
Future of QI (2011-23)

The Benasque Quantum Information Workshops 2011 – 2023

compiled by Antonio Acín, Adán Cabello, and Géza Giedke

June 2023

+5 more...

FOUNDATIONS OF QUANTUM PHYSICS QUANTUM INFORMATION THEORY * PBR THEOREM UPT BOUND ENTANGERENT * Activation Q. non-locality -Buantum volteIngleton ≥0 - B.E.S violate B ineg - Characknization M-garl, entanglement - Beyond B. Irug. + appe PRINCIPLIS FOR Q CORRELATIONS - O. Discord ?? * Unv. O.c. with Q walks ermi: Landouer pple + 2 mlaw * Unitying Q Grield Discord R QTI IN LOW. ENERGY * O.C. with little entang. - Firewall in BH. - Charact LOCC + POVM (Measurement) ARE LEGGETI - GARG - Rôle ent. in O.C. INEQUALITIES USEFUE? * Security Devicindep akt - Decidability in QIT - Geneal framework security devinty - Mary LUCALITY IN MANY BODY PRYSIES - Certification space-like separation devined - MULT PRINCIPLES ENDUCH? - Example non-god C.C. Channot _ LIFE AFTER LOOPHOLE-FREE BI! - PPTZ => E. Breaking MSYBERG Z'HOZJSAIZT -

MANY-BOPY PHYSICS - What is D-wave doing * Title- DEPENDENT, MERTIPHAL - I TIPLETIENT ATIONS OF DI PRINCIPLE * DETECTION LOOPHOLE FREE STUFF

PHOTONIC EXPERIMENT X (FITICACITY IN OPEN & STETES - EFFICIENT SIAVIATION OF Q DYNAMICS - Def. entang, bosous/fermons - CLASS PHASES HIGHER-D - Approxs (truncation) TN - LIMITATIONS OF Q SIMULATION -Thermalitation physical Syst - Boson sampling (Limitations) - Non-eg, inequalities (Quantum) * SUPERCONDICTING QUEITS * STANGATION OF HIGH-ENEERS - Simulation TV HET PHYSICS IN OPTICAL LATTICES - TN (AAS/CFT CHEAP QKD - SATELLITE-BASED & COTIT - Pelatims fluct-entanglement - CEPTIFICATION OF Q SITTUENT - LUW-ENIRON EFFECTIVE THEORIES - LONG: DISTANCE ENT BASED &C - EXP MPL OF IBE-LINE THEODERS - 11 3 Seel protecting QIM in D<4 N-17 1/2 FIFE BEARD BEARDINA

2013: Achievements in the last few years

Quantum Info

- Universal qc w/ q walk
- Unifying q correlations
- QC w/ little entanglement
- security device-indep QKD

Foundations QP

- PBR Theorem
- activation of q nonlocality
- Q thermo: Landauer's principle & 2nd Laws

Q Optics & Implementations

- ground state nanomech syst
- detection-loophole-free photonic Bell exp
- superconducting qubits
- q sim.: high-energy physics in opt lattices
- q sim.: beating class comp

Many-Body Physics

- complexity of Hamiltonians
- criticality in open systems
- time-dependent variational principle

2013: Open Problems I

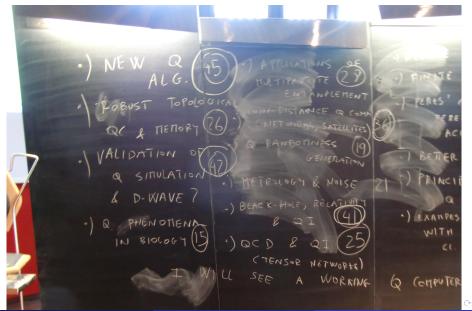
Quantum Info

- NPT bound entanglement
- Q violation Ingleton ineq
- m-partite entanglement: characterization & applic
- Q discord ??
- LOCC: characterization
- rôle of entanglement in QC
- device-indep: general framework security; certification of spacelike sep
- non-additivity of EOF/class capacity: examples
- QC more powerful than CC?
- PPT² ⇒ ent breaking

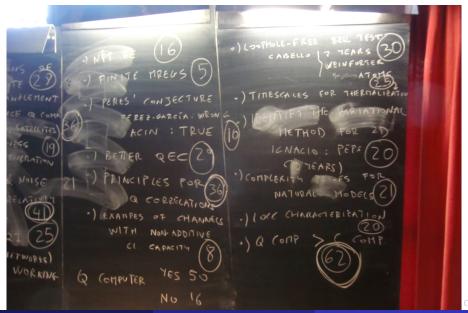
- Foundations QPbound ent violate Bell Ineq?
- beyond Bell Ineq
- principles for Q correlations
- relativity & QM in low-energy physics
- QI + relativity
- B.H. info paradox / firewall
- are Leggett-Garg Ineq useful?
- decidability in QIT
- non-locality in many-body phys
- life after loophole-free Bell Exp
- Tsirelson's Problem
- Q chaos & entanglement

8/42

2013: Open Problems II


Many-Body Physics efficient sim of Q Dynamics

- classific phases higher D
- approx TN
- thermalization
- non-equilib inequalities (quantum)
- simulation TN HEP
- relation fluctuat ↔ entang.
- low-energy effective theories
- self-protect. Q Mem. D < 4?
- robustness topolog memories


Q Optics & Implementations what is D-Wave doing?

- implementations of QI stuff
- Q networks
- cheap QKD
- satellite-based Q Comm
- certification of Q Sim
- long-distance ent-based QC
- exp test of PBR-like theorems
- many-body state prep
- def ent of bosons/fermions
- limitations of Q simulations
- Boson Sampling (limitations)

2013 - Concluding Session

2013 - Concluding Session

The Top 10 of Open QIS Challenges 2013

- Q computation more powerful than classical? (62)
- New q algorithms (45)
- Oertification of q simulation (42)
- Black Holes, general relativity & q information (black hole information paradox) (41)
- Long-distance q communication (networks, satellites) (36)
- Principles for q correlations (36)
- Loophole-free Bell test (30)
- better QECC (29)
- o robust topological QC & QMemory (26)
- timescales for thermalization (25)
- high-energy physics and QI (tensor networks) (25)

2015 Open Problems

OPEN PROBLEMS SESSION

INFORMATION/COMPUTATION INFORMATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION/COMPUTATION INFORMATION INF

Benasque 2015

176	FOUNDATIONS
28	principles for quantum correlations
26	encorporating time into the foundations of
19	quantum mechanics and relativity at low energies
17	experiment to rule out realist interpretatio
15	role of causality
13	quantum thermo: work and heat?
12	are all states useful?
11	protocols using QT + relativity

Adán Cabello & Géza Giedke

July 8th, 2015

170	IMPLEMENTATIONS
25	experimental demonstration of a protocol enhanced by quantum error correction
25	a 2D topological (e.g. surface) code
24	a quantum computer
23	long-distance quantum teleportation
23	q. chemistry simulation
22	gravity tested in the lab
20	quantum repeaters
8	more efficient process tomography

2015 Open Problems

208	INFORMATION/COMPUTATION
30	black holes & holography
30	demonstrate supremacy/speedup of QC
28	better quantum error correcting codes
21	multipartite entanglement
16	QFT and tensor networks
10	macroscopic qubits/QI
	quantum artificial intelligence (machine learning, etc.)
10	the existence of NPT bound entanglement
_	

176	FOUNDATIONS
28	principles for quantum correlations
26	encorporating time into the foundations of QT
19	quantum mechanics and relativity at low energies
17	experiment to rule out realist interpretation
15	role of causality
13	quantum thermo: work and heat?
	are all states useful?
11	protocols using QT + relativity
4.0	

2015 Open Problems

178	MANY-BODY PHYSICS
32	better numerical algorithms for simulation
24	Quantum PCP conjecture
19	understanding the interplay of equilibration/transport/localization
18	entanglement detection
18	variational methods/tensor networks for field theories/continuous models in >= 2D
14	uses for many-body phases
13	classifying topological phases in D=2 or higher
12	timescales of equlibration (also thermalization)
40	1. 7 10 10

170	IMPLEMENTATIONS
25	experimental demonstration of a protocol enhanced by quantum error correction
25	a 2D topological (e.g. surface) code
24	a quantum computer
23	long-distance quantum teleportation
23	q. chemistry simulation
22	gravity tested in the lab
20	quantum repeaters
8	more efficient process tomography

Many body Implementations ucedul a metadogy Underslanding Fermi-Hubbard models Qthermo machines-lo use a supremacy without universality Q ranophotonics or QI AEllicent algorithms Gapless ISTTQC really Possible? Its adiobatical "" 11

2017 Open Problems I

QI

- physical multipartite entanglement
- coherence theory and entanglement
- QI and gravity (ECC)
- Black Holes / holography
- (supreme) quantum machine learning
- new killer applications for QC
- resources for delegated QC
- q approach to nonlinear channels
- q speedup before QECC?
- NPT bound entanglement?

Foundations

- role of causality
- new reconstructions based on interpretations
- q thermodynamics
- network vs Bell nonlocality
- certification of randomness and quantumness in temporal correlations
- QT–exotic space-times connection
- falsifying sensitve collapse models
- why probabilities?

2017 Open Problems I

Many-body

- more applications tensor networks
- many-body localization
- applications of TN to: RNG, QFT, q learning, c learning
- quantum PCP conjecture
- efficient algorithms for gapless systems
- open q systems w non-Markovian effects

Implementations

- useful q metrology
- understanding Fermi-Hubbard model
- q thermo machines to use
- certifying q supremacy without (or with) universality
- q certification
- device-independent QKD
- q nanophotonics for QIP
- is FTQC really possible?
- is adiabatic QC really possible?
- make a surface code

Bets over the years

- NPT bound entanglement? 2011 Ruskai: No
- general composable security proof for DI-QKD 2011 Winter: yes; Acín: 2 yrs
- Peres' Conjecture? 2011 Perez-García: False ✓ Vertesi and Brunner 2014
- optimal states for 1-mode Gaussian channels? 2011 García-Patrón: vacuum (✓)
- loophole-free Bell test 2011 Kleinmann: $> 2y \checkmark 2013$ Cabello: 2y, Weinfurter (\checkmark) 2015: Hensen et al: Giustina et al: Shalm et al
- D-wave QC? 2011 Cirac: No (2y) ✓
- g repeater better than direct transmission 2011 Brask Bohr: 3y
- q sim better than c sim Lewenstein: 2y; Cirac: > 1y
- the variational method? 2013 Cirac: PEPS (10y)
- business interest in QC will increase 2015 Latorre: yes (2y)

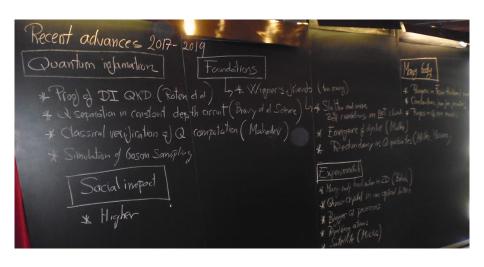
Voted predictions

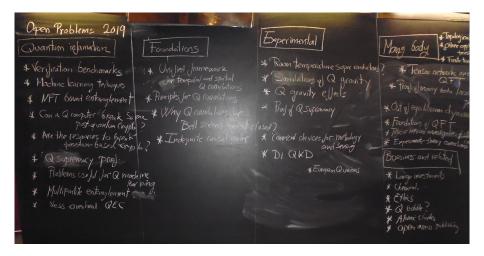
a universal quantum computer within our lifetimes?

```
in 2013: YES: 50; NO: 16 in 2015: YES: 60; NO: 11; ABS: 5.
```

- predictions 2017 (for 2019):
 - quantum computers with X qubits and 10³ gates:

```
(A) > 100 qubits (3; 4%) (B) 50 - 100 (37; 58%) (C) < 50 (24; 38%)
```


• device-independent QKD:


$$(A) < 1 \text{km} (3; 6\%) (B) 1 - 10 \text{km} (35; 71\%) (C) > 10 \text{k} (11, 23\%)$$

- reliable phase diagram Hubbard model:
- (A) Yes (9; 29%) (B) NO (22; 71%)
- q metrology: commercial device using
- (A) only entanglement (24; 61%) (B) entanglement and (Q?)EC (2; 5%) (C) none (13, 33%)

2019

recent advances - major open problems - bets/predictions

2019: Recent advances

Quantum Information

- Proof of DI QKD (Arnon-Friedman et al., '16)
- Q separation constant-depth circuit (Bravyi, Gosset, Koenig '18)
- Classical verification of QC (Mahadev, 2018)
- Simulation of Boson sampling
 Quantum foundations
- Wigner's friend (Frauchinger & Renner)
- Bell correlations (Slofstra 2017...)
- Emergence object. reality (Müller)
- Redundancy in Q postulates (Masanes, Galley, Müller 2018)

Many-body

- Fermi Hubbard (Corboz et al.)
- Constructions from free fermions
- Frustrated q spin models not tractable by Q Monte Carlo
 Implementations
- Many-body localization in 2d (Bloch)
- Quasicrystals in optical lattices (Bloch?)
- Tweezer technology (Lukin)
- Scaling up to 50 qubits (ions, atoms, and sc qubits)
- Satellite (Micius)

2019: Open problems I

Quantum information

- verification & benchmarks of QC
- quantum machine learning
- NPT bound entanglement?
- Can QC break post-q crypto?
- Resources to break position-based crypto
- Q supremacy proof
- Problems useful for QML
- Multipartite entanglement
- QEC: Higher-threshold error correcting codes with less overhead

Many-body

- TNs and QFT
- Proof of MBL phase
- Out-of-equilibrium dynamics
- Foundations of QFT
- TN investigations of strong correlations
- Experiment theory corrections
- Classification of topological phases in 3D
- Applications of TNs outside QMB physics
- Finite temperature results

2019: Open problems II

Foundations

- Unified Framework for temporal and spatial Q correlations
- Principles (and bounds) for Q correlations
- Why are Q correlations for bell scenarios not closed?
- Indefinite causal order

Business & Societal

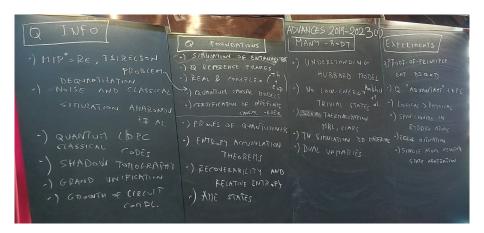
- large investments (financial, chemical,...)
- ethics?
- q bubble? and consequences?
- open access publishing

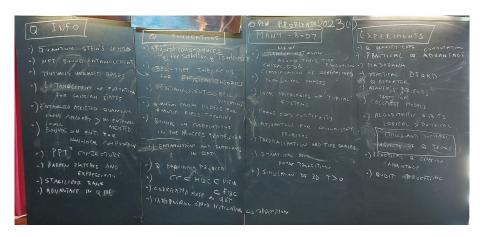
Implementations/Experiment

- Room-temp SC
- QSim of Q gravity
- detection of Q Gravity effects
- Proof of Q supremacy
- Commercial devices for metrology and sensing
- DI QKD

2019 Voted Predictions

Will it be shown within 2 years that ...?


- QC is better than CC YES: 9: No: 30
- q supremacy proof without depth restrictions
 YES: 9; NO: 7
- Slofstra "problem" is not a problem: YES: Adán, Alex, Barbara; NO: David, Pepe
- usable DI-QKD (> 1Mbit/s)YES: 8; NO: 23
- QECC-corrected (& improved) qubit: YES: 30; NO: 8


- q supremacy YES: 20; NO: 23
- reliable algorithm for simulating dynamics (≥ 1d):
 - YES: 8; NO: 21
- major qtech investment (≥ 100MEUR) by European company? YES: 28; NO: 7
- will investment hurt the way we do science? YES: 26; NO: 17

A fault-tolerant scalable QC within your lifetime? YES: 40; NO: 12

2023

recent advances - major open problems - (bets/predictions)

2023: Recent advances

Quantum Information

- MIP* = RE; Tsirelson prob [Ji et al.]
- dequantization, noise and classical simulation (Aharonov et al.)
- classical and quantum LDPC codes [Panteleev and Kalachev]
- shadow tomography [Huang et al.]
- g singular value decomposition / grand unification of a algorithms [Gilvén et al.]
- growth of circuit complexity [Haferkamp et al.]
- proofs of quantumness [e.g., Brakerski et al.1
- entropy accumulation theorems [e.g., Metger et al.]
- recoverability & rel entropy in v Neumann algebras/OFT [Faulkner et

Quantum foundations

- simulation of entanglement [Renner et al.]
- q reference frames [Giacomini et al.] (2017)
- "real and complex" [Renou et al.]
- q causal models [Barrett et al.]
- certification of indefinite causal order [van der Lugt et al.]

2023: Recent advances II

Many-body

- understanding the Hubbard model [Review by Qin et al.]
- no low-energy trivial states [Anshu et al.]
- slow thermalization, many-body scars (review), many-body localization
- tensor-network simulations of 3d materials
- dual unitaries [Bertini et al.]

Experiments

- proof-of-principle DI-QKD [Nadlinger et al. and Zhang et al.]
- q "advantage" experiments [Arute et al.]
- logical qubit better than physical [Ryan-Anderson et al.]
- max-cut and spin-liquids in Rydberg atoms [Ebadi et al., Semeghini et al.]
- error mitigation [Review by Cai et al.]
- single-atom cluster-state generation [Thomas et al.]

Most popular advances 2019-23 acc. to SciRate I

- 287 MIP*=RE, Ji et al., arXiv:2001.04383 (</
- 197 Exponential quantum speedup in simulating coupled classical oscillators, Babbush *et al.*, arXiv:2303.13012
- 183 NLTS Hamiltonians from good quantum codes, Anshu *et al.*, arXiv:2206.13228 (✓)
- 179 Information-theoretic bounds on quantum advantage in machine learning, Huang *et al.*, arXiv:2101.02464
- 171 The Complexity of NISQ, Chen et al., arXiv:2210.07234
- 162 Predicting Many Properties of a Quantum System from Very Few Measurements, Huang *et al.*, arXiv:2002.08953 (✓)
- 162 A polynomial-time classical algorithm for noisy random circuit sampling, Aharonov *et al.*, arXiv:2211.03999 (✓)
- 156 Fault-Tolerant Operation of a Quantum Error-Correction Code, Egan *et al.*, arXiv:2009.11482

Most popular advances 2019-23 acc. to SciRate II

- 150 Provably efficient machine learning for quantum many-body problems, Huang *et al.*, arXiv:2106.12627
- 148 Linear growth of quantum circuit complexity, Haferkamp *et al.*, arXiv:/2106.05305 (✓)
- 146 The Quantum Fourier Transform Has Small Entanglement, Chen et al., arXiv:2210.08468
- 146 Building a fault-tolerant quantum computer using concatenated cat codes, Chamberland *et al.*, arXiv:2012.04108
- 143 Quantum advantage in learning from experiments, Huang *et al.*, arXiv:2112.00778
- 142 Efficient tensor network simulation of IBM's kicked Ising experiment, Tindall *et al.*, arXiv:2306.14887
- 142 Efficient classical simulation of random shallow 2D quantum circuits, Napp et al., arXiv:2001.00021

Most popular advances 2019-23 acc. to SciRate III

- 137 Exponentially tighter bounds on limitations of quantum error mitigation, Quek *et al.*, arXiv:2210.11505
- 137 The Power of Adiabatic Quantum Computation with No Sign Problem, Hastings, arXiv:2005.03791
- 137 Dissipative ground state preparation and the Dissipative Quantum Eigensolver, Cubitt, arXiv:2303.11962
 - (list leaves out review articles...)

2023: Open problems I

Quantum information

- q Stein's lemma
- NPT bound entanglement
- mutually unbiased bases
- EoF for Gaussian states
- ent-assisted q comm complexity
- lower bounds on ent for non-local computation
- PPT² conjecture
- barren plateaus and expressivity
- stabilizer rank
- advantage in QML
- CC[?]hQC[?]NISQ[?]FQC
- corr noise in QEC
- interpolation error mitigation error correction

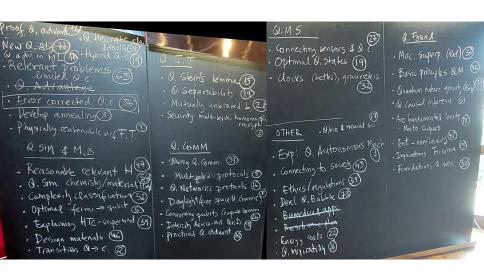
Many-body

- new tensor-network algorithms, time-ev, chiral PEPS (d>1)
- classific of gen. topolog. phases
- local observables of "typical" systems
- chaos ⇔ complexity
- advantage for ground-state problems?
- thermalization and time scales; ETH
- dynamical and complexity phase transitions
- simulations of 3d, T > 0 systems

2023: Open problems II

Foundations

- physical consequences of solution of Tsirelson's problem
- Bell-type theorems for physical(?) theories
- entanglement ⇒ Bell violation?
- q causal models for QFT
- bounds on correlations in process framework
- entanglement and entropies in QFT
- q marginal problem


Business & Societal

ethics of q tech

Experiment

- practical q advantage
- practical DI-QKD
- q repeater
- Wigner's friends
- tests of collapse models
- practical q sensing advantage
- qudit processing
- Majoranas
- q gravity experiments

Open Problems Session (3rd week) I

Open Problems Session (3rd week) II

Quantum Computing

- proof of q advantage
- new q algorithms
- relevant problems for limited QC
- error corrected QC
- develop annealing
- q advantage in machine learning
- physically reasonable def of fault-tolerance
- q heuristic algorithms and tools
- hybrid classical-q computing

QIT

- q Stein's lemma
- q separability
- mutually unbiased bases
- security of multi-server homomorphic encryption

Quantum Measurement/Sensing

- connecting sensors & QC
- optimal q states
- better clocks, gravimeters

Open Problems Session (3rd week) III

Quantum Simulation & many-body

- reasonable relevant Hamiltonians
- q sim of chemistry/materials
- complexity classification
- ullet optimal mapping fermions o qubits
- explaining tigh-T_c supercond
- design materials
- transition $q \rightarrow c$

Quantum Communication

- noisy q comm
- multiplex protocols
- q network protocols
- daylight/free-space q channel
- converting comp to comm qubits
- inter-city device-independent QKD
- practical q advantage

Open Problems Session (3rd week) IV

Quantum Foundations

- macro superpositions (exp)
- basic principlesd for QM
- q nature of gravity (exp)
- q causal inference
- fundamental limits to macro superpos?
- entanglement ↔ non-locality
- implication of sol to Tsirelson's problem
- foundation of q advantage

Other

- q autonomous machines (exp)
- connecting to society
- ethics/regulations
- deal w/ q bubble
- energy costs
- q inspiration
- q bio & neuro science

Open Problems Session (3rd week; ranked) I

Quantum Computing

- error corrected QC (86)
- new q algorithms (77)
- proof of q advantage (76)
- relevant problems for limited QC (65)
- q heuristic algorithms and tools (39)
- hybrid c-q computing (19)
- q advantage in machine learning (11)
- physically reasonable def of fault-tolerance (9)
- develop annealing (3)

QIT

- mutually unbiased bases (22)
- q separability (19)
- q Stein's lemma (15)
- security of multi-server homomorphic encryption (3)

Quantum Measurement/Sensing

- better clocks, gravimeters (32)
- connecting sensors & QC (27)
- optimal q states (19)

Open Problems Session (3rd week; ranked) II

Quantum Simulation & many-body

- q sim of chemistry/materials (54)
- complexity classification (52)
- reasonable relevant Hamiltonians (47)
- design materials (46)
- explaining tigh-*T_c* supercond
 (39)
- transition $q \rightarrow c$ (22)
- optimal mapping fermions → qubits (5)

Quantum Communication

- noisy q comm (51)
- converting comp to comm qubits (26)
- q network protocols (16)
- practical q advantage (16)
- inter-city device-independent QKD (9)
- multiplex protocols (8)
- daylight/free-space q channel (8)

Open Problems Session (3rd week; ranked) III

Quantum Foundations

- q nature of gravity (exp) (73)
- basic principlesd for QM (46)
- entanglement ↔ non-locality (42)
- macro superpositions (exp) (30)
- foundation of q advantage (30)
- fundamental limits to macro superpos? (18)
- implication of sol to Tsirelson's problem (15)
- q causal inference (5)

Other

- deal w/ q bubble (73)
- connecting to society (45)
- ethics/regulations (31)
- q inspiration (26)
- energy costs (22)
- q bio & neuro science (17)
- q autonomous machines (exp)(3)

IQOQI-List of Open Problems in Quantum Information

OPEN QUANTUM PROBLEMS

https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems

1	All the Bell Inequalities	R.F. Werner	1999/10/25	2010	Quantum
2	Undistillability implies ppt?	D. Bruß	2000/03/02	2006/08/16	Entanglement theory
5	Maximally entangled mixed states	K. Audenaert	2001/11/08		Entanglement theory
8	Qubit formula for Relative Entropy of Entanglement	J. Eisert	2003/06/20		Entanglement theory
12	Bell Inequalities for long range vacuum correlations	R. Verch	2002/01/22		Quantum foundations
13	Mutually unbiased bases	BG. Englert	2003/01/31	2004/01/07	Quantum communication
14	Tough error models	E. Knill	2003/01/31		Quantum computation
15	Separability from spectrum	E. Knill	2003/01/31	2013/09/08	Entanglement theory
16	Complexity of product preparations	E. Knill	2003/01/31		Quantum computation
20	Reversible entanglement manipulation	M. Plenio	2005/02/08	2023/01/23	Entanglement theory
23	SIC POVMs and Zauner's Conjecture	D. Gross	2005/02/17		Quantum communicatio
24	Secret key from all entangled states	P. Horodecki	2005/03/15		Quantum communication
25	Lockable entanglement measures	P. Horodecki	2005/03/15		Entanglement theory
26	Bell inequalities holding for all quantum states	R. Gill	2010/04/19		Quantum foundations
27	The power of CGLMP inequalities	R. Gill	2006/02/28		Quantum foundations
29	Entanglement of formation for Gaussian states	O. Krüger	2005/04/20		Entangleme

.uii	i-bropieriis				
31	Individual measurement strategies on geometrically uniform states	J. Bae	2005/10/06		Quantum communication
32	Bell inequalities: many questions, a few answers	N. Gisin	2007/02/02	2016/12/01	Quantum foundations
34	The geometry of quantum nonlocality	W. Slofstra and M. Navascués	2017/04/26		Quantum foundations
35	Existence of absolutely maximally entangled pure states	F. Huber	2017/05/19		Quantum computation
36	Composition of decoherence functionals	M. Navascués	2017/05/19		Quantum foundations
37	Stronger submultiplicativity for the diamond norm	D. Reeb	2017/05/19		Quantum communication
38	The PPT-squared conjecture	M. Christandl	2017/05/19		Quantum communication
39	Steering bound for qubits and POVMs	R. F. Werner	2017/05/19		Entanglement Theory
40	Refinement of the Bessis- Moussa-Villani conjecture	D. Hägele	2017/05/19		Many-Body Quantum Information Theo
41	All rank inequalities for reduced states of quadripartite quantum states	M. Huber, N. Linden and A. Winter	2017/05/20		Entanglement theory
42	Reversible dynamics on composite systems	B. Dakic and M. Müller	2017/05/20		Quantum foundations
43	Are all extensibly causal processes purifiable?	M. Araújo and C. Brukner	2017/05/22		Quantum foundations
44	Complexity of the separability problem	Henry Yuen	16/01/2023		Quantum complexity theor
45	Single-prover interactive proofs for quantum computations	Henry Yuen	16/01/2023		Quantum complexity theor
46	Thermodynamic implementation of Gibbs-Preserving Maps	Philippe Faist	16/01/2023		Quantum thermodynamics
47	Is there bound information?	Matthias Christandl	20/04/2023		Quantum cryptography