⇡r2MPl
, (4)

and we find the standard quadratic fall-off of the
scalar force.

• Close to the source.
In this regime instead �0/⇤2

� 1 and it is the cu-
bic term in (3) that dominates over the linear one.
Notice that a solution in this case is possible only
if � < 0. The solution now reads

�0
non-lin '

✓
�

⇤4

�

a m

4⇡r2MPl

◆1/3

. (5)

The radius where the transition between the linear and
non-linear regime occurs can be easily deduced from the
eom (3). It is the radius where the cubic term becomes
comparable to the linear one, namely �0

' ⇤2. When
inserting this value back in equation (3), and forgetting
about order one factors, we obtain

rk =
1

⇤

✓
m

MPl

◆1/2

. (6)

Expressing the solution (4) and (5) in terms of rk, we
find that the ratio

�0
non-lin
�0

lin
/

✓
r

rk

◆4/3

. (7)

So, when r ⌧ rk the scalar force is highly suppressed
respect to what it would have been without the (@�)4

term in the Lagrangian. This is the essence of the ki-
netic screening of the scalar force. This feature is not
a mathematical curiosity, it has strong physical impli-
cations. It allows for a sensible modification of gravity
at large (cosmological) distances, and at the same time
suppresses the modification at local scales where GR is
very well tested. This is impossible with Brans–Dicke like
theories where the “amount” of modification is always the
same at every scale.

Moreover, this simple sketch shows how the non-linear
regime of P (X) is much more interesting than the lin-
ear one. In the latter, the various powers of X in the
Lagrangian are simply “irrelevant”.

B. Issues and solutions

It is fair at this point to comment about the fact that
the above nice property of kinetic screening has also some
trouble. First of all, the screening starts to be effective
when X/⇤4 & 1. This is exactly the point where the EFT
expansion seems to break down. In this regime we would
expect higher and higher powers of X to be more and
more important and therefore cannot be omitted from the
Lagrangian. Also, higher derivatives terms (more than
one derivative per field) are expected to be produced by
quantum corrections. However, it has been shown in [? ]
that, when radiative corrections are correctly addressed,
whatever form of P (X) is radiatively stable in the non-
linear regime.

Second, the choice � < 0, necessary for having screen-
ing, makes the perturbation of the scalar field propagate
with superluminal speed. This can be seen also as the
failure to satisfy the analyticity requirement of the 2 ! 2
scattering amplitude in the forward limit, which requires
� > 0 [? ]. This fact suggests that P (X) theories with
screening cannot arise as the low energy EFT of a Lorentz
invariant and local theory. However, it has been shown
very recently that the presence of gravity can substan-
tially change the above bound on � [? ].

Finally, it was noted in [? ] that P (X) theories lead to
caustic formation during the propagation of waves. How-
ever, shocks are not necessarily a problem and do happen
in realistic physical scenarios MC: say something more.
In order to deal with them numerically, we work with
equations in conserved law form and use high-resolution
shock-capturing method to solve their integral version.

III. K-ESSENCE AND WELL-POSEDNESS

Let us now include gravity and consider the dynamics
of K-essence in vacuum. The action becomes

S =

Z
d4x

p
�g


M2

Pl
2

R + K(X)

�
, (8)

where R is the Ricci scalar of the spacetime metric gµ⌫

and K(X) is an arbitrary function of the kinetic term of
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Summary
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Well-posedness ?
Unique solution that depends continuously on the initial data

Strong hyperbolicity

Cauchy problem
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6)

86 4 First-Order Hyperbolic Systems

Note that we have lost in the process the second gauge parameter m, and
the first one f has been replaced by σ. On the other hand, we have kept the
ordering parameter ζ and we have got one extra energy-constraint parameter
n and two extra momentum constraint parameters χ and η.

4.2 Hyperbolic systems

We have seen in Sect. 3.1.3 how to study the propagation properties of the
field equations by means of the plane-wave analysis. This is a very general,
physically sound method which provides consistent results, independent of
the way we manage to write down the equations.

Now we will see still another method: the hyperbolicity analysis, which
is currently used in the mathematical literature for first-order systems [8]
and can then be applied to the first-order form of our evolution equations.
Contrary to the plane-wave analysis, the hyperbolicity analysis takes into
account just the principal part of the system: the terms containing the higher
derivatives for every dynamical field. This prevents a consistent treatment of
the linear damping terms, which will be switched off in this section. We will
see then that the quasilinear nature of Einstein’s field equations leads to a
full coincidence of the results obtained by these two methods.

4.2.1 Weak and strong hyperbolicity

Hyperbolic first-order systems have been proposed for numerical relativity
applications since the seminal work of Y. Choquet-Bruhat and T. Ruggeri
[9]. In all of them, the original ADM system [10] is modified by using the
constraints in one or the other way. This includes the Bona–Massó system [11,
12], the KST one [6, 7], the generalized harmonic one [13, 14] and some
others [15–19], even taking additional derivatives in some cases [20, 21] (but
see [22, 23] for a completely different approach). The first-order version of
the BSSN system (NOR system [24]) has been also analyzed from this point
of view.

We will consider here a generic first-order system, although the specific
developments will be carried out for the first-order version (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) of the Z4 system [25]. For the purposes
of our analysis, we will need to deal only with the principal part, that is, the
one containing first derivatives of the basic fields u. We will write then our
first-order system in the form

∂t u + Ak ∂k u = 0 , (4.53)

where Ak is the ‘characteristic’ matrix along the k axis.

98 4 First-Order Hyperbolic Systems

As discussed before, the subsidiary system (4.114) is just weakly hyperbolic
along any space direction n orthogonal to the shift vector (such that βn = 0).
Here again, constraint-damping terms may be added to (4.110), namely

∂tDkµν +∂l[−βlDkµν +δl
k α Qµν ] = Bk

l Dlµν−trB Dkµν−καDkµν , (4.115)

so that the linearly growing constraint-violation modes arising from the prin-
cipal part in (4.114) can be kept under control (we have set here η = κα).

Note, however, that the addition of the last term in (4.115) is affecting
the principal part. The symmetric-hyperbolic character of the generalized
harmonic system is lost in the process. This can be cured by adding a corre-
sponding term in the evolution equation (4.109). The final equation can be
written as (see [28] for more details):

∂t Qµν = βk ∂kQµν − α γij∂iDj µν − α (∂µHν + ∂νHµ − 2Γρµν Hρ)
+ 2α (γijDiµρDj ν

ρ − QµρQν
ρ − ΓµρσΓν

ρσ)

− α

2
nρnσQρσQµν + α γijDiµνQj ρn

ρ − 16π α (Tµν − T

2
gµν)

+ κβk(Dkµν − ∂k gµν) (4.116)

4.3.3 First-order Z4 formalism

As a second example, let us consider the first-order version of the Z4 system
(3.80), (3.81), (3.82), and (3.83) in the general case, beyond the normal co-
ordinates expressions (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and (4.25).
For further convenience, we will express it in a balance law form, so that the
principal part is flux conservative, namely

∂t u + ∂kFk(u) = S(u) . (4.117)

The evolution equations for the metric coefficients (4.86) and (4.88) and for
the space derivatives quantities (4.95), (4.96), and (4.97) are in the required
form (4.117). Concerning the remaining equations, we have

F k[Kij ] = −βk Kij + α λk
ij (4.118)

F k [Θ] = −βk Θ + α V k (4.119)
F k[Zi] = −βk Zi + α (δk

i (trK − Θ) − Kk
i ) (4.120)

+ζ ′ (Bi
k − δk

i trB) ,

where we keep using the shorthand (4.56), and

Characteristic matrix

Complete set of eigenvectors

and real eigenvalues

Real eigenvalues but 

incomplete set of eigenvectors
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Well-posedness ?
Unique solution that depends continuously on the initial data

Cauchy problem

GR in ADM formulation is not well-posed!

36 2 The Evolution Formalism

Table 2.2 Same as Table 2.1 for the generic coordinates case. The symbol ∇ stands here
for the covariant derivative with respect to the induced metric γij .

Γ̂ 0
00 = (∂tα + βkαk − Kijβiβj)/α Γ̂ 0

i0 = (∂i α − Kijβj)/α

Γ̂ k
00 = γkj [∂tβj + α αj − 1/2 ∂j(γrsβrβs)] − βkΓ̂ 0

00 Γ̂ k
ij = Γ k

ij − βkΓ̂ 0
ij

Γ̂ k
i0 = −α K k

i + ∇iβk − βkΓ̂ 0
i0 Γ̂ 0

ij = −1/α Kij

Let us note, however, that 3+1 decompositions became popular from the
work of Arnowitt, Deser, and Misner (ADM) about the Hamiltonian formal-
ism [5], and they are often referred to as ADM equations for that reason,
although the version appearing in [5] is an equivalent system in which the
extrinsic curvature Kij is replaced by the ‘conjugate momentum’ combination

Πij = Kij − trK γij (2.55)

as a basic dynamical object. We will refer instead to (2.51), (2.52), (2.53),
and (2.54) as the 3+1 field equations, emphasizing in this way the purely
geometrical aspects of this approach.

The time-dependent space coordinates transformation (2.43), when ap-
plied to the line element (2.22), transforms it to the general form

ds2 = −α2dt2 + γij (dyi + βidt) (dyj + βjdt) , (2.56)

where it is clear that the new time lines y = constant are no longer orthogonal
to the constant time slices (see Fig. 2.3). The decomposition (2.56) is actu-
ally the most general one, where the four-coordinate degrees of freedom are
represented by the lapse α and the shift βk, whereas the normal coordinates
form (2.22) is recovered only in the vanishing shift case.

Using a non-zero shift is certainly a complication. For instance, the inverse
matrix of the 4D metric is given by

ĝ00 = − 1
α2

, ĝ0i =
1
α2

βi , ĝij = γij − 1
α2

βi βj , (2.57)

and the connection coefficients contain now much more terms (see Table 2.2).
There are physical situations, however, in which a non-zero shift can be

very convenient, for instance:

• When rotation is an important overall feature (spinning black holes, bi-
nary systems, etc.). If we want to adapt our time lines to rotate with
the bodies, then we cannot avoid vorticity and normal coordinates can no
longer be used. The shift choice will be then dictated by the overall motion
of our system, so that our space coordinates will rotate with the bodies
(co-rotating coordinates).

2.2 Einstein’s equations decomposition 37

βidt

αdt

t+dt

t
γijKij

Fig. 2.3 Starting from a given time slice, we show the normal line (dashed) and the time
line (continuous) passing through a given point. The lapse function provides the amount
of proper time elapsed when moving to the next time slice along the normal lines. The
shift measures the deviation between these normal lines and the actual time lines in the
process.

• When one needs to use spacelike (‘tachyon’) time lines. As discussed before,
this is allowed provided that the constant time slices remain spacelike. But
one cannot have both things in normal coordinates: the squared norm of
the vector ξµ = δµ

0 , tangent to the time lines, is given by

ξ · ξ = −α2 + γrs βrβs , (2.58)

so that one would need a superluminal shift to do the job, namely

|β| > α . (2.59)

The use of a superluminal shift is mandatory if we want to move a black
hole across the numerical domain [6]. This is not just a curiosity: it is rather
the cornerstone in the ‘moving puncture’ approach, currently used in binary
black hole simulations [7, 8]. It can also be very useful when performing
numerical simulations in the vicinity of a black hole, if we want to prevent
the horizon from growing too fast, enclosing all of our numerical grid before
we have enough time to properly study the exterior region [9–11]. This is
also a key ingredient in current binary black hole simulations based on the
generalized harmonic formalism [12].

3.2 Robust stability test-bed 59

Fig. 3.3 The maximum of (the absolute value of) trK is plotted against the number of
crossing times in a logarithmic scale. The initial level of random noise remains constant
during the evolution in the case of any of the pseudo-hyperbolic systems that we will
describe in what follows (the Z4 one is shown here). In the case of the ADM free evolution
system, which is only weakly pseudo-hyperbolic, a linear growth is detected up to the point
where the code crashes. The label ADM-1 corresponds to a numerical simulation using a
fully first-order version of the ADM system, which will be introduced in the next chapter.

step even 10 times larger. But we prefer to be extremely cautious here about
introducing too much numerical dissipation which could artificially lower the
noise level, masking the true properties of the evolution system.

We have plotted in Fig. 3.3 our results for the standard harmonic case
(f = 1). We see the expected linear growth of the ADM system. Notice the
catastrophic exponential growth after some 150 crossing times, revealing a
non-linear instability. We will limit ourselves to discussing the linear regime
as a test for the wave propagation properties of the system. In this sense, the
linear growth of the ADM plot in Fig. 3.3 confirms the weakly hyperbolic
character of the ADM system.

The Z4 system, which will be introduced later in this chapter, shows in-
stead the constant behavior which one would expect from a strongly pseudo-
hyperbolic system. The same qualitative behavior is shown by the BSSN
system that will also be introduced later.

Let us briefly discuss the role of numerical dissipation. Every discrete al-
gorithm is just an approximation to the exact equations. Discretization error
terms can be classified into two main categories:

• Dispersion errors, which affect the propagation speeds. They come from
odd-order truncation error terms.

• Dissipation errors, which affect the growth of perturbations. They come
from even-order truncation error terms.
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lution system is described in some detail. In

particular, after a short summary on the CCZ4

formulation, we introduce novel modifications to

avoid the algebraic enforcing of the constraints.

In section III the implementation of the evolu-

tion equations is briefly discussed, together with

several numerical spacetimes –robust stability

test, gauge waves and single solitonic boson star–

to test our evolution system. We study the dy-

namics of binary boson stars in Section IV by

analyzing our numerical simulations of head-on

and orbiting cases. Finally, we present our con-

clusion in section V. Throughout this paper, Ro-

man letters from the beginning of the alphabet

a, b, c, ... denote space-time indices ranging from

0 to 3, while letters near the middle i, j, k, ...

range from 1 to 3, denoting spatial indices. We

also use geometric units in which G = c = 1,

unless otherwise stated.

II. EVOLUTION SYSTEM

The interaction between scalar-field matter

and gravity, required to study the dynamics

of boson stars, is given by the Einstein-Klein-

Gordon equations. We adopt the CCZ4 formal-

ism of the Einstein equations, which is briefly

summarized next. We stress the modifications

with respect to previous works and perform a

characteristic analysis of the resulting system.

The evolution equations for the complex scalar

field are also described.

A. CCZ4 formalism

The Z4 formalism was first proposed as a

covariant extension of Einstein equations to
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motion, which might also be derived from a
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As it is shown in [28], all the physical constraint

modes are exponentially damped if z > 0. How-

ever, since the damping terms are proportional

to the unit normal of the time slicing na, the
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(CCZ4) can be obtained from the 3+1 decom-
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k + Ãkj@i�
k � 2

3
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are not enforced during the evolution. Second,
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damping terms proportional to c have been in-
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is done with the physical ones.

In order to close the system of equations,

coordinate (or gauge) conditions for the evolu-

tion of the lapse and shift must be supplied.
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being f and g arbitrary functions depending on

the lapse and the metric, and ⌘ a constant pa-

rameter.

B. Characteristic structure

Now that the system is complete, it is possi-
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and study the dynamics of perturbations over

this background spacetime which propagates

along a given normalized direction si (i.e., such

2 Notice also the work in Ref. [33] that extend these ideas
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j = 1). The perturbation for the met-
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, �̃ij ,�} has a plane-wave form,
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where !
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additional factor i! appears in the perturbations

of the fields {Ãij , K̂,⇥, �̂i
, B

i}, which are first

derivatives of the metric, namely
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Replacing the above mentioned definitions in (8 -

13) one can obtain the following system:
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s
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where ū is a vector containing the perturba-

tion of the fields, A is the characteristic matrix

and I the identity one. The index s means a con-

traction with the propagation direction si (i.e.,

�̄
s
0 = si�̄

i
0). The projection orthogonal to si will

be denoted by the index ?.

The system (24) is pseudo-hyperbolic if and

only if the characteristic matrix A has real eigen-

values and a complete set of eigenvectors. There-

fore, with this definition, hyperbolicity of the

system translates into a set of algebraic con-

ditions [34]. The analysis of the characteristic

structure can be simplified by splitting the per-

turbations in di↵erent sectors which do not in-

teract (i.e., or at least, not strongly) with the

others.

It is instructive to analyze first the e↵ect of

the term proportional to �0. There is a sector,

involving only the perturbations of �̃ and trÃ,
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First of all, the screening starts to be effective when
X/⇤4 & 1. This is exactly where the EFT expansion
seems to break down. In this regime, one would ex-
pect higher and higher powers of X to become more and
more important, and it would not be justified to neglect
them in the Lagrangian. Also, higher derivatives terms
(with more than one derivative for each occurrence of
the scalar field in the action) are generically expected to
be produced by quantum corrections. Note however that
Ref. [38] showed that when radiative corrections are cor-
rectly computed, any given form of P (X) is radiatively
stable in the non-linear regime. Ref. [39] confirmed this
result also in presence of gravity, following a different
approach.

Second, the choice � < 0, necessary for screening,
makes the perturbation of the scalar field propagate at
superluminal speed. This can also be seen as the fail-
ure to satisfy the analyticity requirement of the 2 ! 2
scattering amplitude in the forward limit, which requires
� > 0 [40]. This suggests that P (X) theories with screen-
ing cannot arise as the low energy EFT of a Lorentz in-
variant and local theory. However, it has been shown
very recently that the presence of gravity can substan-
tially change this bound on � [41].

Finally, it was noted in [33] that P (X) theories lead
to caustic formation when scalar waves propagate. How-
ever, it should be stressed that caustics/shocks are not
necessarily a problem, as they happen also in realistic
systems where the weak or integral solution is considered
instead of the strong or classical one (e.g. in hydrody-
namics). In order to deal with them numerically, we cast
the scalar equation into a conservation law form, and use
high-resolution shock-capturing methods to solve them.

III. K-ESSENCE AND WELL-POSEDNESS

Let us now include gravity, and consider the dynamics
of K-essence in vacuum. The action is given by

S =

Z
d4x

p
�g


R

16⇡G
+ K(X)

�
, (8)

where R is the Ricci scalar of the spacetime metric gµ⌫ ,
K(X) is a function of the kinetic term of the scalar
field �, and like before we define X ⌘ rµ�r

µ�. Here,
we will consider only the lowest order terms

K(X) = �
1

2
X +

�

4 ⇤4
X2

�
�

8 ⇤8
X3 , (9)

where ⇤ is the strong coupling scale of the EFT and �, �
are dimensionless coefficients of ⇠ O(1).

The equations of motion for the metric and the scalar
field are respectively

Gµ⌫ = 8⇡GT�
µ⌫ , (10)

rµ(K 0(X) r
µ�) = 0 , (11)

where T�
µ⌫ = K(X) gµ⌫ � 2 K 0(X) rµ�r⌫�, and primes

denote derivatives with respect to X. The scalar field
equation can also be recast into a generalised Klein-
Gordon equation �µ⌫

rµr⌫� = 0, with an effective met-
ric

�µ⌫
⌘ gµ⌫ +

2 K 00(X)

K 0(X)
r

µ�r
⌫� . (12)

A. Evolution equations in spherical symmetry

In order to investigate the non-linear dynamics of
K(X) theories, it is natural to first restrict the analysis
to the spherically symmetric case. To write the equa-
tions of motion as an evolution system, the spacetime
tensors and equations can be split into their space and
time components by adopting a 1+1 decomposition. The
line element can be decomposed as

ds2 = �↵2(t, r)dt2 + grr(t, r)dr2 + r2g✓✓(t, r)d⌦2 , (13)

where ↵ is the lapse function, grr and g✓✓ are positive
metric functions, and d⌦2 = d✓2 + sin2 ✓d'2 is the solid
angle element. These quantities are defined on each spa-
tial foliation ⌃t with normal na = (�↵, 0) and extrinsic
curvature Kij ⌘ �

1
2Ln�ij , where Ln is the Lie derivative

along na. Note that this rather generic choice of coor-
dinates allows us to follow the dynamical evolution not
only up to black hole formation, but also past it.

The Einstein equations (10) can be written as an evo-
lution system by using the Z3 formulation in spherical
symmetry [42–45]. We can express (10)-(11) as a first
order system by introducing first derivatives of the fields
as independent variables, namely
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1

↵
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grr

2
@rgrr , Dr✓

✓ =
g✓✓

2
@rg✓✓ ,

� = @r� , ⇧ = �
1

↵
@t� . (14)

The resulting evolution system can be written as a system
of conservation equations

@tU + @rF (U) = S(U) , (15)

where U = {↵ , grr , g✓✓ , Kr
r , K✓

✓ , Ar , Drr
r , Dr✓

✓ , Zr ,
� , � , ⇧} is a vector containing the full set of evolution
fields, Zr is the time integral of the momentum con-
straint2, F (U) is the radial flux and S(U) is a source
term. The evolution equations for the Z3 formulation
can be found explicitly in Ref. [45]. A gauge condi-
tion for the lapse is required to close the system. We
use the singularity-avoidance 1 + log slicing condition

2 In the Z3 formulation, the momentum constraint is included into
the evolution system by considering an additional vector Zi as
an evolution field [45].
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angle element. These quantities are defined on each spa-
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curvature Kij ⌘ �
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along na. Note that this rather generic choice of coor-
dinates allows us to follow the dynamical evolution not
only up to black hole formation, but also past it.

The Einstein equations (10) can be written as an evo-
lution system by using the Z3 formulation in spherical
symmetry [42–45]. We can express (10)-(11) as a first
order system by introducing first derivatives of the fields
as independent variables, namely
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The resulting evolution system can be written as a system
of conservation equations

@tU + @rF (U) = S(U) , (15)

where U = {↵ , grr , g✓✓ , Kr
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✓ , Ar , Drr
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✓ , Zr ,
� , � , ⇧} is a vector containing the full set of evolution
fields, Zr is the time integral of the momentum con-
straint2, F (U) is the radial flux and S(U) is a source
term. The evolution equations for the Z3 formulation
can be found explicitly in Ref. [45]. A gauge condi-
tion for the lapse is required to close the system. We
use the singularity-avoidance 1 + log slicing condition

2 In the Z3 formulation, the momentum constraint is included into
the evolution system by considering an additional vector Zi as
an evolution field [45].
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First of all, the screening starts to be effective when
X/⇤4 & 1. This is exactly where the EFT expansion
seems to break down. In this regime, one would ex-
pect higher and higher powers of X to become more and
more important, and it would not be justified to neglect
them in the Lagrangian. Also, higher derivatives terms
(with more than one derivative for each occurrence of
the scalar field in the action) are generically expected to
be produced by quantum corrections. Note however that
Ref. [38] showed that when radiative corrections are cor-
rectly computed, any given form of P (X) is radiatively
stable in the non-linear regime. Ref. [39] confirmed this
result also in presence of gravity, following a different
approach.

Second, the choice � < 0, necessary for screening,
makes the perturbation of the scalar field propagate at
superluminal speed. This can also be seen as the fail-
ure to satisfy the analyticity requirement of the 2 ! 2
scattering amplitude in the forward limit, which requires
� > 0 [40]. This suggests that P (X) theories with screen-
ing cannot arise as the low energy EFT of a Lorentz in-
variant and local theory. However, it has been shown
very recently that the presence of gravity can substan-
tially change this bound on � [41].

Finally, it was noted in [33] that P (X) theories lead
to caustic formation when scalar waves propagate. How-
ever, it should be stressed that caustics/shocks are not
necessarily a problem, as they happen also in realistic
systems where the weak or integral solution is considered
instead of the strong or classical one (e.g. in hydrody-
namics). In order to deal with them numerically, we cast
the scalar equation into a conservation law form, and use
high-resolution shock-capturing methods to solve them.
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singularity-avoidance prescriptions have been used, lead-
ing to similar results.

The equation of motion (11) for the scalar field, written
in conservative form, becomes

@t� + ↵⇧ = 0 , (16)
@t�+ @r [↵⇧] = 0 , (17)

@t + @rF = �
2

r
F , (18)

where

 =
p

grrg✓✓K
0⇧ , (19)

F = ↵
p

grrg✓✓K
0grr� . (20)

Note that we have introduced a new “conservative”
field  , which depends implicitly on the primitive fields
{⇧,�} through the non-linear equation (19). During the
evolution, this equation needs to be solved numerically at
each time-step to recover ⇧, as the latter appears in the
evolution system (16-17) and in the stress-energy tensor
in the Einstein equations.

B. Character and velocities

In order to assess the well-posedness of the Cauchy
problem in K-essence, we first analyse the character of
the evolution system. More specifically, we aim to ascer-
tain whether the system is strongly hyperbolic, since that
is a sufficient condition for a well-posed Cauchy prob-
lem [47, 48].

There are many different approaches to determine the
hyperbolicity of a system, most of which result in al-
gebraic conditions that the system needs to satisfy [49].
When the equations are quasilinear (like in our case), the
system is strongly hyperbolic if its principal part (i.e. the
system obtained by considering only the highest deriva-
tives) has real eigenvalues and a complete set of eigen-
vectors3 [50].

For our scalar field evolution system (16-18), the char-
acteristic matrix for the principal part is
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The eigenvalues of this matrix, V±, read

V± = �
�tr

�tt
±

s
�det(�µ⌫)

(�tt)2
, (22)

3 For weakly hyperbolic systems (i.e. when the principal part
has real eigenvalues, but an incomplete set of eigenvectors) the
Cauchy problem is not necessarily well-posed, and the solution
may grow exponentially, which would give an unstable numerical
evolution.

where �µ⌫ is given by Eq. (12), or more explicitly by
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The criterion given above for strong hyperbolicity is then
satisfied if V± are real and distinct, i.e. if det(�µ⌫) < 0.

Note that V±, which can be physically interpreted as
coordinate “characteristic speeds” (i.e. the radial prop-
agation speeds of the scalar wavefronts in the geomet-
ric optics limit), are functions of both space and time
through �µ⌫ . This can potentially give rise to shocks
even from smooth initial data, which may lead to non-
unique solutions and thus to an ill-posed Cauchy prob-
lem [32, 51, 52]. Our set-up avoids this issue by writ-
ing the scalar evolution equations as a hyperbolic con-
servation system, c.f. Eqs. (16-18), which we solve using
high-resolution shock capturing techniques (as far as the
weak solution, corresponding to the integral version of
the equations, is unique).

Note also that V± provides the non-linear generaliza-
tion to the usual (linear) expression for the speed of
sound in K-essence, cs = ±

p
1 + 2XK 00/K 0 (see e.g.

[53]). As can be easily checked, at leading order (over
Minkowski space and in standard Cartesian coordinates)
V± do indeed reduce to cs. This can be done by replacing
Eqs. (23)–(25) into Eq. (22) [c.f. also Eq. (28) below].

Even more importantly, det(�µ⌫) may in principle
cross zero at some finite time and space location during
an evolution, as a result of which V± would no more be
real and distinct, and strong hyperbolicity would be lost.
In more detail, if det(�µ⌫) becomes zero (positive), the
system becomes parabolic (elliptic). An example of such
mixed type [54] systems is given by the Tricomi equa-
tion [29, 30, 55]
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which is hyperbolic for t < 0 (with characteristic speeds
± (�t)1/2) and elliptic for t > 0.

To prevent this breakdown of hyperbolicity, it is useful
to look at the eigenvalues of �µ⌫
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and even more importantly at its determinant
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From this expression it is clear that a Tricomi type evo-
lution system can be avoided altogether if the function
K(X) defining the theory satisfies

1 +
2 K 00(X)

K 0(X)
X > 0 , (29)
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Note that we have lost in the process the second gauge parameter m, and
the first one f has been replaced by σ. On the other hand, we have kept the
ordering parameter ζ and we have got one extra energy-constraint parameter
n and two extra momentum constraint parameters χ and η.

4.2 Hyperbolic systems

We have seen in Sect. 3.1.3 how to study the propagation properties of the
field equations by means of the plane-wave analysis. This is a very general,
physically sound method which provides consistent results, independent of
the way we manage to write down the equations.

Now we will see still another method: the hyperbolicity analysis, which
is currently used in the mathematical literature for first-order systems [8]
and can then be applied to the first-order form of our evolution equations.
Contrary to the plane-wave analysis, the hyperbolicity analysis takes into
account just the principal part of the system: the terms containing the higher
derivatives for every dynamical field. This prevents a consistent treatment of
the linear damping terms, which will be switched off in this section. We will
see then that the quasilinear nature of Einstein’s field equations leads to a
full coincidence of the results obtained by these two methods.

4.2.1 Weak and strong hyperbolicity

Hyperbolic first-order systems have been proposed for numerical relativity
applications since the seminal work of Y. Choquet-Bruhat and T. Ruggeri
[9]. In all of them, the original ADM system [10] is modified by using the
constraints in one or the other way. This includes the Bona–Massó system [11,
12], the KST one [6, 7], the generalized harmonic one [13, 14] and some
others [15–19], even taking additional derivatives in some cases [20, 21] (but
see [22, 23] for a completely different approach). The first-order version of
the BSSN system (NOR system [24]) has been also analyzed from this point
of view.

We will consider here a generic first-order system, although the specific
developments will be carried out for the first-order version (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) of the Z4 system [25]. For the purposes
of our analysis, we will need to deal only with the principal part, that is, the
one containing first derivatives of the basic fields u. We will write then our
first-order system in the form

∂t u + Ak ∂k u = 0 , (4.53)

where Ak is the ‘characteristic’ matrix along the k axis.
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As discussed before, the subsidiary system (4.114) is just weakly hyperbolic
along any space direction n orthogonal to the shift vector (such that βn = 0).
Here again, constraint-damping terms may be added to (4.110), namely

∂tDkµν +∂l[−βlDkµν +δl
k α Qµν ] = Bk

l Dlµν−trB Dkµν−καDkµν , (4.115)

so that the linearly growing constraint-violation modes arising from the prin-
cipal part in (4.114) can be kept under control (we have set here η = κα).

Note, however, that the addition of the last term in (4.115) is affecting
the principal part. The symmetric-hyperbolic character of the generalized
harmonic system is lost in the process. This can be cured by adding a corre-
sponding term in the evolution equation (4.109). The final equation can be
written as (see [28] for more details):

∂t Qµν = βk ∂kQµν − α γij∂iDj µν − α (∂µHν + ∂νHµ − 2Γρµν Hρ)
+ 2α (γijDiµρDj ν

ρ − QµρQν
ρ − ΓµρσΓν

ρσ)

− α

2
nρnσQρσQµν + α γijDiµνQj ρn

ρ − 16π α (Tµν − T

2
gµν)

+ κβk(Dkµν − ∂k gµν) (4.116)

4.3.3 First-order Z4 formalism

As a second example, let us consider the first-order version of the Z4 system
(3.80), (3.81), (3.82), and (3.83) in the general case, beyond the normal co-
ordinates expressions (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and (4.25).
For further convenience, we will express it in a balance law form, so that the
principal part is flux conservative, namely

∂t u + ∂kFk(u) = S(u) . (4.117)

The evolution equations for the metric coefficients (4.86) and (4.88) and for
the space derivatives quantities (4.95), (4.96), and (4.97) are in the required
form (4.117). Concerning the remaining equations, we have

F k[Kij ] = −βk Kij + α λk
ij (4.118)

F k [Θ] = −βk Θ + α V k (4.119)
F k[Zi] = −βk Zi + α (δk

i (trK − Θ) − Kk
i ) (4.120)

+ζ ′ (Bi
k − δk

i trB) ,

where we keep using the shorthand (4.56), and
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Note that we have introduced a new “conservative”
field  , which depends implicitly on the primitive fields
{⇧,�} through the non-linear equation (19). During the
evolution, this equation needs to be solved numerically at
each time-step to recover ⇧, as the latter appears in the
evolution system (16-17) and in the stress-energy tensor
in the Einstein equations.

B. Character and velocities

In order to assess the well-posedness of the Cauchy
problem in K-essence, we first analyse the character of
the evolution system. More specifically, we aim to ascer-
tain whether the system is strongly hyperbolic, since that
is a sufficient condition for a well-posed Cauchy prob-
lem [47, 48].

There are many different approaches to determine the
hyperbolicity of a system, most of which result in al-
gebraic conditions that the system needs to satisfy [49].
When the equations are quasilinear (like in our case), the
system is strongly hyperbolic if its principal part (i.e. the
system obtained by considering only the highest deriva-
tives) has real eigenvalues and a complete set of eigen-
vectors3 [50].

For our scalar field evolution system (16-18), the char-
acteristic matrix for the principal part is

M =

0

@
0 ↵p

grr

�

p
grr

↵
�rr

�tt �
2 �tr

�tt

1

A . (21)

The eigenvalues of this matrix, V±, read

V± = �
�tr

�tt
±

s
�det(�µ⌫)

(�tt)2
, (22)

3 For weakly hyperbolic systems (i.e. when the principal part
has real eigenvalues, but an incomplete set of eigenvectors) the
Cauchy problem is not necessarily well-posed, and the solution
may grow exponentially, which would give an unstable numerical
evolution.
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The criterion given above for strong hyperbolicity is then
satisfied if V± are real and distinct, i.e. if det(�µ⌫) < 0.

Note that V±, which can be physically interpreted as
coordinate “characteristic speeds” (i.e. the radial prop-
agation speeds of the scalar wavefronts in the geomet-
ric optics limit), are functions of both space and time
through �µ⌫ . This can potentially give rise to shocks
even from smooth initial data, which may lead to non-
unique solutions and thus to an ill-posed Cauchy prob-
lem [32, 51, 52]. Our set-up avoids this issue by writ-
ing the scalar evolution equations as a hyperbolic con-
servation system, c.f. Eqs. (16-18), which we solve using
high-resolution shock capturing techniques (as far as the
weak solution, corresponding to the integral version of
the equations, is unique).

Note also that V± provides the non-linear generaliza-
tion to the usual (linear) expression for the speed of
sound in K-essence, cs = ±

p
1 + 2XK 00/K 0 (see e.g.

[53]). As can be easily checked, at leading order (over
Minkowski space and in standard Cartesian coordinates)
V± do indeed reduce to cs. This can be done by replacing
Eqs. (23)–(25) into Eq. (22) [c.f. also Eq. (28) below].

Even more importantly, det(�µ⌫) may in principle
cross zero at some finite time and space location during
an evolution, as a result of which V± would no more be
real and distinct, and strong hyperbolicity would be lost.
In more detail, if det(�µ⌫) becomes zero (positive), the
system becomes parabolic (elliptic). An example of such
mixed type [54] systems is given by the Tricomi equa-
tion [29, 30, 55]

@2
t �(t, r) + t @2

r�(t, r) = 0 , (26)

which is hyperbolic for t < 0 (with characteristic speeds
± (�t)1/2) and elliptic for t > 0.

To prevent this breakdown of hyperbolicity, it is useful
to look at the eigenvalues of �µ⌫

�± =
1

2


�tt + �rr

±

q
(�tt � �rr)2 + (2�tr)2

�
, (27)

and even more importantly at its determinant

det(�µ⌫) = �
1

↵2grr

✓
1 +

2 K 00

K 0 X

◆
. (28)

From this expression it is clear that a Tricomi type evo-
lution system can be avoided altogether if the function
K(X) defining the theory satisfies

1 +
2 K 00(X)

K 0(X)
X > 0 , (29)
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Note that we have lost in the process the second gauge parameter m, and
the first one f has been replaced by σ. On the other hand, we have kept the
ordering parameter ζ and we have got one extra energy-constraint parameter
n and two extra momentum constraint parameters χ and η.

4.2 Hyperbolic systems

We have seen in Sect. 3.1.3 how to study the propagation properties of the
field equations by means of the plane-wave analysis. This is a very general,
physically sound method which provides consistent results, independent of
the way we manage to write down the equations.

Now we will see still another method: the hyperbolicity analysis, which
is currently used in the mathematical literature for first-order systems [8]
and can then be applied to the first-order form of our evolution equations.
Contrary to the plane-wave analysis, the hyperbolicity analysis takes into
account just the principal part of the system: the terms containing the higher
derivatives for every dynamical field. This prevents a consistent treatment of
the linear damping terms, which will be switched off in this section. We will
see then that the quasilinear nature of Einstein’s field equations leads to a
full coincidence of the results obtained by these two methods.

4.2.1 Weak and strong hyperbolicity

Hyperbolic first-order systems have been proposed for numerical relativity
applications since the seminal work of Y. Choquet-Bruhat and T. Ruggeri
[9]. In all of them, the original ADM system [10] is modified by using the
constraints in one or the other way. This includes the Bona–Massó system [11,
12], the KST one [6, 7], the generalized harmonic one [13, 14] and some
others [15–19], even taking additional derivatives in some cases [20, 21] (but
see [22, 23] for a completely different approach). The first-order version of
the BSSN system (NOR system [24]) has been also analyzed from this point
of view.

We will consider here a generic first-order system, although the specific
developments will be carried out for the first-order version (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) of the Z4 system [25]. For the purposes
of our analysis, we will need to deal only with the principal part, that is, the
one containing first derivatives of the basic fields u. We will write then our
first-order system in the form

∂t u + Ak ∂k u = 0 , (4.53)

where Ak is the ‘characteristic’ matrix along the k axis.

98 4 First-Order Hyperbolic Systems

As discussed before, the subsidiary system (4.114) is just weakly hyperbolic
along any space direction n orthogonal to the shift vector (such that βn = 0).
Here again, constraint-damping terms may be added to (4.110), namely

∂tDkµν +∂l[−βlDkµν +δl
k α Qµν ] = Bk

l Dlµν−trB Dkµν−καDkµν , (4.115)

so that the linearly growing constraint-violation modes arising from the prin-
cipal part in (4.114) can be kept under control (we have set here η = κα).

Note, however, that the addition of the last term in (4.115) is affecting
the principal part. The symmetric-hyperbolic character of the generalized
harmonic system is lost in the process. This can be cured by adding a corre-
sponding term in the evolution equation (4.109). The final equation can be
written as (see [28] for more details):

∂t Qµν = βk ∂kQµν − α γij∂iDj µν − α (∂µHν + ∂νHµ − 2Γρµν Hρ)
+ 2α (γijDiµρDj ν

ρ − QµρQν
ρ − ΓµρσΓν

ρσ)

− α

2
nρnσQρσQµν + α γijDiµνQj ρn

ρ − 16π α (Tµν − T

2
gµν)

+ κβk(Dkµν − ∂k gµν) (4.116)

4.3.3 First-order Z4 formalism

As a second example, let us consider the first-order version of the Z4 system
(3.80), (3.81), (3.82), and (3.83) in the general case, beyond the normal co-
ordinates expressions (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and (4.25).
For further convenience, we will express it in a balance law form, so that the
principal part is flux conservative, namely

∂t u + ∂kFk(u) = S(u) . (4.117)

The evolution equations for the metric coefficients (4.86) and (4.88) and for
the space derivatives quantities (4.95), (4.96), and (4.97) are in the required
form (4.117). Concerning the remaining equations, we have

F k[Kij ] = −βk Kij + α λk
ij (4.118)

F k [Θ] = −βk Θ + α V k (4.119)
F k[Zi] = −βk Zi + α (δk

i (trK − Θ) − Kk
i ) (4.120)

+ζ ′ (Bi
k − δk

i trB) ,

where we keep using the shorthand (4.56), and
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Burgers equation
<latexit sha1_base64="ZLr8ayt5dyk/l6QyCr0MOb6qza8=">AAACCnicbVDLSgMxFM34rPU16tJNtAiCUGZE1I1QdOOygn1AOwyZNNOGZjJDckcspWs3/oobF4q49Qvc+Tdm2kG09cCFk3PuTXJPkAiuwXG+rLn5hcWl5cJKcXVtfWPT3tqu6zhVlNVoLGLVDIhmgktWAw6CNRPFSBQI1gj6V5nfuGNK81jewiBhXkS6koecEjCSb++1E6KAE+EDTvGRqR/h3hwusOPbJafsjIFniZuTEspR9e3PdiemacQkUEG0brlOAt4wu5UKNiq2U80SQvuky1qGShIx7Q3Hq4zwgVE6OIyVKQl4rP6eGJJI60EUmM6IQE9Pe5n4n9dKITz3hlwmKTBJJw+FqcAQ4ywX3OGKURADQwhV3PwV0x5RhIJJr2hCcKdXniX147J7WnZvTkqVyzyOAtpF++gQuegMVdA1qqIaougBPaEX9Go9Ws/Wm/U+aZ2z8pkd9AfWxzfUDZkO</latexit>

@tu+ u@xu = 0
<latexit sha1_base64="zPLREJi4p8ppSTTS7yL8+KPt5+4=">AAACFnicbVDLSsNAFJ34rPUVdelmsAiCWJIi6kYounFZwT6giWEynbRDJw/mIZaQr3Djr7hxoYhbceffOGmDaOuBC4dz7p259/gJo0Ja1pcxN7+wuLRcWimvrq1vbJpb2y0RK45JE8cs5h0fCcJoRJqSSkY6CSco9Blp+8PL3G/fES5oHN3IUULcEPUjGlCMpJY888hJEJcUMU9CBQ+hE3CEUztLaxn8se6huq3Bc2h5ZsWqWmPAWWIXpAIKNDzz0+nFWIUkkpghIbq2lUg3zd/FjGRlRwmSIDxEfdLVNEIhEW46PiuD+1rpwSDmuiIJx+rviRSFQoxCX3eGSA7EtJeL/3ldJYMzN6VRoiSJ8OSjQDEoY5hnBHuUEyzZSBOEOdW7QjxAOhipkyzrEOzpk2dJq1a1T6r29XGlflHEUQK7YA8cABucgjq4Ag3QBBg8gCfwAl6NR+PZeDPeJ61zRjGzA/7A+PgG57md7A==</latexit>

@tu+
1

2
@xu

2 = 0

136 5 Numerical Methods

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Fig. 5.10 Burgers equation: evolution of an initial sinus profile. The numerical solution
(point values) is plotted versus the exact solution (continuous line), for the FDOC and
the MUSCL schemes (left and right panels, respectively), with a 100 points resolution.

The exact solution of this differential equation can be given in parametric
form as

u = h(p) p = x − ut , (5.99)

where h(x) is any initial profile. For instance, we can consider

h(x) = sin(
xπ

5
) , (5.100)

which is a smooth, even analytical, profile. Note that the characteristic speed
is u itself, so that characteristic lines converge at the origin. Allowing for
(5.99), we see that the solution uniqueness is lost for t > 10/π, meaning that
characteristic lines start crossing.

A true shock develops as a result from these smooth initial data, which
propagates, allowing for the Rankine–Hugoniot condition (5.52), with the
shock speed

v = (uR + uL)/2 . (5.101)

For the symmetric initial data (5.100), this gives v = 0, meaning that the
shock will stay fixed at the origin. We plot in Fig. 5.10 the numerical solution
values versus (the principal branch of) the exact solution, at a time where the
shock has fully developed. We compare the FDOC and the MUSCL results
(left and right panels, respectively). In the MUSCL case, the TVD property
is preserved at the price of some extra dissipation near the shock, where the
slope limiters are doing their job. On the contrary, in the FDOC case, we can
see again some spurious oscillations which affect mainly the points directly
connected with the shock.

These conclusions are fully confirmed by a second simulation, obtained by
adding a constant term to the previous initial profile, that is,

h(x) =
1
2

+ sin(
x π

5
) , (5.102)
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Fig. 1 – �0 vs r for � = 1 and ↵ = 1/2. Left: A weakly gravitating, Sun-like star. We plot the numerical solution of Eq. (5)
(solid blue line), the approximate solutions y0, y1, y2, y3 (dashed blue lines), and the numerical solution of the full system
(2)-(3) (dotted orange line). Right: A neutron star in k-essence (solid orange line) and FJBD (� = � = 0, dashed green line).

(right panel, solid orange line) shows kinks right outside
the center, at the stellar surface, and at the screening ra-
dius. We also plot by a dashed green line the solution to
Eq. (2)-(3) obtained for � = � = 0 (i.e. FJBD). The k-
mouflage solution matches the FJBD one near the center
and outside rk, but deviates from it (suppressing �

0 and
thus the scalar force) when non-linearities become impor-
tant (i.e. when X/⇤4 & 1). Similar plots and conclusions
apply to generic � < 0 and � > 0.

Again for neutron stars, in Fig. 2 (left panel) we
show the ratio of the Newtonian force |dU/dr|, with
U = �(gtt + 1)/2 the Newtonian potential, for solutions
in k-essence and FJBD theory with respect to solutions
in GR, as a function of the Jordan-frame areal radius r.
Note that the scalar-field contribution (fifth force) is sup-
pressed in k-essence relative to FJBD theory inside rk,
as expected from screening. In Fig. 2 (right panel) we
also show the fractional deviations of the (Jordan-frame)
metric components gtt and grr from GR, in FJBD theory
(with ↵ = 1/2 and ↵ = 5⇥ 10�3) and in k-essence (with
↵ = 1/2). Note that the tiny deviations from GR in k-
essence suggest that not only is the Newtonian dynamics
essentially equivalent to GR’s, but that the same holds
also at first post-Newtonian order. This is apparent from
the comparison with FJBD theory with ↵ = 5 ⇥ 10�3,
which is in agreement with current solar system tests of
the post-Newtonian dynamics [13, 14, 30, 31].

Screening perturbations and time evolutions.—To
check the stability of our static spherical solutions, we
numerically evolve the scalar, the metric and the mat-
ter fields according to Eqs. (2)–(3). We employ the
1+1 (i.e. spherically symmetric but time-dependent)

fully non-linear evolution code used in [29] for the vac-
uum case, supplementing it with matter as described in
[40]. Both the matter’s and the scalar’s evolution are
expressed as conservation laws and integrated with high-
resolution shock-capturing (HRSC) methods. We first
checked that if static spherical solutions (for both Sun-
like and neutron stars) are used as initial data, the sys-
tem does not evolve (e.g. case A in Fig. 3)4. However, if
we perturb them (in their matter or scalar content), the
results vary dramatically according to ⇤ and the pertur-
bation amplitude/sign.

For ⇤ & 107 eV, the static spherical initial data
show no screening and are very similar to FJBD the-
ory, as expected. Non-linearities in the scalar sector are
never excited and evolutions are well-behaved, however
large the initial perturbations. For screened solutions
(⇤ . 106 eV), the outcome of time evolutions depends
on the initial perturbation amplitude/sign. Small per-
turbations (case B in Fig. 3) and large ones initially
decreasing the stellar compactness (case C in Fig. 3)
oscillate but do not grow, confirming the stability of
the screened solutions. However, when large perturba-
tions have the right sign to trigger gravitational collapse
(case D in Fig. 3), the characteristic propagation speeds
of the scalar-field equation eventually diverge, even be-

4
This is not trivial. Even for these initial data, numerical evolu-

tions break with standard finite-di↵erence or even soft shock-

capturing methods, presumably as a result of strong micro-

shocks in the scalar field [41–43], which form even from smooth

initial data. This suggests that Eqs. (2)–(3) only allow for weak

solutions (i.e. solutions to the integral version of the system),

which we successfully obtain by using HRSC methods.
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fore apparent/black-hole horizons form. In more detail,
the characteristic speeds are encoded in the principal
part (i.e. the part involving only the highest deriva-
tives) of Eq. (3), which is given by �

µ⌫
r̃µr̃⌫�, with

�
µ⌫

⌘ g̃
µ⌫ + 2[K 00(X̃)/K 0(X̃)]r̃µ

�r̃
⌫
�. Writing the

principal part in first-order form, i.e. @tU + V @rU ,
with U ⌘ (@t�, @r�) and V the characteristic matrix, the
characteristic speeds are then the eigenvalues of V [29]:

v± = �
�
tr

�tt
±

s
�det(�µ⌫)

(�tt)2
. (6)

Their non-linear divergence, appearing because �
tt
! 0,

is known to plague k-essence also in vacuum (for initial
data close to critical collapse) [29, 43, 44], and resembles
that of the Keldysh equation t @

2
t �(t, r) + @

2
r�(t, r) = 0,

which is hyperbolic with characteristic speeds ±(�t)�1/2

for t < 0. The problem persists when looking for screened
solutions through relaxation of GR stars, as done in [30].

As we stressed in [29], diverging characteristic speeds
are not necessarily pathological and may occur because
of gauge choices (see e.g. a wave equation on flat space
in Eddington-Finkelstein coordinates, ds2 = �dv2 +
2dvdr + r

2d⌦2). Like in vacuum [29], the characteris-
tic speeds may be kept finite during the evolution if a
non-vanishing shift in the metric is allowed. Neverthe-
less, because of the non-linear nature of the field equa-
tions, we could not identify a suitable coordinate condi-
tion (i.e. a choice of lapse and/or shift) avoiding these
divergences and simultaneously producing stable evolu-
tions at least in 1+1 dimensions. We tried di↵erent shift
conditions that successfully keep the velocities finite, but
those still lead to unstable evolutions even with HRSC
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Fig. 3 – Evolution of the (Einstein-frame) central density of
a k-mouflage star for ⇤ ' 106 eV (with ↵ ' 0.2 and � = 1),
for unperturbed initial data (A); small initial perturbations
(B); large perturbations that initially decrease (C)/increase
(D) the star’s compactness. Case D leads to collapse and
diverging characteristic speeds (at the time marked by a
cross).

methods. Whatever its interpretation (physical or due
to the gauge), the divergence of the characteristic speeds
is troublesome in practice. The Courant-Friedrichs-Lewy
stability condition implies that the timestep �t of a nu-
merical evolution should be�t < �r/v, with�r the spa-
tial resolution and v the maximum characteristic speed.
Clearly, �t ! 0 as v ! 1, i.e. simulations must grind
to a halt when the characteristic speeds diverge.
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the mass of the star, the non-linear terms start dominat-
ing, suppressing (or “screening”) scalar e↵ects at r . rk.
Within this screening radius, k-essence is equivalent to
GR. In this section, we show explicitly how the screening
mechanism in k-essence a↵ects the gravitational force.
We evaluate the latter as a function of the Jordan frame
radius, and we will be especially interested in the regimes
r̃? < r̃ < r̃k (where screening is at work; r̃? being the
radius of the star), and r̃ > r̃k (where k-essence starts
deviating from GR).

The screening mechanism aims to suppress the scalar
fifth force on local scales, and thus tends to make the
gravitational force inside the screening radius equal to
the one in GR. Since the Newtonian potential Ũ is en-
coded in the fall-o↵ of the Jordan-frame metric compo-
nent g̃tt far from the star, Ũ ⇡ �(g̃tt + 1)/2, we can
quantify the di↵erence between the “Newtonian acceler-
ation” |dŨ/dr̃| in GR and k-essence. In Fig. 1, we show
the ratio of these two accelerations for six di↵erent solu-
tions: three neutron stars (left panel) and three Sun-like
stars (right panel). To generate these solutions, we have
considered three di↵erent values for the strong-coupling
scale ⇤ = {4.47 ⇥ 104 eV, 4.47 eV, ⇤DE}, and consid-
ered two di↵erent values for the conformal coupling con-
stant ↵. For neutron stars, the central density is fixed
to ⇢c = 9.3⇥ 1014 g/cm3, whereas for Sun-like stars the
central density is fixed to ⇢c = 77 g/cm3. With fixed ⇢c,
↵, and '1, we expect the central value of the scalar field
(which has dimensions of an energy) to go as

'c / ⇤ , (14)

a relation that is indeed satisfied by our static solutions
(at least for su�ciently small ⇤ giving rise to kinetic
screening), as we have explicitly verified. We stress that
producing stellar solutions with ⇤ ⇡ ⇤DE is far from triv-
ial. In order to resolve the interior of the star, which is
crucial to impose regularity at the center (c.f. also [39])
one needs to use internal code units adapted to the prob-
lem (e.g. G = c = M� = 1 or G = c = R� = 1).
Converting ⇤DE to these units yields very small values
⇤DE ⇠ 10�12 (see the Appendix A), which are di�cult
to handle. We also stress that this is an issue due to the
hierarchy of scales in the problem (which involves both
local stellar scales and the cosmological scale ⇤DE), and
which is therefore independent of the choice of units.

As can be seen from Fig. 1, the screening works in a
similar way in Sun-like and neutron stars. At radii larger
than r̃k, the k-essence Newtonian acceleration deviates
from the one in GR, with the magnitude of the deviation
depending on the value of ↵ (in Fig. 1 the solid lines cor-
respond to ↵ ⇡ 0.14 and the dashed lines to ↵ ⇡ 0.35).
However, when the radius reaches r̃k, the fifth force starts
being suppressed, and |dŨk/dr̃|⇥ |dŨGR/dr̃|�1 gets very
close to unity. As expected, the smaller the strong-
coupling scale ⇤, the larger the screening radius r̃k within
which the fifth force is suppressed. Finally, deep inside
the star the fifth force reappears as well. This is expected
because at the center of the star the kinetic energy of the

scalar field X̃ vanishes because of regularity, and thus
k-essence reduces to FJBD theory (c.f. also [39]).
To check whether these results hold also beyond New-

tonian order, and more specifically at the first post-
Newtonian order (1PN) that is tested in the solar system,
we compare the exterior of our numerical solutions to the
parametrized post-Newtonian (PPN) expansion [1, 2],
and extract the PPN parameters �PPN and �PPN (which
are unity in GR). The latter are defined in our areal co-
ordinates as [57]

g̃tt(r̃) = �1 +
2GM̃

r̃
+

� 2
�
�PPN

� �PPN
�
 
GM̃

r̃

!2

+O
�
r̃�3
�
, (15)

g̃r̃r̃(r̃) = 1 + 2�PPNGM̃

r̃
+O

�
r̃�2
�
. (16)

For this analysis, we consider only k-essence theories of
cosmological relevance, and thus take ⇤ = ⇤DE (while fix-
ing ↵ ⇡ 0.14). We extract the PPN parameters from so-
lutions for a Sun-like star in the regime where r̃? < r̃ < r̃k
and compare their values to the constraints from solar
system tests. This is justified because solar system ex-
periments are performed well within the screening ra-
dius of the Sun, but it also poses a practical problem.
Inside the screening radius, the non-linear terms in the
action are important, and one cannot simply perform a
naive perturbative PN expansion of the metric and scalar
field [58]. This is evident from the fact that only outside
the screening radius does the scalar field decay as 1/r̃ (in
orders of which the PN expansion would be performed).
Equivalently, one can observe that a naive PN expan-
sion would lead to the wrong conclusion that at leading
(i.e. Newtonian) order k-essence should reduce to FJBD
(which is clearly not the case inside r̃k). We therefore
use our numerical solutions and simply fit them with the
ansatz (15)–(16) to extract �PPN and �PPN, obtaining

�PPN
� 1 = (�5.54± 1.68)⇥ 10�10 , (17)

�PPN
� 1 = (1.27± 0.733)⇥ 10�3 , (18)

where the error bars are at 1�. The PPN parameters
are constrained close to unity by solar system observa-
tions [2, 15], with bounds |�PPN

� 1|, |�PPN
� 1| . 10�5.

As can be seen, our results are therefore compatible with
these bounds at 2� level, but our statistical error on
�PPN

� 1 is much larger than the experimental bounds.
This is because it is challenging to extract �PPN from
our numerical solutions, since it appears at higher or-
der than �PPN in Eqs. (15)–(16). This problem is also
exacerbated by the low compactness of the Sun, which
limits the range of radii on which we can perform our fit.
Repeating indeed the procedure for more compact stars
(e.g. for neutron stars), we find the more precise result

�PPN
� 1 = (�2.98± 1.38)⇥ 10�12 , (19)

�PPN
� 1 = (1.10± 0.764)⇥ 10�10 , (20)
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neutron stars [16–20, 59–65] and black holes [58, 66, 67].
This amounts to a violation of the strong equivalence
principle and is ripe of consequences for gravitational-
wave generation, as it gives rise to dipole gravitational
emission from binary systems (and even monopole emis-
sion, for non-circular binaries and collapsing stars), as
well as to modifications in the conservative dynamics of
binaries [59–62, 64].

Violations of the strong equivalence principle in mod-
ified gravitational theories are usually parametrized by
“sensitivities” or “charges”, i.e. additional “hair pa-
rameters” describing compact objects and their e↵ective
coupling to the non-tensor gravitons that are generally
present in these theories. These charges vanish in the
low-compactness limit if the matter fields couple mini-
mally to the metric [as is the case for the ST theories

that we consider, c.f. the Jordan-frame action (1)], i.e.
if the weak equivalence principle is satisfied. However,
they can be significant for neutron stars or black holes,
especially if non-linear phenomena (e.g. “scalarization”)
are at play [16–20, 68–70].
In ST theories, one can indeed define a dimensionless

scalar charge ↵̄ describing the e↵ective coupling between
the scalar field and compact objects. From the decay of
the scalar field near spatial infinity,

' = '1 +
'1

r
+O

✓
1

r2

◆
, (21)

we can extract the scalar charge as [18, 61].

↵̄ =

r
4⇡

G

'1

M1
, (22)

with M1 the gravitational mass in the Einstein frame,
extracted from the asymptotic expansion gtt = �1 +
2GM1/r + ... at spatial infinity. As mentioned above,
the importance of these scalar charges lies in the mod-
ifications that they induce on gravitational-wave gen-
eration. Non-zero charges can produce monopole and
dipole radiation (the former only in eccentric binaries),
as opposed to the quadrupole emission of GR (which also
gets modified by the scalar charges) [60, 61, 64]. Scalar
charges may also modify the conservative dynamics of bi-
nary systems with respect to GR [60, 61, 64]. As a result,
non-zero scalar charges can provide a way to test the the-
ory experimentally, a program that was indeed pursued
in FJBD-like theories [5].
Results for the scalar charges in k-essence and FJBD

theory for two values of the conformal coupling (↵ ⇡ 0.71
and ↵ ⇡ 0.35) are shown in Fig. 4, as functions of the
bayon mass in the Jordan frame,

M̃b =

Z
d3x̃

p
�g̃ ⇢̃0ũ

0 . (23)

We find that the scalar charge is of the same order of
magnitude in k-essence and FJBD, with a larger ↵ corre-
sponding to larger ↵̄ in both theories (for a fixed central
density). Another similarity between the theories is that
by increasing ⇢c, the scalar charge decreases (i.e., as ex-
pected, the scalar charges decreases with compactness).
Di↵erences can be found in both the baryon mass and

scalar charge shown in Fig. 4. While the baryon mass
was expected to behave di↵erently in k-essence and FJBD
theory (since it is defined inside the screening radius), the
behavior of the scalar charge is at first sight surprising.
Just like the gravitational mass M1, the scalar charge
↵̄ is a quantity that is extracted near spatial infinity. In
this regime there is no screening, and the linear terms of
the scalar action (e.g. the FJBD terms) will dominate
over the non-linear (k-essence) ones. Therefore, in the
scalar sector, k-essence is equivalent to FJBD theory near
spatial infinity, and one would expect the scalar charges
to be the same in the two theories. In fact, for fixed
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neutron stars [16–20, 59–65] and black holes [58, 66, 67].
This amounts to a violation of the strong equivalence
principle and is ripe of consequences for gravitational-
wave generation, as it gives rise to dipole gravitational
emission from binary systems (and even monopole emis-
sion, for non-circular binaries and collapsing stars), as
well as to modifications in the conservative dynamics of
binaries [59–62, 64].

Violations of the strong equivalence principle in mod-
ified gravitational theories are usually parametrized by
“sensitivities” or “charges”, i.e. additional “hair pa-
rameters” describing compact objects and their e↵ective
coupling to the non-tensor gravitons that are generally
present in these theories. These charges vanish in the
low-compactness limit if the matter fields couple mini-
mally to the metric [as is the case for the ST theories

that we consider, c.f. the Jordan-frame action (1)], i.e.
if the weak equivalence principle is satisfied. However,
they can be significant for neutron stars or black holes,
especially if non-linear phenomena (e.g. “scalarization”)
are at play [16–20, 68–70].
In ST theories, one can indeed define a dimensionless

scalar charge ↵̄ describing the e↵ective coupling between
the scalar field and compact objects. From the decay of
the scalar field near spatial infinity,

' = '1 +
'1

r
+O

✓
1

r2

◆
, (21)

we can extract the scalar charge as [18, 61].

↵̄ =

r
4⇡

G

'1

M1
, (22)

with M1 the gravitational mass in the Einstein frame,
extracted from the asymptotic expansion gtt = �1 +
2GM1/r + ... at spatial infinity. As mentioned above,
the importance of these scalar charges lies in the mod-
ifications that they induce on gravitational-wave gen-
eration. Non-zero charges can produce monopole and
dipole radiation (the former only in eccentric binaries),
as opposed to the quadrupole emission of GR (which also
gets modified by the scalar charges) [60, 61, 64]. Scalar
charges may also modify the conservative dynamics of bi-
nary systems with respect to GR [60, 61, 64]. As a result,
non-zero scalar charges can provide a way to test the the-
ory experimentally, a program that was indeed pursued
in FJBD-like theories [5].
Results for the scalar charges in k-essence and FJBD

theory for two values of the conformal coupling (↵ ⇡ 0.71
and ↵ ⇡ 0.35) are shown in Fig. 4, as functions of the
bayon mass in the Jordan frame,

M̃b =

Z
d3x̃

p
�g̃ ⇢̃0ũ

0 . (23)

We find that the scalar charge is of the same order of
magnitude in k-essence and FJBD, with a larger ↵ corre-
sponding to larger ↵̄ in both theories (for a fixed central
density). Another similarity between the theories is that
by increasing ⇢c, the scalar charge decreases (i.e., as ex-
pected, the scalar charges decreases with compactness).
Di↵erences can be found in both the baryon mass and

scalar charge shown in Fig. 4. While the baryon mass
was expected to behave di↵erently in k-essence and FJBD
theory (since it is defined inside the screening radius), the
behavior of the scalar charge is at first sight surprising.
Just like the gravitational mass M1, the scalar charge
↵̄ is a quantity that is extracted near spatial infinity. In
this regime there is no screening, and the linear terms of
the scalar action (e.g. the FJBD terms) will dominate
over the non-linear (k-essence) ones. Therefore, in the
scalar sector, k-essence is equivalent to FJBD theory near
spatial infinity, and one would expect the scalar charges
to be the same in the two theories. In fact, for fixed
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Scalar field energy

8

⇤ M̃1/M� M̃b/M� r̃?/km r̃k/km Ẽ'
1/⇤DE Ẽ'

1/MGR

1 1.752 1.889 14.42 absent 1.592⇥ 109 1.619⇥ 10�3

4.47⇥ 106 eV 1.745 1.877 14.47 67.73 1.982⇥ 108 2.016⇥ 10�4

4.47⇥ 104 eV 1.741 1.872 14.47 6.639⇥ 103 1.966⇥ 106 2.000⇥ 10�6

4.47⇥ 102 eV 1.741 1.872 14.47 6.637⇥ 105 1.965⇥ 104 1.999⇥ 10�8

4.47 eV 1.741 1.872 14.47 6.637⇥ 107 1.965⇥ 102 1.999⇥ 10�12

4.47⇥ 10�2 eV 1.741 1.872 14.47 6.637⇥ 109 1.965 1.999⇥ 10�12

⇤DE 1.741 1.872 14.47 1.327⇥ 1011 9.825⇥ 10�2 9.994⇥ 10�14

Table II – In this table, we are showing the mass at spatial infinity M̃1, the baryon mass M̃b, the stel-
lar radius r̃⇤, and the screening radius r̃k of seven di↵erent solutions for varying ⇤. We also show the
scalar field energy at spatial infinity normalized by either ⇤DE or MGR, in the Jordan frame (Ẽ'

1).
The central density of the stars is fixed to ⇢c = 9.3⇥ 1014 g/cm3, and the conformal coupling constant
to ↵ ⇡ 0.14.
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Fig. 5 – Left: The scalar energy as a function of the Jordan frame radius for a neutron star in FJBD theory, and in two k-
essence theories (with two distinct strong coupling scales ⇤). Right: The scalar energy of the solutions presented in Table II.
The radius of the star r̃? is indicated by a light gray line, and the screening radii r̃k by small vertical lines on top of the solu-
tions.

perturbations that trigger stellar oscillations or spheri-
cal collapse. We present results for the evolution and
show that gravitational collapse generically leads to di-
verging characteristic velocities, which can be avoided by
adding a “fixing equation” in the spirit of the approach
of Refs. [50, 51].

A. Evolution formalism: spherical symmetry

The covariant field equations (6)-(7) and (11)-(12) can
be written as an evolution system by splitting explicitly
the spacetime into a foliation of space-like hypersurfaces
with a normal time-like vector. Assuming spherical sym-
metry, we can adopt the line element

ds2 = �N2(t, r)dt2+grr(t, r)dr
2+ r2g✓✓(t, r)d⌦

2 , (25)

where N(t, r) is the lapse function, while grr(t, r) and
g✓✓(t, r) are positive metric functions. These quanti-

ties are defined on each spatial slice with normal nµ =
(�N, 0) and extrinsic curvature Kij ⌘ �

1
2Ln�ij , where

Ln is the Lie derivative along nµ and �ij is the metric
induced on each spatial slice.
The Einstein equations (6) can be written as a hyper-

bolic evolution system by using the Z3 formulation [73],
in which the momentum constraint is included in the evo-
lution system by considering an additional vector Zi as
an evolution field [74–77]. Equation (6) can be expressed
as a first order system by introducing the following first
derivatives of the fields as independent variables,

Ar =
1

N
@rN , Drr

r =
grr

2
@rgrr , Dr✓

✓ =
g✓✓

2
@rg✓✓ ,

� = @r' , ⇧ = �
1

N
@t' . (26)

A coordinate system for the lapse (i.e. slicing condi-
tion) is required to close the evolution system. We
use the singularity-avoidance 1 + log slicing condition
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We use a high-resolution shock-capturing (HRSC)
scheme, based on finite-di↵erences, to discretize both
the Einstein equations and the relativistic hydrodynam-
ics equations [74]. This method can be interpreted as
a fourth-order finite di↵erence scheme plus a third-order
adaptive dissipation. The dissipation coe�cient is given
by the maximum propagation speed at each grid point.
For the scalar field we use a more robust HRSC second-
order method, by combining the Local-Lax-Friedrichs
flux formula with a monotonic-centered limiter [80, 81].

The time evolution is performed through the method of
lines using a third-order accurate strong stability preserv-
ing Runge-Kutta integration scheme. We set a Courant
factor �t/�r = 0.125, in units G = c = M� = 1, so
that the CFL condition imposed by the principal part
of the evolution system is always satisfied. Most of the
simulations presented in this work have been performed
with a spatial resolution of �r = 0.008M�, in a domain
with outer boundary located at r = 480M�. We have
verified that the results do not vary significantly when
the position of the outer boundary is changed. eb: say
something on convergence with �r? We use maximally
dissipative boundary conditions for the spacetime vari-
ables, and outgoing boundary conditions for the scalar
field.

Unlike in GR, monopole gravitational radiation (in the
form of scalar field waves) is permitted in ST theories,
and is produced by gravitational collapse in FJBD the-
ories [82–84]. In the following we will see that a non-
vanishing, albeit small, monopole flux is also emitted by
collapsing spherical stars in k-essence. The response of
a gravitational interferometer to scalar waves is encoded
in the Jordan-frame Newman-Penrose invariant �22 [85],
which far from the source can be computed simply as [17]:

�22 ' �↵
p

16⇡ G@2
t ' + O

✓
1

r2

◆
. (39)

In deriving this expression, Ref. [17] assumed a decay
/ 1/r for the scalar field, which, as stressed already, is
only a good approximation outside the screening radius
in k-essence. For this reason, and because the distance
of the interferometer from the source will typically be
larger than the screening radius, we only compute �22 at
extraction radii > rk. From �22 one can then obtain the
scalar strain hs via �22 / @h

t s, which can in turn be used
to compute the signal-to-noise ratio (SNR) for a given
detector [83].

C. Stellar oscillations

The non-linear stability of k-mouflage stars in equi-
librium configurations, like those constructed in Sec. III,
can be tested by perturbing them and following their evo-
lution numerically using the formalism described above.
Here, we consider k-essence theories with conformal cou-
pling ↵ ⇡ 0.14, but di↵ering for the value of ⇤, which we

fix to either ⇤ ⇠ 200⇥106 eV or ⇤ ⇠ 9⇥106 eV. The for-
mer gives rise to stars that are very similar to solutions of
FJBD theory (with the same conformal coupling), while
the latter produces a rather significant screening e↵ect
on the scalar field (c.f. Sec. III). Notice that we cannot
consider ⇤ as small as ⇤DE, because, even though we can
simulate static stars for this value of the strong-coupling
scale, the corresponding dynamical evolutions become in-
tractable because of large round-o↵ errors (since, as al-
ready mentioned and detailed in the Appendix, the hi-
erarchy of scales between the screening and stellar radii
requires one to use code units G = c = M� = 1, in
which ⇤DE ⇠ 10�11). Moreover, as shown in Ref. [39],
simulations of stars with significant screening are also
challenging as they require significant spatial resolution
near the origin, where the solutions transition from the
non-linear regime applicable to the outer layers of the
star to a FJBD-like behavior.

We consider equilibrium configurations with central
energy density ⇢c = 9.3 ⇥ 1014 g/cm3, and excite oscilla-
tions by decreasing the internal energy by xxx % (“small
oscillations”) or xxx % (“large oscillations”).
CP: how much . MB: Why don’t put the text commented
below? eb: I think it breaks the flow and it’s obvious
(if we show the results is because we think the simula-
tions converge). we can discuss convergence in the sec-
tion on the method (see my comment there) Results for
the two theories are presented in Fig. ??MB: I will fix
this , which displays the central values for the rest-mass
density and for the scalar field as a function of time.
The red lines show the dynamics of unperturbed stars
(i.e., stars only perturbed by numerical truncation er-
rors), which confirms the stability of these systems. For
small perturbations (blue lines) and large perturbations
(black lines), the stars begin to oscillate. Indeed, since
we decrease the internal energy of the stars to trigger the
oscillations, the stellar compactness initially decreases,
and so does the scalar field magnitude. The latter oscil-
lates with the same frequency as the density, but with a
small time shift. Notice that the oscillations do not grow
in amplitude, confirming that these stars are stable.

As can be seen from Fig. ??MB: I will fix this , the
amplitude of the central scalar field oscillations decreases
with ⇤, just like the central scalar field of the static so-
lutions [c.f. Eq. (14)]. This seems to confirm the valid-
ity of kinetic screening even in this dynamical case. To
strengthen this conclusion, we have also extracted the
scalar monopole signal �22 for oscillating stars initially
subjected to the same large (⇠ xxx% LH: fill ) perturba-
tions of the internal density, for ⇤ = {200, 30, 20, 9, 5} ⇥

106 eV. The results are presented in Fig. 7 for extraction
radii outside the screening radius, as a function of re-
tarded time. As can be seen, the amplitude of the signal
is an increasing function of ⇤.

In order to see the e↵ect of screening more clearly, we
have plotted in Fig. 8 the amplitude of the same signals,
which we compute as the root mean square of the time se-
ries. Notice that with the exception of ⇤ ⇠ 200⇥106 eV,
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pute its SNR for Advanced LIGO (at design sensitivity2)
for an optimally oriented source at 8 kpc (corresponding
to the distance between the Earth and the center of the
Galaxy). The results are displayed in Fig. 8 (right panel)
and show again a scaling roughly linear with ⇤. Extrap-
olating to values of ⇤ ⇠ ⇤DE relevant for dark energy,
one would get a tiny unobservable SNR ⇠ 10�6 at 8 kpc.

D. Gravitational collapse

As discussed in Ref. [39], the characteristic propaga-
tion speeds of the scalar field equation (7) diverge when
k-mouflage stars collapse (“Keldysh problem”). In more
detail, the evolution equation for the scalar field can be
recast as

�µ⌫
rµr⌫' =

AT

2K 0(X)
, (40)

in terms of the e↵ective metric

�µ⌫
⌘ gµ⌫ +

2K 00(X)

K 0(X)
@µ'@⌫' . (41)

2 For the sensitivity, we used the zero detuning, high power con-
figuration of https://dcc.ligo.org/LIGO-T0900288/public.
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The characteristic speeds of this equation are then given
by [49]

V± = �
�tr

�tt
±

s
�det(�µ⌫)

(�tt)2
. (42)

As shown in Ref. [49], at leading order (on Minkowski
space and in standard Cartesian coordinates) these ve-
locities reduce to the usual expression for the speed of
the scalar mode in k-essence, cs = ±

p
1 + 2XK 00/K 0

(see e.g. [54]), of which they constitute the non-linear
generalization.

During the gravitational collapse of a k-mouflage star
(which can be triggered e.g. by decreasing its internal
energy), these velocities diverge because �tt goes to zero.
This problem also appears during the collapse of scalar
field pulses in vacuum [48, 49, 86], and resembles the
behavior of the Keldysh equation

t @2
t '(t, r) + @2

r'(t, r) = 0 . (43)

This equation is hyperbolic with characteristic speeds
±(�t)�1/2 for t < 0, leading to a divergence at t = 0.

Diverging characteristic speeds constitute at the very
least a practical obstacle that prevents one from evolv-
ing the dynamics past this divergence by using explicit
time integrators, since the CFL bound forces the time
step to vanish when the Keldysh behavior appears. As
stressed in Ref. [49], this divergence may in principle be
avoided by allowing for a non-vanishing shift. However,
neither Ref. [49] nor Ref. [39] managed to find a suitable
coordinate condition in spherical symmetry that would
maintain the characteristic speeds finite while still en-
suring stable numerical evolutions. This leaves open the
possibility that the Keldysh problem that we find might
have a physical relevance, besides a practical one. Here,

however, we assume that the Keldysh problem is not fun-
damental, and we attempt to amend it by using an ap-
proach inspired by Refs. [50, 51], which put forward a
method to ameliorate the stability of Cauchy evolutions
in theories with higher derivatives3 (see also Ref. [52]
for an application of this approach to a specific higher
derivative extension of GR).
The method consists of modifying the theory’s dynam-

ics by adding extra fields and “fixing equations” (i.e.
drivers) for them. The drivers are chosen so that on suf-
ficiently long timescales the evolution dynamics approx-
imately matches that of the theory under consideration
(k-essence in our case). We stress that this modification
of the field equations does not correspond to a standard
ultraviolet completion of k-essence, which is not known
for theories giving screening [90]. However, this dynami-
cal fixing of the Cauchy problem might make sense if the
e↵ective field theory “classicalizes” [91] at high energies.
To apply the method of Refs. [50, 51], let us first recall

that Ref. [39] found that in order to deal with shocks
appearing in k-mouflage stars, the scalar field equation
needs to be written as a conservation law [c.f. Eq. (7)].
The “fixing equation” that we introduce must therefore
share this property. Let us then introduce the new field
⌃ and the modified evolution system

@t
�p

�g⌃rt'
�
+ @i

�p
�g⌃ri'

�
=

1

2

p
�gAT , (44)

@t⌃ = �
1

⌧
(⌃�K 0(X)) . (45)

The second equation is a driver that will force ⌃ toK 0(X)
on a timescale ⌧ > 0. As can be seen, the principal part

3 This method is in turn inspired by the Müller–Israel–Stewart
formalism of viscous relativistic hydrodynamics [87–89].
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Fig. 10 – Evolution of the scalar field far from the source as
a function of the retarded time tret in the Jordan frame for
di↵erent values of ⇤ and ↵ ⇡ 0.14. These results have been
obtained by extrapolating to ⌧ = 0. In the inset we display
the scalar field as a function of the rescaled time t0, to show
the self-similarity of these solutions during the gravitational
collapse.

tween the initial and final value of ' (and thus the scalar
strain hs) are largely independent of ⇤, since the star
has to shed all of its hair before forming a back hole. Be-
cause of the scaling of the frequency with

p
⇤, however,

we expect that for ⇤ ! ⇤DE the signal will eventually
fall out of the frequency band of terrestrial detectors.
The latter are insensitive to frequencies lower than 1-10
Hz because of seismic noise (even for third generation
detectors such as the Einstein Telescope [94] or Cosmic
Explorer [95]). In fact, when going from ⇤ ⇠ 10 MeV for
the results in Fig. 10 (whose frequencies are ⇠ kHz) to
⇤ ⇠ 10 eV, we expect the frequency to drop by a factor
⇠ 1000 to ⇠ 1 Hz. Scalar monopole signals in theories
with ⇤ . 10 eV are therefore likely unobservable from
Earth, but would fall in principle in the band of space-
borne detectors such as LISA. By using the self-similarity
of our solutions to compute the SNR for LISA in the case
of ⇤ ⇡ ⇤DE ⇡ 2meV, we obtain SNR⇠ 30–40 (accord-
ing to whether we use the LISA sensitivity curve from the
proposal to ESA [96] or from the Science Requirements
Document [97]) for optimally oriented sources at 8 kpc
distance. For ⇤ ⇡ 10 meV, we get instead SNR⇠ 7–10.
We should stress again, however, that these results in-
volve an extrapolation over nine orders of magnitude in
⇤, based on the self-similarity of our simulations.

V. CONCLUSIONS

In this work, we have studied the spherically symmet-
ric non-linear dynamics of compact stars in ST theories
with first-order derivative self-interactions for the scalar
field (k-essence theories). These theories have been sug-
gested to possess a mechanism (k-mouflage, or kinetic
screening) that suppresses the scalar fifth force on local
(solar system) scales, while allowing for potentially sig-
nificant scalar e↵ects on large (cosmological) scales. We
have confirmed that k-mouflage works for static spheri-
cally symmetric compact stars, whose structure we have
calculated exactly (up to numerical errors) for cosmo-
logically relevant values (⇠ meV) of the theory’s strong-
coupling scale ⇤. These solutions are far from trivial
to derive, because of the hierarchy of scales between the
stellar radius and the screening one (⇠ 1011 km), but
they confirm that no observable deviation from the GR
geometry is to be expected in the exterior of static spher-
ically symmetric stars (whatever their compactness), as
long as one remains within the screening radius.
We have then used these static spherically symmetric

solutions as initial data for dynamical evolutions (again
in spherical symmetry). In more detail, we have trig-
gered (non-linear) oscillations of our compact stars by
perturbing their internal energy, and extracted the re-
sulting monopole scalar radiation outside the screening
radius. While we could not simulate theories with strong-
coupling scales relevant for dark energy, we have man-
aged to evolve stars in theories with ⇤ as small as a few
MeV, which already shows that kinetic screening sup-
presses the monopole scalar emission from stellar oscil-
lations. Extrapolating to ⇤ ⇠ meV, we have concluded
that no observable monopole emission is to be expected
from stellar oscillations in these theories.
We have also used our static spherically symmetry so-

lutions as initial data for gravitational collapse. As re-
ported in Ref. [39], the k-essence equations are always
strongly hyperbolic, irrespective of the local state of the
dynamical variables (at least if terms cubic in the scalar
kinetic term are included in the action), but the charac-
teristic speeds for the scalar field diverge during collapse.
The same behavior appears in vacuum, for configurations
close to critical collapse [48, 49]. This divergence is at the
very least a practical problem, as the system cannot be
simulated past it because of the CFL bound (i.e. the
theory becomes non-predictive). While Ref. [49] showed
that the characteristic speeds can be maintained finite
by allowing for a non-vanishing shift vector, it could not
find a shift choice in spherical symmetry yielding stable
evolutions.
We have taken here a di↵erent approach, and modified

the k-essence dynamics by introducing an auxiliary vari-
able and a driver (or “fixing equation”) that relaxes the
modified dynamics to the true one on long timescales.
We have done so in the spirit of the recent proposal by
Refs. [50, 51], which is in turn inspired by dissipative rel-
ativistic hydrodynamics. This method has allowed us to
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of this system takes indeed the form of a conservation
law. Restricting then to the spherical symmetric case
and using the line element (25), Eqs. (44)-(45) can be
written as

@t' = �N⇧ , (46)

@t� = �@r [N⇧] , (47)

@t = �@rF
r
 �

2

r
F r
 +

1

2
N⇣AT , (48)

@t⌃ = �
1

⌧
(⌃�K 0(X)) , (49)

where  = ⇣ ⌃⇧ and F r
 = N ⇣ ⌃ grr � . As in the

original k-essence equations in balance law form [49],
there is a set of conserved evolved fields {�, ,⌃} and
a set of primitive fields {�,⇧,⌃} required to calculate
the right-hand side of the equations. In this case, the
only unknown primitive field (⇧) can be found by solv-
ing the linear equation ⇧ =  /⇣ ⌃ at each time-step. Fi-
nally, notice that the evolution equations (46)-(49) lead
to a strongly hyperbolic system, thus ensuring that the
Cauchy problem is well-posed. We stress that this ap-
proach works trivially for FJBD theories, since for the
latter K 0(X) = �1/2 is constant, and the driver Eq. (49)
relaxes ⌃ to K 0(X) exponentially on the timescale ⌧ .

Results for gravitational collapse in a theory with
⇤ = 4.04 MeV are shown in Fig. 9, for the minimum
of the lapse (top panel) and the central rest-mast den-
sity (bottom panel). The black circles represent results
obtained by solving the field equations (6)-(7). In this
case, the characteristic speeds of the scalar field diverge
(at the time marked by a black cross) and the simula-
tion stops long before formation of a horizon because of
the CFL condition. The solid red line shows instead the
results obtained by adding the fixing equation, which al-
lows for the simulation to successfully complete, leading
to the formation of a hairless Schwarzschild BH. The re-
sults are obtained for values of ⌧ down to 30GM�, and
are extrapolated to ⌧ = 0.

Fig. 10 shows instead the time evolution of the scalar
field far from the source (at an extraction radius rext =
200GM� > rk) as a function of time, for three values of
⇤ giving screening in the static case (⇤ = 12.8, 7.18, 4.04
MeV). The results are again obtained for finite values of
⌧ (as small as 10 or 30 GM� according to the value of
⇤) and then extrapolated to ⌧ = 0. As indicated, the
scalar field is multiplied by the extraction radius so that
the value displayed is independent of the exact extraction
position, i.e. we show ' rext, with rext = 200GM�. As
can be seen, ' rext goes from a constant non-vanishing
value at the beginning of the simulation to zero at late
times, for all values of ⇤. This behavior is readily ex-
plained. The initial value is set by the coe�cient '1 of
Eq. (21), which is proportional to the scalar charge [c.f.
Eq. (22)] and which is largely independent of ⇤, since
scalar e↵ects are not screened for r > rk. The final value
is zero because a black hole forms, and in k-essence black
holes have no hair (i.e. no scalar charge) because the
theory is shift symmetric [92, 93]. Therefore, we can in-

terpret the di↵erence between the initial and final values
of 'rext as due to the collapsing star shedding its scalar
hair.
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(Ñ

)

⇤ = 4.04J2o

}tBM; 2[m�iBQM @ ⌧ = 0
2t�+i }2H/ 2[m�iBQMb
E2H/vb? /Bp2`;2M+2

0.0 0.5 1.0 1.5 2.0 2.5

2.0

4.0

6.0

8.0

10.0

t/ms

⇢̃ c
/⇢̃

c(
t
=

0)

Fig. 9 – Evolution of the minimum of the lapse across the
radial grid (top panel) and the central rest-mast density
(bottom panel) in the Jordan frame, for the gravitational
collapse of a neutron star in a theory with ⇤ = 4.04 MeV
and ↵ ⇡ 0.14. The red lines represent the evolution ob-
tained with the fixing equation (extrapolated to ⌧ = 0),
and the black circles represent results obtained by solving
the field equations (6)-(7). Note that the latter evolution
presents diverging characteristic speeds for the scalar field
at t = 0.37ms (“Keldysh behavior”, black cross), which
e↵ectively halts the simulation.

Moreover, smaller values of ⇤ seem to lead to longer
characteristic timescales (i.e. lower frequencies) in the
simulations of Fig. 10. In fact, if one plots the scalar
field’s evolution as function of a rescaled time t0 =
(t � t0)

p
⇤G1/4 (with t0 a suitable o↵set), the results

are very similar, as shown in the inset of Fig. 10. From
this “self-similarity”, we can conclude that the frequen-
cies contained in the signal should scale as f /

p
⇤. By

combining this with the observation that the initial and
final values of ' are independent of ⇤, we can infer that
�22 should scale with ⇤ as �22 / (2⇡f)2' / ⇤. We have
verified this scaling by computing �22 explicitly (Fig. 11,
left panel), extracting its amplitude as the root mean
square of its time series, and verifying that the ampli-
tude scales roughly linearly with ⇤ (Fig. 11, right panel).

As for the SNR of the results shown in Fig. 10, we
have computed it (assuming optimal source orientation)
for Advanced LIGO at design sensitivity, and obtained
values of ⇠ 200 at 8 kpc, with no appreciable depen-
dence on the value of ⇤. This roughly constant (and
detectable) SNR comes about because the di↵erence be-
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Fig. 11 – In the left panel, we show the Jordan-frame Newman-Penrose invariant �22 for collapsing stars, as function of the
retarded time tret, with rext = 200 GM� > rk and conformal coupling ↵ ⇡ 0.14. On the right, we show the amplitude of �22

as a function of ⇤, together with a linear fit in ⇤ (orange dashed line).

simulate gravitational collapse without incurring in any
divergent characteristic speed, for strong-coupling scales
as low as a few MeV. We have found that, unlike in
the case of stellar oscillations, kinetic screening does not
suppress the monopole scalar radiation (extracted out-
side the screening radius) from the collapse. This hap-
pens because the collapsing star must shed away all of
its scalar hair in scalar waves before forming a (hairless)
black hole. This scalar signal would not be detectable by
terrestrial gravitational wave detectors because its very
low frequency (at least for values of ⇤ ⇠ meV relevant
for dark energy), but we conjecture that it might be ob-
servable with space-based detectors such as LISA, if a
supernova explodes in the Galaxy.

Appendix A: Units

In this paper, we have used units ~ = c = 1, in which
the k-essence action is given by Eq. (4). When simulating
neutron stars numerically, it is convenient to use units
adapted to the problem, e.g. G = c = M� = 1.

To see what the k-essence action is in these units, let
us first factor out the Planck mass in the k-essence La-
grangian density:

Lk =
1

16⇡G

✓
R�

1

2
X̄ +

�

4⇤̄4
X̄2

�
�

8⇤̄8
X̄3 + . . .

◆
,

(A1)
where we have introduced X̄ ⌘ 2X/M2

Pl, which is the ki-
netic energy X̄ ⌘ gµ⌫@µ'̄@⌫'̄ for the dimensionless scalar

'̄ ⌘
p
2'/MPl, and defined also ⇤̄ ⌘ 21/4⇤/MPl

1/2.
To reinstate ~, one can then note that in generic

units the first two terms (the Ricci curvature and

the kinetic energy for the rescaled dimensionless field)
have dimensions of a length�2, hence one needs ⇤̄ =
21/4⇤/(MPl~)1/2, which has the correct dimensions of
length�1/2 (with c = 1). For ⇤ ⇡ ⇤DE ⇠ 2⇥10�3 eV, one
then has ⇤̄ ⇠ 10�13m�1/2. In units G = c = M� = 1,
lengths are measured in units of the Sun’s Schwarzschild
radius GM�/c2 ⇡ 1.5 km, and therefore in these units
one has ⇤̄ ⇠ 4⇥10�12. Rewriting then the action (A2) in
the same form as Eq. (4), but in units G = c = M� = 1,
one gets

Lk =
1

16⇡
R�

1

2
X +

�

4⇤4
X2

�
�

8⇤8
X3 + . . . , (A2)

where X = X̄/(16⇡), ' = '̄/
p
16⇡ and ⇤ =

⇤̄/(16⇡)1/4 ⇡ 10�12. This very small value is among
the reasons why numerical evolutions of the dynamics of
collapsing or oscillating stars are challenging for theories
with ⇤ ⇠ ⇤DE. We stress, however, that we could suc-
cessfully simulate static stars for such theories (thanks
to Mathematica’s [56] arbitrary machine precision arith-
metic).
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FIG. 4. Scalar kinetic energy on the plane ⇢ = 0 for quadratic k-essence, calculated from our numerical results (Xnum, red solid line), with the
linear superposition approximation (Xsup, black dashed line), and with the irrotational approximation (Xirr, purple long-dashed line). Also
shown for comparison is the FJBD result (X , orange dot-dashed line). Two equal-mass (q = 1) binary systems are considered: rsc = 4.5R,
D = 17.5R (left) and rsc = 9.5R, D = 5R (right), with the origin placed at the geometric center. The cyan shaded areas represent the
individual screening regions of each body in isolation (ignoring the descreening in the vicinity of the object’s center), and the darker shade in
the right panel denotes the overlap of these individual screening regions.
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FIG. 5. Contour plot of the scalar kinetic energy X in the (⇢, z)
place. The bottom panel is for an equal-mass binary with rsc = 9.5R
and D = 5R. The top panel is for just one of the two bodies. The
pink semicircles denote the effective radii of the Gaussian source
model for the point particles. The orange dot-dashed line connects
the geometric center of the left object in the two subplots, while the
red dashed line connects the origins (which are placed at the center
of mass of the binary).

frame) from Big Bang nucleosynthesis and Lunar Laser Rang-
ing experiments require ↵

<⇠ 0.1 [107]. Considering three rep-
resentative binary systems, i.e. Earth and Moon, Sun and
Earth, and Sun and Jupiter, taking ⇤ ⇡ 2 ⇥ 10�3eV and

FIG. 6. The same as in Fig. 4 (right), but for q = 25. The two bodies
are placed at z = ±2.5R.

↵ = 0.1, we obtain � ⇡ 0.2km, � ⇡ 1km and � ⇡ 2800km,
respectively. As � / ↵

�2, by reducing ↵ the size of the “de-
screening” region grows, but the correction to the GR Newto-
nian force from the fifth force decreases by the same amount.

Precise modeling of the dynamics near the saddle point of
the solar system is challenging, as it would require accurate
ephemeris data [89, 108] and even account for the effect of
the spacecraft carrying the accelerometer itself. While this is
outside the scope of this work, let us comment on a few par-
allels with MOND, where these problems have been analyzed
to some extent [96, 106]. First, note that if we had used ↵ = 1
in our estimates for � for the Earth and Moon, Sun and Earth,
and Sun and Jupiter systems, they would have differed only
by a factor ⇠ a few from the estimate for MOND in Ref. [96].
The reason is that the scale of the MOND critical acceleration
is ao ⇡ H0/6, thus leading to the same parametric scaling as
the cosmologically motivated k-essence. In more detail, the
MONDian behavior is triggered by the condition a0 ' aN

Boskovic & Barausse ‘23
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SAMRAI

• Parallelization: divide the domain in patches to be evolved in parallel in 
different processors → faster simulations


• Adaptive mesh refinement (adjust the resolution during the evolution) 
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Fig. 3 – Tensor (l = m = 2) and scalar (l = m = 1 and l = m = 2) strain for a NS merger with q = 0.91, in k-essence and
FJBD.

Fig. 4 – Dipole (l = m = 1) and quadrupole (l = m = 2) scalar strain for merging NS binaries of varying mass ratio, in
k-essence and FJBD.

As can be seen, the tensor strains are very similar, even
after the merger (corresponding to the peak amplitude).
As for the scalar, the suppression of the ` = m = 0 mode
is expected, since monopole emission vanishes in FJBD
theory for quasi-circular binaries [65, 66]. The ` = m = 1
dipole mode is instead small but non-vanishing, as ex-
pected for unequal-mass binaries in FJBD, with signs
of screening suppression as ⇤ decreases. However, the
(dominant) ` = m = 2 scalar quadrupole mode is always
larger than in FJBD theory, suggesting that the screen-
ing is not e↵ective at suppressing the quadrupole scalar
emission in the late inspiral/merger. The amplitude also
seems to increase when going to low frequencies/early
times, in the simulations with ⇤ ⇡ 4 and 5 MeV. Note
that one does not expect a continuous limit to FJBD
(⇤ ! 1) when ⇤ increases. In FJBD there is no screen-
ing and the binary is always in the perturbative regime,
while in k-essence the separation is always smaller than
the screening radii. This is true even for observed binary
pulsars, which have separations . 105 km vs screening
radii of ⇠ 1011 km for ⇤ ⇠ ⇤DE.

The dependence on the mass ratio of the binary (which
we set to q = 1, 0.9 and 0.71) is shown in Fig. 4, for
the FJBD and ⇤ ⇡ 4 MeV cases. As can be observed,
quadrupole fluxes are largely una↵ected by q in both
theories, with the k-essence ones consistently larger, es-
pecially at early times. The dipole fluxes in k-essence
show again signs of suppression relative to FJBD, at
least for q 6= 1, but in both theories they grow as q
decreases. This is expected, since PN calculations in
FJBD [65, 66] predict that the dipole amplitude should
scale as the di↵erence of the stellar scalar charges, which
grows as q decreases. For q = 1, instead, the dipole flux
in FJBD is compatible with zero (as predicted by PN
theory [65, 66]), while it does not vanish in k-essence.
Conclusions: We have performed for the first time

fully relativistic simulations of binary NSs in theories of
gravity with kinetic screening of local scales. We dealt
with shocks in the scalar field by an HRSC method and
by adopting a gauge with non-zero shift that prevents
divergences of the characteristic speeds, which plagued
previous attempts [34, 35, 39]. With this setup, we have
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Fig. 3 – Tensor (l = m = 2) and scalar (l = m = 1 and l = m = 2) strain for a NS merger with q = 0.91, in k-essence and
FJBD.
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Fig. 4 – Dipole (l = m = 1) and quadrupole (l = m = 2) scalar strain for merging NS binaries of varying mass ratio, in
k-essence and FJBD.

As can be seen, the tensor strains are very similar, even
after the merger (corresponding to the peak amplitude).
As for the scalar, the suppression of the ` = m = 0 mode
is expected, since monopole emission vanishes in FJBD
theory for quasi-circular binaries [65, 66]. The ` = m = 1
dipole mode is instead small but non-vanishing, as ex-
pected for unequal-mass binaries in FJBD, with signs
of screening suppression as ⇤ decreases. However, the
(dominant) ` = m = 2 scalar quadrupole mode is always
larger than in FJBD theory, suggesting that the screen-
ing is not e↵ective at suppressing the quadrupole scalar
emission in the late inspiral/merger. The amplitude also
seems to increase when going to low frequencies/early
times, in the simulations with ⇤ ⇡ 4 and 5 MeV. Note
that one does not expect a continuous limit to FJBD
(⇤ ! 1) when ⇤ increases. In FJBD there is no screen-
ing and the binary is always in the perturbative regime,
while in k-essence the separation is always smaller than
the screening radii. This is true even for observed binary
pulsars, which have separations . 105 km vs screening
radii of ⇠ 1011 km for ⇤ ⇠ ⇤DE.

The dependence on the mass ratio of the binary (which
we set to q = 1, 0.9 and 0.71) is shown in Fig. 4, for
the FJBD and ⇤ ⇡ 4 MeV cases. As can be observed,
quadrupole fluxes are largely una↵ected by q in both
theories, with the k-essence ones consistently larger, es-
pecially at early times. The dipole fluxes in k-essence
show again signs of suppression relative to FJBD, at
least for q 6= 1, but in both theories they grow as q
decreases. This is expected, since PN calculations in
FJBD [65, 66] predict that the dipole amplitude should
scale as the di↵erence of the stellar scalar charges, which
grows as q decreases. For q = 1, instead, the dipole flux
in FJBD is compatible with zero (as predicted by PN
theory [65, 66]), while it does not vanish in k-essence.
Conclusions: We have performed for the first time

fully relativistic simulations of binary NSs in theories of
gravity with kinetic screening of local scales. We dealt
with shocks in the scalar field by an HRSC method and
by adopting a gauge with non-zero shift that prevents
divergences of the characteristic speeds, which plagued
previous attempts [34, 35, 39]. With this setup, we have



Conclusions

• Screening mechanisms allow to reconcile large and short distances


• Test them in the dynamical regime of binary mergers


• Long overdue


• Interesting deviations from GR
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