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Motivation

Plasmonic and hybrid nanocavi1es provide strong light-ma7er interac1ons

" How can we understand quantum light-matter interactions in such (multi-mode) systems?
" How can we use them for (ultrafast) quantum technologies (single-photon sources, nonlinear elements, etc.)?
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(Fig. 2b and Supplementary Information), with the methylene-blue 
molecule aligned vertically in the gap19. Previous studies17 with 
empty cucurbit[n]urils show that the gap is 0.9 nm, with a refractive  
index of 1.4.

Dark-field scattering spectra from individual NPoMs show the effect 
of aligning the emitter in different orientations (Fig. 3a). With µm par-
allel to the mirror (top; without cucurbit[n]urils the methylene blue lies 
flat on the metal surface), the resonant scattering plasmonic peak (ωp) 
is identical to that of NPoMs without any emitters (ω0). But with µm 
perpendicular to the mirror (bottom), the spectra show two split peaks 
(ω+ and ω−) resulting from the strong interaction between emitters 
and plasmon. We contrast three types of samples. Without dye (Fig. 3b, 
top), a consistent gap plasmon (ωp) at 660 ±  10 nm is seen. Small fluc-
tuations in peak wavelength are associated with ±5-nm variations in 
nanoparticle size (Supplementary Fig. 2). When this NPoM is partially 
filled with methylene blue inside the cucurbit[7]uril, peaks at 610 nm 
and 750 nm are seen either side of the absorption peak of methylene 
blue at ω0 (Fig. 3b, bottom), corresponding to the formation of hybrid 
plasmon–exciton (‘plexciton’) branches, ω± =  ω0 ±  g/2. This yields a 
Rabi frequency of g =  380 meV, confirmed by full three-dimensional 
finite-difference time-domain (FDTD) simulations (Supplementary 
Fig. 3). While some studies13,14 have shown significant variations in 
ω±, we obtain highly consistent results, with no spectral wandering 
observed on individual NPoMs. With dye molecules perpendicular to 
the plasmon field (without cucurbit[n]urils), only a gap plasmon is seen 
(Supplementary Fig. 4c). Methylene-blue molecules self-assembling on 
gold orient flat to the surface, owing to π -stacking interactions between 
the conjugated phenyl rings and the metal film20. Our study thus shows 
how molecular scaffolding is essential to yield molecular coupling to 
the gap plasmon.

To map the dispersion curve, we combine scattering spectra from 
differently sized nanoparticles, plotted according to their detuning 
from the absorption (‘exciton’) resonance. Simulations of nanoparticles 
of 40–60 nm in diameter (Supplementary Fig. 5) show gap plasmons 
tuning across the exciton. A simple coupled-oscillator model matches 
the quantum mechanical Jaynes–Cummings picture13:

ω ω ω δ= ( + )± +± g1
2

1
2p 0

2 2

with plasmon and exciton resonance energies ωp and ω0, and detuning 
energies of δ =  ωp − ω0. Extracting ω± from the scattering spectra allows 
ωp to be calculated (knowing ω0, which does not show any spectral 

wandering). This fitting reveals typical anticrossing (mixing) behav-
iour (Fig. 3c), with g =  305 ±  8 meV at δ =  0. We find 2g/γpl ∼  5, well 
into the strong coupling regime. A key figure of merit is the Purcell 
factor, P =  Q/V, which characterizes different cavity systems (Fig. 1a). 
For our plasmonic nanocavities, P ≈  3.5 ×  106 (Supplementary Fig. 6);  
this is over an order of magnitude larger than the Purcell factors of 
state-of-the-art photonic crystal cavities5, which have reached 105, 
while state-of-the-art planar micropillars21,22 attain Purcell factors of 
3 ×  105. The ultralow cavity volume arises here because of the very 
large field confinement in such nanometre-sized gaps (Supplementary  
Fig. 9e). Such Purcell factors imply photon emission times below 
100 femtoseconds, seen as the ħ/g ∼ 30-femtosecond Rabi flopping, 
but very short to measure directly.

To probe single-molecule strong coupling, we systematically decrease 
the number of methylene-blue molecules by reducing the ratio of meth-
ylene blue to cucurbit[7]uril. Previous studies and simple area estimates 
imply that 100 cucurbit[7]uril molecules lie inside each nanocavity 
(Supplementary Fig. 9). With the initial 1:10 molar ratio of methylene 

Figure 1 | Comparing single-molecule optical cavities. a, The quality 
factor, Q, of a nanocavity is plotted against its effective volume, V/Vλ 
(scaled to Vλ =  (λ/n)3), showing strong-coupling (green arrow), room-
temperature (blue arrow), and plasmonic (orange arrow) regimes for 
single emitters. The icons show realizations of each type of nanocavity: 
from right, whispering gallery spheres (used as microresonators in 
filters, sensors and lasers), microdisks, photonic crystals (with possible 
applications in optical computing), micropillars (used in high-throughput 

screening), and nanoparticle-on-mirror geometry (NPoM, used here). 
Purcell factors (P) show emission-rate enhancements. b, Diagram of a 
NPoM. The blue arrow in the gap between the nanoparticle and the mirror 
locates the transition dipole moment of the emitter. The inset above shows 
the simulated near-field of the coupled gap plasmon in the dashed box, 
with maximum electric field enhancement of about 400, oriented vertically 
(in the z direction).
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Figure 2 | Plasmonic nanocavity containing a dye molecule.  
a, Absorption spectra of methylene blue in water, with (blue) and without 
(red) encapsulation in cucurbit[n]urils of different diameters (dashed and 
solid red lines). Icons show individual molecules (in blue; line centred at ω0)  
and paired molecular dimers (in red). b, Illustration of a methylene-blue 
molecule in cucurbit[n]uril, in the nanoparticle-on-mirror geometry  
used here.
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“Resonances”

Descriptions of electromagnetic fields

“Tradi'onal” Quantum Op'cs
• Discrete modes (o-en only one)
• Losses described as Lindblad terms

“Traditional” Nanophotonics
• Continuous modes (any frequency and direction)
• Green’s function (tensor) determines “everything”



Subwavelength cavity QED
We want/need a quantum descripDon of light-maFer interacDons in nanophotonic structures.
But what do we really mean with “light” and “ma8er”?

“Tradi'onal” quantum op'cs / cavity QED
1) Cavity mode is a propagaDng EM field 

with boundary condiDons " discrete modes
2) Losses are small perturbaDon on top

⇠ �
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sub-wavelength!



Subwavelength cavity QED
We want/need a quantum description of light-matter interactions in nanophotonic structures.
But what do we really mean with “light” and “matter”?

“Tradi'onal” quantum op'cs / cavity QED
1) Cavity mode is a propagaDng EM field 

with boundary condiDons " discrete modes
2) Losses are small perturbaDon on top

Nanophotonic (subwavelength) quantum op'cs
1) Material structure is integral part of “light” modes
2) “Photons” are actually mixed light-ma8er excita'ons

(e.g., surface plasmon polaritons)
3) Fast material and radiaDon losses integral to descripDon

(lifeDmes on the order of femtoseconds)

Side comment for theorists: 
Dominant interacDon is with charges in the material (Coulomb 
force / longitudinal fields), not with propagaDng (transverse) 
fields " fundamental interacDon is 𝜇⃗ # 𝐸, not 𝑝⃗ # 𝐴 and 𝐴!
(“an electron by any other name is sDll an electron”)

J. J. Baumberg et al., Nat. Mater. 18, 668 (2019)

REVIEW ARTICLENATURE MATERIALS

Basic concepts in plasmonic gap modes
To discuss the plasmonic gap modes, we first consider an infinite 
planar MIM multilayer35,36. For small gaps (d < 10 nm) of dielectric 
permittivity ε = ng g

2 between metallic walls (εm), the dispersion rela-
tion of the lowest MIM modes can be written analytically35,37

ε ζ ε ε ζ∕ = = + + + − ∕∥k k n( ) 2 [1 1 ( ) ] (1)0
2

eff
2

g g m

with

ζ ε ε= ∕ −k d( ) (2)0 m g
2

which for typical nanogap parameters possess high wavevectors 
(k|| = 10–100 k0 with k0 = 2π/λ) and thus short effective wavelengths 
(Fig. 2a). These gap plasmon modes are robust against attenuation 
because when their in-plane wavevector increases with decreasing 
gap, the imaginary out-of-plane wavevector must also increase to 
ensure = +∥ ⊥k k k0

2 2 2, with a resulting field penetration depth

δ ε ε= ℑ = ℜ⊥
⊥k

d1
m{ } 2 e{1 / } (3)

g m

that correspondingly decreases38. As a result, the loss per unit length 
for MIM plasmons remains unchanged as the gap decreases (they 
travel slower, but retract from the metal, as similarly shown for 
monolayer metals such as graphene39).

This continuum of MIM gap modes is broken into discrete states 
by the shape of the particle’s facets, which localize the modes at the 
finite gap. A simple two-dimensional Fabry–Pérot resonator model 
given by the partial reflection of plasmons at the discontinuities 
of the MIM gap from each lower facet edge serves to capture the 
nature and symmetry of the modes sustained. For facet width w, the 
discrete wavelengths are then38,40

λ α λ λ
ε
α ε= π ≃ + ∞w n

w
d

( ) (4)i
s

i i
eff p

g

where αi are the zeros of the Bessel functions of the first kind 
(assuming here two-dimensional circular symmetry), and where 
a Drude metal permittivity ε ε λ λ= − ∕∞m

2
p
2 with dielectric back-

ground ε∞, and plasma wavelength λp is used (for Au λp≈148 nm). 
This set of modes spans the visible and near-infrared as the MIM 
facet or patch size w is varied (Fig. 2b). More generally, these tune 
also with the precise two-dimensional facet shape thus giving gap 
modes smn where indices m, n indicate the number of nodes in radial 
and azimuthal directions.41 With such small effective wavelengths, 

these modes have very poor direct coupling efficiency to free space 
(of order 10–4).

However, the gap modes are able to couple to plasmonic  
antenna modes that span the entire nanoparticle–substrate system  
(Figs. 1,2b), and this greatly increases their coupling. Antenna 
mode wavelengths can be estimated using simple circuit models, 
which assume quasi-static field response in such small sub-wave-
length resonators42–44. These treat each individual nanocomponent 
as lumped LCR resonators (Fig. 2b), which are then capacitively 
coupled by the gap, Cg, to give the lowest antenna mode (l = 1)45

λ λ ε ε ε= + + ∕∞ C C2 4 (5)l
1 p d d g NP

where εd is the permittivity of the dielectric medium in which 
the system is embedded, and the capacitance of the nanoparticle/
structure is CNP (2πRε0 for a sphere of radius R, with corresponding 
expressions for cubes or plates). This formula works for patterned 
multilayers, dimers, nanopatches and nanoparticles on a surface46, 
using the appropriate Cg,NP, and scales with the height of the nano-
particle because charges oscillate across the entire structure (Fig. 1).  
For dimers or spherical NPoMs45, ε ς= + ∕χC C R dln[1 ]g NP g   
with constants χ≈0.5, ϛ≈0.15 for the NPoM, giving characteristic 
redshifts with decreasing gap and increasing nanoparticle size:

λ λ ε ε ε ε ς∕ = + + + ∕χ
∞ R d( ) 2 4 ln[1 ] (6)l

1 p
2

d d g

The next order (l = 2) antenna mode is shifted to shorter  
wavelengths by a factor ~1.25, set by the charge distributions  
that give the gap capacitance. Coupling strengths from free space to 
the antenna mode follow as R3, as expected from quasistatic dipole 
coupling to the entire nanoparticle volume46.

Antenna modes l with the correct symmetry can couple to spe-
cific MIM gap plasmons smn, typically yielding strong anticrossings 
(Fig. 2b) and mixed smn + l = jn modes. It is around these anticross-
ings between λl and λmn

s  that light is most efficiently coupled into 
the nanogaps40 (Fig. 2c). However, the antenna–nanogap coupling 
depends exquisitely on the shape of the facet edges, as well as the 
mode symmetries, since facet edge morphology on the scale of 
1/k||≈1 nm controls how easily gap plasmon fields reach around 
to the upper surfaces of the NP where antenna modes are located. 
Similar considerations obtain for modes of the cube-on-mirror47, 
which depend also on facet edge shapes. In larger gaps (d> 5 nm) 
MIM cavity nanogap modes with odd m (such as s11), which sup-
port in-plane optical fields are found in the near-infrared (NIR); 
however, for smaller gaps these rapidly tune further into the infra-
red (λ s

11 > 1 μm). By contrast, modes with even m possess strongest 
vertical (perpendicular) optical fields in the gap (s02) and remain in 
the visible–NIR even for the smallest gaps. Gap modes that do not 
mix with the antenna modes form dark modes48.

Different dipole-type emission patterns (Fig. 2d) arise from  
the different field orientations in the nanogap (Fig. 2e). In-plane 
modes present for larger gaps radiate normal to the substrate (85% 
collected by NA 0.9). By contrast, vertically polarized gap modes 
radiate symmetrically at high angles, θ θ∝ ∣ + ∣I r( ) 1 sinp

2 2  (where 
rp(θ) is the Fresnel factor for p-polarized light), giving maximum 
emission at ~60° in a full width at half maximum (FWHM) of 10° 
(with 55% thus collected by an objective with numerical aperture 
(NA) of 0.9), which is radially polarized and focusses to a real-
space ring (Fig. 2d, inset). For real facets that are asymmetrically 
shaped, more complex polarization-dependent scattering spectra 
are observed, involving several split modes41,49. The different mode 
tuning with facet size can be seen by morphing a spherical NP into 
a nanocube50 of the same height (Fig. 2f), showing how the antenna 
mode crosses the in-plane field mode s11 (different symmetry), 
while anticrossing the vertical field mode s02. The antenna modes 

Free space Antenna
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Z0 = 377 Ω

λeff
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Fig. 1 | Impedance matched coupling of light from free space to atomic 
scale. Schematic of cascade of effective wavelength scales between  
free-space photons, coupled via antennas into nanogap modes, which can 
then couple to atomic-scale protrusions (‘picocavities’).

NATURE MATERIALS | VOL 18 | JULY 2019 | 668–678 | www.nature.com/naturematerials 669



Quan,za,on strategy: Macroscopic QED

1) Separate:
a) Emi8er(s) (collecDons of charged parDcles)

Described through quantum chemistry or similar

b) “Cavity” (arbitrary material structure with linear response)
Described through macroscopic electromagne'sm (Maxwell)
Local response: permiUvity 𝜖(𝑟, 𝜔) and permeability 𝜇 𝑟, 𝜔

2) Treat “cavity” material + free-space EM modes: 
a) Find system of coupled harmonic oscillators reproducing macroscopic Maxwell equaDons.

DissipaDon: coupling to “internal” harmonic oscillators.
b) Diagonalize (formally " soluDons expressed through Green’s funcDons)
c) QuanDze harmonic oscillators (promote variables to operators) 

" quan'zed medium-assisted EM field: infinite collecDon of bosonic modes (quantum harmonic oscillators)

C. Climent et al., Angew. Chemie Int. Ed. 58, 8698 (2019)

Hu#ner and Barne#, Phys. Rev. A 46, 4306 (1992); Dung, Knöll, Welsch, Phys. Rev. A 57, 3931 (1998) 
Scheel, Knöll, Welsch, Phys. Rev. A 58, 700 (1998); Philbin, New J. Phys. 12, 123008 (2010)

Scheel and Buhmann, Acta Phys. Slov. 58, 675 (2008); Buhmann, Dispersion Forces I & II (2012)
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Quantization strategy: Macroscopic QED

3) Reintroduce emitter & do unitary transformation of EM modes to simplify Hamiltonian:
Final result: Emitter – EM mode interaction fully characterized by “spectral density” (~ local density of states) 

<latexit sha1_base64="iGfK1vAZGhDCmoBMUe/+t42IFRc="></latexit>
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µE · ImG(rE , rE ,!) · µE

Markovian 𝑱 𝝎

Spectrally flat

“Memoryless” environment

Non-Markovian 𝑱 𝝎

Arbitrary densities

Dynamics depend on 
previous times

𝜔

𝐽
𝜔

𝜔

𝐽
𝜔

𝑱 𝝎 fully characterizes the “cavity” 
" two systems with the same spectral density 
are indistinguishable for the emitter

Spectral density is the “central” quantity in 
open quantum systems theory.

Formulation used here: “Emitter-centered modes”
Feist, Fernández-Domínguez, García-Vidal, Nanophotonics 10, 477 (2020)

Purcell Factor:
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Lorentzian spectral density

Lorentzian spectral density (“resonance”):
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Imamoğlu, Phys. Rev. A 50, 3650 (1994)
Tamascelli, Smirne, Huelga, Plenio, Phys. Rev. Le#. 120, 030402 (2018)
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Multiple lossy modes: sum of Lorentzians
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dimer, we find a very good agreement, as seen in Fig. 2,
showing the Purcell factor FP ¼ Γ=Γ0, where Γ0 is the
spontaneous emission rate in a homogeneous medium.
Although the agreement in Fig. 2 is already striking
(especially given the completely different nature of the
calculations [56]), we remark that the restriction to a few
dominant QNMs in the QNM-JC model, when applied to
spontaneous emission, is generally different, and typically
less accurate, than the use of the same approximation to the
Green’s function in a semiclassical approach. Whereas
the latter relies only on the expansion at a single point, the
QNM-JC model is based on integrals of the QNMs
throughout the resonator material to obtain Sc. For the
plasmonic dimer, we find Snradc ¼ 0.58 and Sradc ¼ 0.40.
In addition, Snradc and Sradc yield the nonradiative and
radiative beta factor, respectively, via βnrad ¼ Snradc =Sc
and βrad ¼ Sradc =Sc. See [56] for details of the QNM
calculation, f̃μðraÞ, and material parameters.
(II) Two-QNM-JC model.—We next discuss a case

where cross terms χμη of two QNMs μ, η ¼ 1, 2 cause
interference effects, clearly not available in phenomeno-
logical quantization approaches. Starting again from the
quantum Langevin equation in Eq. (6), we derive a
Lindblad master equation analogue to the one-mode case,
using the additional assumptions [27] that the two input
fields associated with F̂μ (μ ¼ 1, 2) are independent from
each other and that the real parts of the eigenfrequencies ω1

and ω2 are not degenerate [63]. Again, following the
approach of Ref. [27], we now obtain the two-QNMmaster
equation

∂tρ ¼ −
i
ℏ
½Hsys; ρ% þ L½a%ρ; ð8Þ

where ωμ are no longer eigenvalues of the electromagnetic
part of the Hamiltonian, since an intermode coupling
appears. Instead, a pair of shifted eigenfrequencies ωs

μ is
formed [see Fig. 3(c)]. We stress that the Lindblad

dissipator L½a%ρ ¼
P

μ;ηχ
ð−Þ
μη ð2aηρa†μ − a†μaηρ − ρa†μaηÞ

contains also processes with interacting QNMs μ ≠ η.
Although the above off-diagonal coupling may seem

unusual, it is known that a significant mode interference,
such as a “Fano-type” resonance, can occur because of the
different phase terms of overlapping QNMs [11,64]. In the
QNM-JC model, this interference is captured by the off-
diagonal terms, as illustrated in Fig. 3, where we study the
electromagnetic response of the metal dimer from (I) on
top of a high-Q photonic crystal cavity [see Fig. 3(a)].
Figure 3(b) shows the two QNMs of interest and the
semiclassical result of the Purcell factor as calculated using
a two-QNM approximation [11,56]; Fig. 3(c) shows the
corresponding results of the QNM-JC model in this
pronounced QNM coupling regime [65]. The system
parameters indicate the bad cavity limit, where the
QNM-JC master equation consists of a Lindblad dissipator
for spontaneous emission of the form L½σ−%ρ ¼
Γð2σ−ρσþ−σþσ−ρ−ρσþσ−Þ, in which Γ ¼ Γdiag þ Γndiag

with a diagonal contribution Γdiag ¼
P

μSμμjg̃μj2γμ=
ðΔ2

μa þ γ2μÞ and a nondiagonal contribution Γndiag ¼P
μ;η≠μg̃μSμηg̃

'
ηKμη, which is here expressed in terms of

the coupling matrix Kμη¼½iðωμ−ωηÞþγμþγη%=½2ðΔμa−
iγμÞðΔηaþiγηÞ% [56]. Comparing the results in Fig. 3, one

FIG. 2. (a) Purcell factor FP as a function of the energy for the
plasmonic dimer in Fig. 1. Solid and dashed curves show the results
of the QNM-JCmodel and a semiclassical approach, using a single
QNM Green’s function approximation, respectively. (b) Normal-
ized spatial profile of the QNM of interest with ω̃cðeVÞ ¼
1.7786 − 0.0677i, corresponding to Q ¼ ωc=ð2γcÞ ≈ 13.

FIG. 3. (a) Gold dimer on top of a photonic crystal cavity,
supporting two overlapping QNMs with frequencies ω̃2ðeVÞ ¼
1.6063 − 0.0145i and ω̃1ðeVÞ ¼ 1.6428–0.0548i (mode 1 orig-
inates from the dimer). (b) QNM profiles and semiclassical
Purcell factor as a function of the energy. (c) QNM-JC Purcell
factor with diagonal contributions Γdiag (black dashed line,
scaled) and the full emission rate Γ ¼ Γdiag þ Γndiag (solid blue
line). Vertical solid and dashed lines show the shifted and original
eigenfrequencies, respectively.
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Green’s function in a semiclassical approach. Whereas
the latter relies only on the expansion at a single point, the
QNM-JC model is based on integrals of the QNMs
throughout the resonator material to obtain Sc. For the
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radiative beta factor, respectively, via βnrad ¼ Snradc =Sc
and βrad ¼ Sradc =Sc. See [56] for details of the QNM
calculation, f̃μðraÞ, and material parameters.
(II) Two-QNM-JC model.—We next discuss a case

where cross terms χμη of two QNMs μ, η ¼ 1, 2 cause
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Lindblad master equation analogue to the one-mode case,
using the additional assumptions [27] that the two input
fields associated with F̂μ (μ ¼ 1, 2) are independent from
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contains also processes with interacting QNMs μ ≠ η.
Although the above off-diagonal coupling may seem

unusual, it is known that a significant mode interference,
such as a “Fano-type” resonance, can occur because of the
different phase terms of overlapping QNMs [11,64]. In the
QNM-JC model, this interference is captured by the off-
diagonal terms, as illustrated in Fig. 3, where we study the
electromagnetic response of the metal dimer from (I) on
top of a high-Q photonic crystal cavity [see Fig. 3(a)].
Figure 3(b) shows the two QNMs of interest and the
semiclassical result of the Purcell factor as calculated using
a two-QNM approximation [11,56]; Fig. 3(c) shows the
corresponding results of the QNM-JC model in this
pronounced QNM coupling regime [65]. The system
parameters indicate the bad cavity limit, where the
QNM-JC master equation consists of a Lindblad dissipator
for spontaneous emission of the form L½σ−%ρ ¼
Γð2σ−ρσþ−σþσ−ρ−ρσþσ−Þ, in which Γ ¼ Γdiag þ Γndiag

with a diagonal contribution Γdiag ¼
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FIG. 2. (a) Purcell factor FP as a function of the energy for the
plasmonic dimer in Fig. 1. Solid and dashed curves show the results
of the QNM-JCmodel and a semiclassical approach, using a single
QNM Green’s function approximation, respectively. (b) Normal-
ized spatial profile of the QNM of interest with ω̃cðeVÞ ¼
1.7786 − 0.0677i, corresponding to Q ¼ ωc=ð2γcÞ ≈ 13.

FIG. 3. (a) Gold dimer on top of a photonic crystal cavity,
supporting two overlapping QNMs with frequencies ω̃2ðeVÞ ¼
1.6063 − 0.0145i and ω̃1ðeVÞ ¼ 1.6428–0.0548i (mode 1 orig-
inates from the dimer). (b) QNM profiles and semiclassical
Purcell factor as a function of the energy. (c) QNM-JC Purcell
factor with diagonal contributions Γdiag (black dashed line,
scaled) and the full emission rate Γ ¼ Γdiag þ Γndiag (solid blue
line). Vertical solid and dashed lines show the shifted and original
eigenfrequencies, respectively.
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coupled to the hybrid compound resonance can enter the SCR
in configurations, where neither the isolated nanoantenna nor
the cavity alone would access this regime. Aside from a
fundamental interest, these results hold promise for practical
applications, where the emitter quantum efficiency plays an
important role.
To investigate the influence of the hybrid cavity−antenna

structure on an emitter, we examine the local density of states
(LDOS). This electromagnetic quantity is connected to the
imaginary part of the Green’s tensor and thus to the power
dissipated by a dipole, which we calculate by means of full-wave
computations with COMSOL Multiphysics.17 Figure 2 displays

the normalized LDOS for a broadband FP−nanocone system
(black squares) as a function of the emission wavelength λ for
an emitter that lies at 10 nanometers from the nanocone close
to the antinode of the FP microcavity (see Figure 1b). Highly
enhancing nanoantennas, such as nanocones, facilitate reaching
the SCR with moderately low-Q cavities as shown below. We
identify two main regions of enhanced LDOS in Figure 2: a
double-peaked feature with a very broad line width at λ ∼ 750
nm and a narrower resonance around 820 nm.
It is instructive to compare the normalized LDOS to the

same configurations of a bare microcavity (blue circles) and an
isolated nanocone (green triangles) in Figure 2. The outcome
indicates that the broadband plasmon modes of the nano-
antenna and two transverse cavity modes with narrower line
widths interfere constructively to yield to two general scenarios:
a double-peaked structure for resonant modes coupling and a
shifted cavity resonance for off-resonant interaction. The latter

frequency change at longer wavelengths is attributed to the
common cavity red-shifts reported for small plasmonic
nanoparticles.18 Notice that the maximum LDOS values (∼3
× 103) for the off-resonant mode has been enhanced by 1 order
of magnitude with respect to the bare cavity mode and by a
factor of 3 with respect to the isolated nanocone over a fairly
narrow bandwidth. This enhancement comes as a result of the
intermediate values of both the quality factor (Qhyb ∼ 150, Qcone
∼ 14, QFP ∼ 510) and the mode volume of the hybrid
resonance (Vhyb ∼ 3.6 × 10−3λ3, Vcone ∼ 7.2 × 10−4λ3, VFP ∼
0.75λ3). These features make the detuned hybrid mode very
attractive for strong coupling as shown below. Furthermore, the
combination of the nanoantenna and cavity modes also leads to
dips in the LDOS values. Both the peak and dip result
respectively from constructive and destructive interference
events known from Fano phenomena19 for two resonant
systems with antithetic bandwidths (Qcone ∼ 14, QFP ∼ 510).
An important and attractive aspect of the broadband hybrid

cavity is that the enhancement effect can be tuned to different
frequencies over a very large spectral range by simply adjusting
the cavity length L (see inset in Figure 2). In fact, it is
remarkable that the LDOS is enhanced to such a degree at over
hundred nanometers wavelength detuning from the antenna
plasmon resonance, which in this case was set close to 750 nm.
Intuitively, the circulation of the optical energy in the
microcavity compensates for the lower plasmonic enhancement
of the LDOS at a large detuning. We note that this
phenomenon provides a unique and novel means for external
and selective manipulation of the emitter coupling to plasmonic
antennas.
To obtain a deeper insight into the different participating

resonant modes and to evaluate semianalytical expressions of
the Green’s tensor, we also used the quasinormal mode
(QNM) approach that is based on a modal expansion and the
Lorentz-reciprocity theorem.20 This enables determination of
the Purcell factor for single QNMs20 that is valid for any lossy
resonator (see implementation in ref 17), and it is derived from
the Green’s tensor with component c2EE/2ω(ω − ωr − iκ/
2),21 where E denotes the normalized field parallel to the
orientation of the dipole at its position,17 ωr is the QNM
resonance real frequency, and κ = ωr/Q denotes its full width at
half-maximum. The red lines in Figure 2 represent the
contribution from several QNMs, showing an excellent
agreement for the hybrid full-wave response, whereas additional
nonresonant modes would be necessary for describing the
suppressed LDOS values with respect to free space (cf. values
below 1 for the blue circles). The double-peaked LDOS arises
as a result of the interference of two nearly resonant QNMs,
consisting of a plasmonic-like mode and an FP-like one with
positive and negative values, respectively. Negative contribu-
tions are common features of nearly resonant QNMs,20 with
the total sum remaining positive and thus physical (cf. red line).
On the other hand, the detuned peak is mainly described by a
single FP−nanoantenna QNM (cf. its intensity distribution in
Figure 1b), whereas the broader off-resonant QNMs contribute
to the destructive interference dip.
A severe general limitation of plasmonic nanoantennas

concerns quenching of emission at very small distances caused
by nonradiative channels.11,22 To study the quenching behavior
of the detuned hybrid mode, we calculated the fraction of the
LDOS that is dissipated (LDOSnr) in the metallic nanostruc-
ture given by ξ = LDOSnr/LDOS as a direct measure for
quenching, where LDOSnr ∝∫ Im[ϵ]|E|2 dr, and Im[ϵ] is the

Figure 2. LDOS for a FP−nanocone hybrid (black squares), a bare
nanocone (green triangles), and a bare cavity (blue circles) versus the
emission wavelength (logarithmic vertical scale). All are normalized to
the LDOS in free space. The emitter lies at a s = 10 nm from a
nanocone near the cavity center (p = 150 nm, d = 280 nm, c.f.
parameter definitions in Figure 1) with its dipole moment along the y-
direction. The nanocone has a length, tip, and base of h = 140 nm, a =
20 nm, and b = 60 nm, respectively. The cavity parameters (R = 2.5
μm, t = 275 nm, and L = 559 nm) give access to the second TEM00
mode (λ ∼ 809 nm) and a hybrid TEM01* mode (λ ∼ 746 nm). The
dielectric functions for the nanocone and the mirrors were obtained
from a Drude−Lorentz fit to experimental data on gold.12 The red
lines correspond to QNM calculations.17 Inset: Normalized LDOS for
the detuned hybrid QNM contributions at different mirror lengths L.
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ABSTRACT: We show that a broadband Fabry−Perot
microcavity can assist an emitter coupled to an off-resonant
plasmonic nanoantenna to inhibit the nonradiative channels
that affect the quenching of fluorescence. We identify the
interference mechanism that creates the necessary enhanced
couplings and bandwidth narrowing of the hybrid resonance
and show that it can assist entering into the strong coupling
regime. Our results provide new possibilities for improving the
efficiency of solid-state emitters and accessing diverse realms of
photophysics with hybrid structures that can be fabricated using existing technologies.
KEYWORDS: quenching, nanoantennas, plasmonics, microcavities, strong-coupling, single-photon emitters

The excited state of a quantum emitter can decay radiatively
via spontaneous emission of photons or nonradiatively in

a process called quenching. The interplay between these two
decay channels crucially determines the application potentials
of solid-state emitters such as organic molecules, semi-
conductor nanocrystals, or color centers.1 While spontaneous
emission is known to be enhanced or inhibited by photonic
environments,2 the nonradiative decay channel is usually
thought to be an intrinsic property of the emitter and its
immediate surrounding.
The best-known modification of radiative rates is the so-

called Purcell effect, where a quantum emitter is coupled to a
conventional resonator of quality factor Q and mode volume
V.3 When the atom−photon interaction rate becomes larger
than both the cavity loss rate (κ) and the atomic coupling rate
to other competing modes, one also can reach the strong-
coupling regime (SCR),2 where photonic and atomic
excitations are coherently exchanged and hybridized.
A more recent alternative approach for accessing the Purcell

effect or the SCR places the emitter in the near field of
plasmonic nanoantennas.4−9 However, the close vicinity of the
emitter to metals results in dissipation and substantial coupling
to higher-order multipolar antenna modes,10,11 which in turn
causes an increase in the nonradiative rate that is faster than
those in the radiative decay.6,10 So far, few nanoantenna
configurations6−9 have succeeded in accessing interesting
radiative effects in competition with the nonradiative channels.
In this work, we study the coupling of a quantum emitter to a

hybrid structure consisting of a Fabry−Perot (FP) resonator
and a plasmonic nanoantenna. Figure 1 sketches an example of
the proposed device using a gold nanocone antenna.12 Hybrid

arrangements have recently considered the combination of
cavities with plasmonic nanoantennas for achieving Purcell
enhancement13−15 and strong coupling.16 In what follows, we
explore regimes where both radiative and nonradiative
properties of an emitter are improved if a cavity is hybridized
with a strongly detuned nanoantenna. Importantly, we
demonstrate that one can generally counteract and control
nonradiative channels from afar using a FP resonator. In
contrast to previous works, we also show that an emitter

Received: August 24, 2017
Published: November 21, 2017

Figure 1. (a) Sketch of the FP−nanoantenna hybrid: a dipole emitter
close to a plasmonic particle is embedded in a FP cavity. The axially
symmetric cavity has a curved mirror radius R and depth t spaced at
length L. The emitter position is characterized by p and d from the
origin O. Inset: Zoom of the emitter placed at distance s from a
metallic nanocone of length h and tip and base diameters a and b,
respectively. (b) Intensity distribution of the detuned FP−nano-
antenna mode (see also Figure 2).
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the TO spectrum. These can be identified as SP resonances
of increasing multipolar order. We can infer that the
maximum that dominates all the spectra in Figure 1(b) is
caused by the pseudomode (ωPS) emerging from the spectral
overlapping of higher order SPs [16]. Importantly, these are
darker (weakly radiative) modes strongly confined at the gap
region, which explains why our quasistatic description is
valid at ωPS even for R ¼ 240 nm.
Now we investigate the spectral density across the

gap cavity. This magnitude governs SP-QE interactions
(see below), and can be expressed as JðωÞ ¼ ðμ2Eω3=
6π2ϵ0ℏc3ÞPðωÞ. Figure 2(a) shows TO-JðωÞ evaluated at
zE ¼ δ=2 and normalized to μ2E=R

3 for different δ=R. For
small gaps, the spectral density is maximized, and the
contribution from different SPs is apparent. For larger gaps,
JðωÞ decreases, all maxima blue-shift and eventually
merge at the pseudomode position. Importantly, Fig. 2(a)
shows a universal trend, valid for all QEs and R (within
the quasistatic approximation). Therefore, for a given δ=R,
large μE and small R must be used to increase plasmon-
exciton coupling.

Once the spectral density is known, the Wigner-
Weisskopf problem [24] can be solved. It establishes that
the equation governing the dynamics of the excited-state
population, nðtÞ ¼ jcðtÞj2, for an initially excited QE is

d
dt

cðtÞ ¼ −
Z

t

0
dτ

Z
∞

0
dωJðωÞeiðωE−ωÞðt−τÞcðτÞ: ð1Þ

Figures 2(b) and 2(c) render the QE population at the center
of the cavity in panel (a) as a function of time and gap size.
The spheres radius is 120 nm (so that 1≲ δ≲ 10 nm), and
μE ¼ 1.5 e nm (InGaN/GaN quantum dots at 3 eV [30]).
The emitter is at resonance with the lowest (dipolar) SP (b)
and with the pseudomode (c) maxima in Fig. 2(a),
respectively. Note that the former disperses with gap size,
whereas ωE ¼ ωPS for the latter. We can observe that both
configurations show clear oscillations in nðtÞ, which
indicates that coherent energy exchange is taking place.
In this regime, strong coupling occurs, and the nanocavity
supports PEPs. However, for δ > 3 nm, the reversible
dynamics in the population is lost in both panels; QEs

FIG. 2. (a) Normalized JðωÞ at the gap center versus frequency
and δ=R. (b),(c) nðtÞ versus time and gap size for R ¼ 120 nm
and μE ¼ 1.5 e nm. The QE is at resonance with the dipolar
SP mode in (b) and with the pseudomode in (c). (d) nðtÞ for
δ ¼ 1.5 nm (see white dashed lines) and two ωE: 1.7 (green) and
3.4 (red) eV. Black dotted line corresponds to ωE ¼ 1.7 eV
obtained through the fitting of JðωÞ at ωPS.

(a)

(b)

FIG. 1. (a) QE placed at the gap between two metal spheres of
permittivity ϵðωÞ and embedded in a dielectric medium ϵD. The
QE dipole strength, position, and frequency are μE, zE, and ωE.
(b) Normalized Purcell factor at the gap center for R1;2 ¼ R and
δ ¼ R=15. Color dots: EM simulations for different R. Black line:
TO prediction. Insets: induced charge distribution for the lowest
4 SP modes discernible in the spectrum (color scale is saturated
for clarity).
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“Resonances” are not necessarily Lorentzian, with 
interference effects (Fano), nonsymmetric peaks, etc.

One option: Quantization of “quasinormal modes” (Franke 
et al., PRL 2019). But complex to implement and limited 
when many modes contribute to a single peak.
Can we find a simpler and more general approach?



Coupled modes spectral density
What if we use multiple modes, and allow them to interact?

Lindblad master equation of coupled modes with losses:

Interac'ons give much more flexibility for describing spectral density!
“Just” need to find model system that reproduces nanophotonic J ω
" fiUng to obtain parameters – only approximaDon in the method!
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Exactly equivalent to a spectral density:
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Few-mode quan,za,on of arbitrary spectral densi,es
Hybrid test system: high-dielectric microsphere with ellipsoidal plasmonic nanoantenna
Complex spectral density with several interference (Fano-like) features.

I. Medina et al., Phys. Rev. Lett. 126, 093601 (2021)

• Almost perfect fit of full spectrum using 20 modes!
(Quasi-normal modes: orders of magnitude more in the spectral region)

• Fit with non-interac'ng modes (sum of Lorentzians) cannot reproduce 
complex interference structure and overesDmates density in several regions.



Few-mode quantization of arbitrary spectral densities
Hybrid test system: high-dielectric microsphere with ellipsoidal plasmonic nanoantenna
Complex spectral density with several interference (Fano-like) features.

I. Medina et al., Phys. Rev. Le#. 126, 093601 (2021)

• Almost perfect fit of full spectrum using 20 modes!
(Quasi-normal modes: orders of magnitude more in the spectral region)

• Fit with non-interac'ng modes (sum of Lorentzians) cannot reproduce 
complex interference structure and overesDmates density in several regions.

" New “mapping” between 
nanophotonics and quantum op1cs

" Couplings and losses do not commute 
(otherwise: sum of Lorentzians)

" Mode interac1ons are an intrinsic
feature of nanophotonic systems



I. Medina et al., Phys. Rev. Lett. 126, 093601 (2021)

Few-mode quantization of arbitrary spectral densities

Spontaneous emission dynamics 
confirm correctness of model.

Works for any coupling regime 
(weak or strong).

Emitter can have any 
internal structure.



Few-mode quan,za,on of arbitrary spectral densi,es

Have access to spaDally resolved EM field

Spontaneous emission: no coherent field!
" Need quantum calculaDon

h ~E(~r)i = 0
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I. Medina et al., Phys. Rev. Le#. 126, 093601 (2021)

Can be transformed to “chain” form with next-
nearest neighbor coupling
M. Sánchez-Barquilla, JF, Nanomaterials 11, 2104 (2021)

Up to now: single emitter and 
single polarization direction
Can we go beyond that?



Extension to mul,ple emiGers

• Macroscopic QED: 
Light-matter interaction for multiple emitters is fully characterized by a generalized 
spectral density describing EM-mediated interaction between emitters n and m:

• Few-mode quantization model easily extended to that case 
" coupling vector becomes a matrix
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J. Feist et al., Nanophotonics 10, 477 (2020)
M. Sánchez-Barquilla et al., Nanophotonics 11, 4363 (2022)
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Few-mode quan,za,on for mul,ple emiGers
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FiUng again gives a few-mode model that reproduces dynamics fully:



Control of energy transfer

Quantum state of Gap emitter controls energy transfer from Top to Bottom emitter.



New perspective on ultrastrong coupling
Well-known in ultrastrongly coupled systems: Cannot use “normal” Lindblad term 
because it induces arDficial pumping, e.g., from the ground state (e.g., Mikołaj’s talk).
Can the mapping provide a new perspecDve on this?

J(ω)

ω

Artificial 
pumping

Yes! Cavity mode + Lindblad gives a Lorentzian spectral density, 
spanning the whole real axis. 
“Real” spectral densities have only positive frequencies!
" negative frequency components introduce artificial pumping
(emission of negative-frequency photons to the bath 
= absorption of photons from the bath)

Use interference of coupled 
modes to suppress nega've 
frequencies " “standard” 
Lindblad master equaDon in the 
ultrastrong coupling regime!



New perspec,ve on ultrastrong coupling
Well-known in ultrastrongly coupled systems: Cannot use “normal” Lindblad term 
because it induces arDficial pumping, e.g., from the ground state (e.g., Mikołaj’s talk).
Can the mapping provide a new perspecDve on this?
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Artificial 
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Yes! Cavity mode + Lindblad gives a Lorentzian spectral density, 
spanning the whole real axis. 
“Real” spectral densiDes have only posiDve frequencies!
" nega've frequency components introduce ar'ficial pumping
(emission of negaDve-frequency photons to the bath 
= absorpDon of photons from the bath)

Use interference of coupled 
modes to suppress negative 
frequencies " “standard” 
Lindblad master equation in the 
ultrastrong coupling regime!



Engineering of non-Hermitian systems

Can engineer nonlinearity of the losses in a hybrid system to obtain efficient 
single-photon emission through non-HermiDan photon blockade.
Requires non-commutaDvity of losses & couplings!
A. Ben-Asher et al., arXiv:2212.06307
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Combine few-mode quantization with molecular dynamics

We can now do molecular dynamics simulaDons with the full 
complexity of the molecules & the full complexity of the nanophotonic 
system in an efficient manner.

Investigating the Properties of Molecule-Cavity

Systems through Molecular Dynamics Simulations

Ruth H. Tichauer1,3, Maksim Lednev1, Gerrit Groenhof2, Johannes Feist1
1IFIMAC and Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
2Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
3contact: ruth.tichauer@uam.es

Motivation
While coherent emission of organic chromophores is limited by their complex internal dynamics as well as their immediate material environment, coupling

these photoactive molecules to nanophotonic structures has the potential to open a new era in quantum information technologies. [1, 2] Because of the large

binding energy of Frenkel excitons, organic materials are furthermore promising candidates for future applications as strong light-matter coupling can be

achieved at ambient conditions. [3]

However, a model that describes accurately both the molecules and the electromagnetic environment created by the light-confining structure is currently

lacking which limits the understanding of the e↵ects of material properties in the dynamics of strongly coupled systems. While we have achieved the

first requirement of such a model by adopting an atomistic QM/MM representation of the material part of the strongly coupled system, [4, 5] the descrip-

tion of confined light was limited to modes of optical Fabry-Pérot resonators. [6] To move beyond, we introduce an explicit description of the quantised

electromagnetic field for arbitrary nanophotonic structures such as plasmonic or hybrid metallo-dieletric nanocavities. [7]

Model of Light-Matter Interactions
We model light-matter interactions, through an extension of the well-established Tavis-Cummings Hamiltonian [8] of quantum optics,

that we had previously adapted to account for the molecular degrees of freedom [4, 5], and include the full mode structure of arbitrary

nano-resonators:
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~! j(R j) is the geometry dependent excitation energy of molecule j at position r j, ~!k is the energy of the medium-assisted elec-

tromagnetic mode k and gjk is the light-matter coupling strength between molecule j and electromagnetic mode k in the long-

wavelength (or dipole) approximation that depends on µ
j
(R j), the geometry dependent molecular transition dipole moment.

Assuming a linear response of the nano-resonator to an external electromagnetic field, [9, 7] the finite set of modes ~!k describe

accurately the confined electromagnetic field at each point r in space and frequency !. They are obtained through a fitting procedure of

the spectral density Jmod(!) = 1
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i
, which fully encodes the confined electromagnetic field in interaction with the N emitters.

The total wave function (t) describing the interacting light-matter system is expressed as a time-dependent superposition in the diabatic

basis of molecular |S j

1
i and electromagnetic mode excitations |1ki:

 (t) =

N+ncavX

m

cm(t)�m
with �m = |S j

1
i ⌦ |0ki if m < N

�m = |S j

0
i ⌦ |1ki if m > N

The expansion coe�cients cm(t) are evolved along the classical trajectories of the nuclei of the N molecules in a mean-field or Ehrenfest

formalism. Thus, atom a belonging to molecule j, experiences an average potential due to weak/strong interactions with the confined field. The forces due to mode l acting on atom a of

molecule j are of the form:
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mol

S1
(R j) + (1 � |c j|2)ra2 jV

mol

S0
(R j) + (c j)

⇤
clµ(R j) · f̂l(r j)

where f̂l(r j if the electric field profile at position r j(.

Preliminary Results
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While the emitters are resonant with the same mode,

accounting for the entire spectral density Jmod(!)

leads to significantly di↵erent dynamics.

Workflow
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Summary

• Novel few-mode quan0za0on method for nanophotonic systems
• Efficient & simple mapping between nanophotonics and quantum op.cs
• Mode interac.ons are an intrinsic feature of nanophotonic systems
• Naturally non-Hermi.an
• Can deal with mul.ple emiBers
• Not restricted to any par.cular system or coupling regime

• Example applica0ons
• Ultrastrong coupling
• Nonclassical light emission. R. Sáez-Blázquez et al., Nano Le4. 22, 2365 (2022), A. Ben-Asher et al., arXiv:2212.06307

• Molecular dynamics in nanophotonic structures
• Outlook:

• Exploit mapping to provide new direc@ons for quantum op@cs & nanophotonics
• Further theory developments

• Input-output theory
• Non-dipole interacDons
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