

Mapping between Quantum & Nano-Photonics

Johannes Feist

Dep. de Física Teórica de la Materia Condensada Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid

Quantum Nanophotonics, Benasque, Mar 16, 2023

Quick advertisement

 $\hbar\Omega_R$ 3.96063 ueV

https://mmuscles.eu/tools

 η 2.89661

Emitter properties				
$\hbar\omega$ 1 eV f 24	1.799 THz λ	1.23984 um	k $\left[5.06773 ext{ um^-1} ight]$	$ u$ 0.806554 um^-1
μ [1 D $\hbar\gamma$ [10)8.31 peV γ	164.552 kHz	au 6.07711 us	$f_{ m osc}$ 0.00379222
Cavity properties				
$\hbar\omega$ 1 eV f 24	1.799 THz λ	1.23984 um	$m{k}$ $igsquire$ 5.06773 um^-1	<i>ν</i> 0.806554 um^-1
$\hbar\gamma$ [50 meV γ [75	5.9634 THz $ au$	13.1642 fs	Q 20	
$V_{ m eff}$ [1 um^3 $E_{ m 1ph}$ [95	5118.7 V / m λ_c	1.3646e-6		
Emitter-cavity coupling				

1.58425e-4

 C_2

1.12024e-4

 C_1

Motivation

Plasmonic and hybrid nanocavities provide strong light-matter interactions

- → How can we understand quantum light-matter interactions in such (multi-mode) systems?
- → How can we use them for (ultrafast) quantum technologies (single-photon sources, nonlinear elements, etc.)?

Descriptions of electromagnetic fields

"Traditional" Quantum Optics

- Discrete modes (often only one)
- Losses described as Lindblad terms

"Traditional" Nanophotonics

- Continuous modes (any frequency and direction)
- Green's function (tensor) determines "everything"

Subwavelength cavity QED

We want/need a quantum description of light-matter interactions in nanophotonic structures. But what do we really mean with **"light"** and **"matter"**?

"Traditional" quantum optics / cavity QED

- Cavity mode is a propagating EM field with boundary conditions → discrete modes
- 2) Losses are small perturbation on top

Subwavelength cavity QED

We want/need a quantum description of light-matter interactions in nanophotonic structures. But what do we really mean with **"light"** and **"matter"**?

 $\varepsilon_{g} = n_{g}^{2}$

J. J. Baumberg et al., Nat. Mater. 18, 668 (2019)

"Traditional" quantum optics / cavity QED

- Cavity mode is a propagating EM field with boundary conditions → discrete modes
- 2) Losses are small perturbation on top

Nanophotonic (subwavelength) quantum optics

- 1) Material structure is integral part of "light" modes
- 2) "Photons" are actually mixed light-matter excitations (e.g., surface plasmon polaritons)
- 3) Fast material and radiation losses integral to description (lifetimes on the order of femtoseconds)

Side comment for theorists:

Dominant interaction is with charges in the material (Coulomb force / longitudinal fields), not with propagating (transverse) fields \rightarrow fundamental interaction is $\vec{\mu} \cdot \vec{E}$, not $\vec{p} \cdot \vec{A}$ and \vec{A}^2 ("an electfor by fairly other" name is still an electron")

Quantization strategy: Macroscopic QED

- 1) Separate:
 - a) Emitter(s) (collections of charged particles) Described through quantum chemistry or similar
 - b) "Cavity" (arbitrary material structure with linear response) Described through macroscopic electromagnetism (Maxwell) Local response: permittivity $\epsilon(\vec{r}, \omega)$ and permeability $\mu(\vec{r}, \omega)$
- 2) Treat "cavity" material + free-space EM modes:

C. Climent et al., Angew. Chemie Int. Ed. 58, 8698 (2019)

- a) Find system of coupled harmonic oscillators reproducing macroscopic Maxwell equations. Dissipation: coupling to "internal" harmonic oscillators.
- b) Diagonalize (formally \rightarrow solutions expressed through Green's functions)
- c) Quantize harmonic oscillators (promote variables to operators)
 - → quantized medium-assisted EM field: infinite collection of bosonic modes (quantum harmonic oscillators)

$$H_F = \sum_{\lambda} \int_{0}^{\infty} d\omega \int d^3 \mathbf{r} \, \hbar \omega \, \hat{\mathbf{f}}_{\lambda}^{\dagger}(\mathbf{r},\omega) \hat{\mathbf{f}}_{\lambda}(\mathbf{r},\omega) \qquad \qquad \hat{\mathbf{E}}(\mathbf{r}) = \sum_{\lambda} \int_{0}^{\infty} d\omega \int d^3 \mathbf{r}' \, \mathbf{G}_{\lambda}(\mathbf{r},\mathbf{r}',\omega) \cdot \hat{\mathbf{f}}_{\lambda}(\mathbf{r}',\omega) + \text{H.c.}$$

Huttner and Barnett, Phys. Rev. A 46, 4306 (1992); Dung, Knöll, Welsch, Phys. Rev. A 57, 3931 (1998) Scheel, Knöll, Welsch, Phys. Rev. A 58, 700 (1998); Philbin, New J. Phys. 12, 123008 (2010) Scheel and Buhmann, Acta Phys. Slov. 58, 675 (2008); Buhmann, Dispersion Forces I & II (2012)

Quantization strategy: Macroscopic QED

Reintroduce emitter & do unitary transformation of EM modes to simplify Hamiltonian:
 Final result: Emitter – EM mode interaction fully characterized by "spectral density" (~ local density of states)

$$H = H_e + \int_0^\infty \left[\omega a^{\dagger}(\omega) a(\omega) + \hat{\mu}_e \sqrt{J(\omega)} \left(a(\omega) + a^{\dagger}(\omega) \right) \right] d\omega$$

$$J(\omega) = \frac{\omega^2}{\pi \epsilon_0 c^2} \boldsymbol{\mu}_E \cdot \operatorname{Im} \mathbf{G}(\mathbf{r}_E, \mathbf{r}_E, \omega) \cdot \boldsymbol{\mu}_E$$

Purcell Factor: $P(\omega) = \frac{J(\omega)}{J_0(\omega)}$

$J(\omega)$ fully characterizes the "cavity"

→ two systems with the same spectral density are indistinguishable for the emitter

Spectral density is the "central" quantity in open quantum systems theory.

Formulation used here: "Emitter-centered modes" Feist, Fernández-Domínguez, García-Vidal, Nanophotonics 10, 477 (2020)

Lorentzian spectral density

Lorentzian spectral density ("resonance"):

$$J(\omega) = \frac{g^2}{\pi} \frac{\kappa/2}{(\omega - \omega_c)^2 + (\kappa/2)^2} = \frac{g^2}{\pi} \operatorname{Im} \left[\frac{1}{\omega_c - i\kappa/2 - \omega} \right]$$

$$H = H_e + \int_0^\infty \left[\omega a^{\dagger}(\omega) a(\omega) + \hat{\mu}_e \sqrt{J(\omega)} \left(a(\omega) + a^{\dagger}(\omega) \right) \right] d\omega$$

Exactly equivalent to a Lindblad master equation with a lossy mode!

$$\begin{split} \partial_t \rho &= -i[H_R,\rho] + \kappa \mathcal{L}_a[\rho] \\ H_R &= H_e + \omega_c a^{\dagger} a + g \hat{\mu}_e(a + a^{\dagger}) \\ \mathcal{L}_a[\rho] &= a \rho a^{\dagger} - \frac{1}{2} \{ a^{\dagger} a, \rho \} \end{split}$$

Multiple lossy modes: sum of Lorentzians

For clean systems with relatively sharp isolated resonances, this is "enough". But does it always work?

Imamoğlu, Phys. Rev. A 50, 3650 (1994) Tamascelli, Smirne, Huelga, Plenio, Phys. Rev. Lett. 120, 030402 (2018)

Nanophotonic spectral densities

Spectral densities of some example systems

Plasmonic nanogap antenna

R.-Q. Li et al., Phys. Rev. Lett. **117**, 107401 (2016)

Hybrid plasmonic – dielectric cavities

B. Gurlek et al., ACS Photonics 5, 456 (2018)

S. Franke et al., Phys. Rev. Lett. **122**, 213901 (2019)

"Resonances" are not necessarily Lorentzian, with interference effects (Fano), nonsymmetric peaks, etc.

One option: Quantization of "quasinormal modes" (Franke et al., PRL 2019). But complex to implement and limited when many modes contribute to a single peak.

Can we find a simpler and more general approach?

Coupled modes spectral density

What if we use multiple modes, and allow them to interact?

Lindblad master equation of **coupled modes** with losses:

$$\partial_t \rho = -i[H_R, \rho] + \sum_i \kappa_i \mathcal{L}_{a_i}[\rho]$$
$$H_R = H_e + \sum_{ij} \omega_{ij} a_i^{\dagger} a_j + \sum_i g_i \hat{\mu}_e(a_i + a_i^{\dagger})$$

Exactly equivalent to a spectral density:

$$J_{\text{mod}}(\omega) = \frac{1}{\pi} \vec{g} \cdot \text{Im} \begin{bmatrix} \frac{1}{\tilde{\mathbf{H}} - \omega} \end{bmatrix} \cdot \vec{g} \qquad \tilde{\mathbf{H}} = \begin{pmatrix} \omega_{11} - \frac{i}{2}\kappa_1 & \omega_{12} & \cdots \\ \omega_{21} & \omega_{22} - \frac{i}{2}\kappa_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Interactions give much more flexibility for describing spectral density! "Just" need to find model system that reproduces nanophotonic $J(\omega)$ \rightarrow fitting to obtain parameters – only approximation in the method!

Hybrid test system: high-dielectric microsphere with ellipsoidal plasmonic nanoantenna Complex spectral density with several interference (Fano-like) features.

- Almost perfect fit of full spectrum using 20 modes! (Quasi-normal modes: orders of magnitude more in the spectral region)
- Fit with **non-interacting** modes (sum of Lorentzians) **cannot reproduce** complex interference structure and overestimates density in several regions.

Hybrid test system: high-dielectric microsphere with ellipsoidal plasmonic nanoantenna Complex spectral density with several interference (Fano-like) features.

t (fs)

I. Medina et al., Phys. Rev. Lett. 126, 093601 (2021)

Have access to spatially resolved EM field

Spontaneous emission: no coherent field! → Need quantum calculation

 $\langle \vec{E}(\vec{r}) \rangle = 0$

Can be transformed to "chain" form with nextnearest neighbor coupling

600 nm

40 nm

280 nm

120 nm

M. Sánchez-Barquilla, JF, Nanomaterials 11, 2104 (2021)

Up to now: **single** emitter and **single** polarization direction **Can we go beyond that?**

Extension to multiple emitters

• Macroscopic QED:

Light-matter interaction for multiple emitters is **fully characterized** by a **generalized spectral density** describing EM-mediated interaction between emitters n and m:

$$\mathcal{J}_{nm}(\omega) = \frac{\omega^2}{\pi\epsilon_0 c^2} \mathbf{n}_n \cdot \operatorname{Im} \mathbf{G}(\mathbf{r}_n, \mathbf{r}_m, \omega) \cdot \mathbf{n}_m$$

Few-mode quantization model easily extended to that case
 → coupling vector becomes a matrix

$$H_R = \sum_{n} H_{e,n} + \sum_{ij} \omega_{ij} a_i^{\dagger} a_j + \sum_{i} g_{ni} \hat{\mu}_{e,n} (a_i + a_i^{\dagger})$$
$$\mathcal{J}_{\text{mod}}(\omega) = \frac{1}{\pi} \mathbf{g} \operatorname{Im} \left[\frac{1}{\tilde{\mathbf{H}} - \omega} \right] \mathbf{g}^T$$

J. Feist et al., Nanophotonics **10**, 477 (2020) M. Sánchez-Barquilla et al., Nanophotonics **11**, 4363 (2022)

Few-mode quantization for multiple emitters

Control of energy transfer

Quantum state of Gap emitter controls energy transfer from Top to Bottom emitter.

New perspective on ultrastrong coupling

Well-known in ultrastrongly coupled systems: Cannot use "normal" Lindblad term ^(a) because it induces artificial pumping, e.g., from the ground state (e.g., Mikołaj's talk). Can the mapping provide a new perspective on this?

Use interference of coupled modes to suppress negative frequencies → "standard" Lindblad master equation in the ultrastrong coupling regime!

Yes! Cavity mode + Lindblad gives a Lorentzian spectral density, spanning the whole real axis.

"Real" spectral densities have only positive frequencies!

 → negative frequency components introduce artificial pumping (emission of negative-frequency photons to the bath
 = absorption of photons from the bath)

New perspective on ultrastrong coupling

Well-known in ultrastrongly coupled systems: Cannot use "normal" Lindblad t because it induces artificial pumping, e.g., from the ground state (e.g., Mikoła Can the mapping provide a new perspective on this?

Use interference of coupled modes to suppress negative frequencies → "standard" Lindblad master equation in ultrastrong coupling regime

Yes! Cavity mode + Lindblad gives a Lorentzian spectral density, spanning the whole real axis.

"Real" spectral densities have only positive frequencies!

 → negative frequency components introduce artificial pumping (emission of negative-frequency photons to the bath
 = absorption of photons from the bath)

Engineering of non-Hermitian systems

Can engineer nonlinearity of the losses in a hybrid system to obtain efficient single-photon emission through non-Hermitian photon blockade. Requires non-commutativity of losses & couplings! A. Ben-Asher et al., arXiv:2212.06307

	IIIMAG	MARIA DE MAEZTU	erc	CIVISO	
Single-Phot	on Emissio	on due to no	n-Hermit	ian Anharm	onicity
<u>Anael Be</u>	<u>n-Asher</u> , Ant	onio I. Fernánde	z-Domíngue	ez, Johannes Fei	st
Departamento de	Física Teórica de la	a Materia Condensada Autónoma de Madrid	and Condensed N	latter Physics Center (II	FIMAC),
	Oniversidad	E-mail: Anael.benasher	@uam.es	Spann	
Circle shots an initial and		Motivation			-1- :
Secure communicat	ion 🛛 Quantum met	rology Quantum cor	nputing Quant	um teleportation Sensi	ng
We theoretically introduce a	novel mechanism for	single-photon emission: n	on-Hermitian photo	n blockade.	
Hermitian	Photon Blockade ²		Non-Hermitian	Photon Blockade ³ (NHPB)	
Charles formander and	Ē.	tours		(Ē _{p2}	p ₂)
Stems from annarmoni Bequires strong coupling	Entry in energy E_{p_2}	$p_2 \neq 2\tilde{E}_{p_1}$	Operates in weak co		Г _{р1}
Limited by the system'	\tilde{E}_{p_1} ·	$ p_1\rangle$	Exploits by the syste	m's losses $\prec \bar{E}_{p_1}$	$ p_1\rangle$
, , ,					
	0 -	0>		0	
			mechanism		
The eigenenergy of a lossy	state: $F_i = \tilde{F}_i = \frac{i\Gamma_j}{m}$ with	here \tilde{F}_{i} is its energy and Γ_{i}/d	is its decay rate		
- The eigenenergy of a lossy	state. $b_j = b_j = \frac{1}{2}$, wi	lere bj is its energy and 177	is its decay rate.	(2)	
 Single-photon emission occ 	curs when the normaliz	ed zero-delay second-order	correlation function	$g_{\tau=0}^{(a)}$ vanishes:	
				F ²	
		2	1.0	x2 1m	
(low pumping regime)	$(2)_{c}(\omega_{L}) \approx \frac{ E_{p_{1}} - \omega_{L} }{ E_{p_{1}} - \omega_{L} }$	$\frac{2}{2} \times \frac{ (p_2 \hat{v}_p p_1) ^2}{ (p_2 \hat{v}_p p_1) ^2} \times \frac{ (p_2 \mathbf{E}_p p_1) ^2}{ (p_2 \mathbf{E}_p p_1) ^2}$	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}) }{(\tilde{E}_{\mathbf{p}}) } \propto \frac{(\tilde{E}_{\mathbf{p}})}{(\tilde{E}_{\mathbf{p}}) }$	$(\frac{1}{1} - \omega_L)^2 + \frac{1}{4} \frac{1}{2} \rightarrow 0$	
(low-pumping regime) g_1^{\prime}	$(2)_{r=0}(\omega_L) \approx \frac{ E_{p_1} - \omega_L }{ \frac{E_{p_2}}{2} - \omega_L }$	$\frac{2}{2} \times \frac{ (p_2 \hat{V}_p p_1) ^2}{2 (p_1 \hat{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_{\mathbf{D}}) ^2}{2 (p_1 \hat{V}_p 0) ^2}$	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}) }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+} p_{1}) ^{2}} \propto \frac{(\tilde{E}_{p})}{(\tilde{E}_{p})}$	$\left(\frac{1-\omega_L}{2}\right)^2 + \frac{1\overline{p_1}}{4} \rightarrow 0$ $\left(\frac{1-\omega_L}{2}\right)^2 + \frac{\Gamma_{p_2}^2}{4} \rightarrow 0$	
(low-pumping regime) g_{i}^{i}	$\sum_{k=0}^{(2)} (\omega_L) \approx \frac{\left E_{p_1} - \omega_L\right }{\left \frac{E_{p_2}}{2} - \omega_L\right }$	$\frac{2}{2} \times \frac{ (p_2 \mathcal{V}_p p_1) ^2}{2 (p_1 \mathcal{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_{\mathbf{g}}) ^2}{2 (p_1 \mathcal{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_{\mathbf{g}}) ^2}{2 (p_1 \mathcal{V}_p 0) ^2}$	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}\rangle }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2}} \propto \frac{\left(\tilde{E}_{\mathbf{p}}\right)}{\left(\bar{E}_{\mathbf{p}}\right)^{2}}$	$\frac{(1-\omega_L)^2 + \frac{1}{p_1}}{(1-\omega_L)^2 + \frac{\Gamma_{p_1}}{16}} \to 0$	
(low-pumping regime) g_{i}	$\sum_{k=0}^{(2)} (\omega_L) \approx \frac{\left E_{p_1} - \omega_L\right }{\left \frac{E_{p_2}}{2} - \omega_L\right }$	$\frac{2}{2} \times \frac{ (p_2 \hat{V}_p p_1) ^2}{2 (p_1 \hat{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_p]}{2 (p_1 \hat{V}_p 0) ^2}$ Ratio b	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}\rangle }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2}} \propto \frac{\left(\tilde{E}_{\mathbf{p}}\right)}{\left(\frac{\bar{E}_{\mathbf{p}}}{2}\right)^{2}}$ etween the Lorentzian for	$\frac{1}{2} - \omega_L \Big)^2 + \frac{\frac{1}{p_1}}{\frac{1}{2}} \rightarrow 0$ $\frac{1}{2} - \omega_L \Big)^2 + \frac{\frac{1}{p_2}}{\frac{1}{2}} \rightarrow 0$ unctions of the density of states	at \tilde{E}_{p_1} and \tilde{E}_{p_2}
(low-pumping regime) g_1 . When $\frac{\tilde{k}\mathbf{p}_2}{2}=\tilde{k}\mathbf{p}_1=\omega_L$ and	$\sum_{k=0}^{(2)} (\omega_L) \approx \frac{\left E_{p_1} - \omega_L\right }{\left \frac{E_{p_2}}{2} - \omega_L\right }$ $\Gamma_{p_2} \gg \Gamma_{p_1}, \text{ the populat}$	$\frac{2}{2} \times \frac{ (p_2 P_p p_1) ^2}{2 (p_1 \bar{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_p p_2) ^2}{2 (p_1 \bar{V}_p 0) ^2} \times \frac{ (p_2 \mathbf{E}_p p_2) ^2}{2 (p_1 p_2) ^2}$ Ratio bion of the high-loss $ p_2\rangle$ is p	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}\rangle }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2}} \propto \frac{\left(\tilde{E}_{\mathbf{p}}\right)}{\left(\tilde{E}_{\mathbf{p}}\right)^{2}}$	$\frac{1}{2} - \omega_L \Big)^2 + \frac{1}{\frac{p_1}{2}} \rightarrow 0$ $\frac{1}{2} - \omega_L \Big)^2 + \frac{\Gamma_{p_1}}{16} \rightarrow 0$ unctions of the density of states, giving	at \tilde{E}_{p_1} and \tilde{E}_{p_2} rise to the NHPB.
(low-pumping regime) $\hat{\mathcal{G}}$. When $\frac{\hat{\mathcal{E}}_{\mathbf{p}_2}}{2} = \tilde{\mathcal{E}}_{\mathbf{p}_1} = \omega_L$ and	$\begin{split} ^{(2)}_{z=0}(\omega_L) &\approx \frac{ E_{p_1}-\omega_L }{\left \frac{E_{p_2}}{2}-\omega_L\right }\\ \Gamma_{p_2} &\gg \Gamma_{p_1}, \text{ the populat} \end{split}$	$\frac{2}{2} \times \frac{ (p_2 P_p p_1) ^2}{2 (p_1 P_p 0) ^2} \times \frac{ (p_2 E_0]}{2 (p_1 P_p 0) ^2} \times \frac{ (p_2 E_0]}{2 (p_1 P_p 0) ^2}$ Ratio bion of the high-loss $ p_2$ is p	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}\rangle }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{-} p_{1}\rangle ^{2}} \propto \underbrace{\left(\frac{\tilde{\mathcal{E}}_{\mathbf{p}}}{\tilde{\mathcal{E}}_{\mathbf{D}}}\right)}_{\left(\frac{\tilde{\mathcal{E}}_{\mathbf{p}}}{\tilde{\mathcal{E}}_{\mathbf{D}}}\right)}$ etween the Lorentzian frevented due to a sm	$\frac{1}{2} - \omega_L \right)^2 + \frac{\frac{p_L}{p_1}}{4} \rightarrow 0$ $\frac{1}{2} - \omega_L \right)^2 + \frac{\frac{p_L}{p_2}}{16}$ inclusions of the density of states, giving	at \tilde{E}_{p_1} and \tilde{E}_{p_2} grise to the NHPB.
(low-pumping regime) \hat{g} • When $\frac{\hat{E}_{p_k}}{2} = \hat{E}_{p_1} = \omega_L$ and	$ \begin{split} & \overset{(2)}{\underset{r=0}{\overset{(2)}{=}}}(\omega_L) \approx \frac{ E_{p_1} - \omega_L }{\left \frac{E_{p_2}}{2} - \omega_L\right } \\ & \Gamma_{p_2} \gg \Gamma_{p_1}, \text{ the populat} \\ & \\ & \\ \hline & \\ & \\ \hline \hline & \\ \hline \\ \hline$	$\frac{2}{2} \times \frac{\left[\left(p_2 \left P_p\right p_1\right)\right]^2}{2\left \left(p_1 \left P_p\right 0\right)\right ^2} \times \frac{\left(p_2 \left E_0\right E_0\right)}{2\left \left(p_1\right E_0\right)\right ^2} \times \frac{1}{2\left \left(p_1\right E_0\right)\right ^2}$ Ratio b ion of the high-loss $\left[p_2\right]$ is p	$\frac{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+}\mathbf{E}_{\mathbf{D}}^{+} p_{2}\rangle }{\mathbf{E}_{\mathbf{D}}^{-}\mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2}} \propto \frac{\left(\tilde{\mathcal{E}}_{\mathbf{p}}\right)}{\left(\tilde{\mathcal{E}}_{\mathbf{p}}\right)^{2}}$ etween the Lorentzian for revented due to a smean the two-level emitted set of the two set of	$\frac{1}{1} - \omega_L \right)^2 + \frac{F_L}{2} \rightarrow 0$ $\frac{1}{2} - \omega_L \right)^2 + \frac{F_L}{16} \rightarrow 0$ unctions of the density of states, giving aller density of states, giving the density of states are set of the density of the density of states are set of the density of the density of the density of states are set of the density of states are set of the density of states are set of the density of the	at \tilde{E}_{p_1} and \tilde{E}_{p_2} prise to the NHPB.
(low-pumping regime) g_{1} • When $\frac{g_{p_{2}}}{2} = g_{p_{1}} = \omega_{L}$ and Hybrid cavity ⁴ interacting with	$\begin{split} & \overset{(2)}{=} (\omega_L) \approx \frac{ E_{p_1} - \omega_L }{ \frac{E_{p_2}}{2} - \omega_L } \\ & \Gamma_{p_2} \gg \Gamma_{p_1}, \text{ the populat} \\ & \frac{\mathbf{NHPB in h}}{ E_{p_2} \otimes P_{p_1} } \end{split}$	$\frac{2}{2} \times \frac{\left[\left(p_{2}\left[P_{p}\right]p_{1}\right)\right]^{2}}{2\left[\left(p_{1}\left[P_{p}\right]p_{2}\right]\right]^{2}} \times \frac{\left(p_{2}\left[E_{p}\right]E_{p}\right]}{2\left[\left(p_{1}\right]}\right]}$ Ratio b ion of the high-loss $\left[p_{2}\right)$ is p ybrid cavity interacting corporates optical modes wi	$\frac{\mathbf{E}_{\mathbf{D}} \mathbf{E}_{\mathbf{D}}^{+} \mathbf{E}_{\mathbf{D}}^{+} \mathbf{p}_{1}\rangle _{2}}{\mathbf{E}_{\mathbf{D}} \mathbf{E}_{\mathbf{D}}^{+} \mathbf{p}_{1}\rangle ^{2}} \propto \frac{\left(\mathcal{E}_{\mathbf{p}}\right)}{\left(\frac{\mathcal{E}_{\mathbf{p}}}{2}\right)^{2}}$ etween the Lorentzian firmevented due to a sm with two-level emethed in the different losses (y ₂)	$\frac{1}{1} - \omega_L \right)^2 + \frac{F_L}{P_L}$ $\frac{1}{2} - \omega_L \right)^2 + \frac{F_L}{16} \rightarrow 0$ $\frac{F_L}{P_L} \rightarrow 0$ uncloses of the density of states, giving the density of states,	at \tilde{E}_{p_1} and \tilde{E}_{p_2} rise to the NHPB.
(low-pumping regime) g.t. $\label{eq:starting} \begin{array}{l} \text{(low-pumping regime)} & g.t. \\ \text{(low-pumping regime)} \\ \text{When} \frac{\hat{p}_{\mathrm{p}_{2}}}{2} = \hat{E}_{\mathrm{p}_{1}} = \omega_{L} \text{ and} \\ \text{Hybrid cavity}^{*} \text{ interacting with} \\ H_{0} = \Big(\omega - \frac{ir_{0}}{2}\Big)\sigma_{z}\sigma \\ \end{array}$	$\begin{split} & \overset{(2)}{=} (\omega_L) \approx \frac{ E_{P_1} - \omega_L }{\left \frac{E_{P_2}}{2} - \omega_L\right } \\ & & \\ & $	$\frac{2}{2} \times \frac{\left[\left(p_2 \left P_p\right p_1\right)\right]^2}{2\left \left(p_1 \left \overline{P_p}\right 0\right)\right ^2} \times \frac{\left(p_2 \left E_p\right ^2}{2\left \left(p_1\right)\right ^2}\right]^2} \\ \text{Ratio b} \\ \text{ion of the high-loss } \left p_2\right) \text{ is p} \\ \frac{\left(p_1 \left P_p\right ^2\right)^2}{2\left \left(p_1\right)^2\right ^2} + \frac{1}{2\left \left$	$\begin{split} \mathbf{E}_{\mathbf{D}}^{*} \mathbf{E}_{\mathbf{D}}^{+} \mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2} & \propto \frac{\left(\mathcal{E}_{\mathbf{p}} \\ \mathbf{E}_{\mathbf{D}}^{*} \mathbf{E}_{\mathbf{D}}^{+} p_{1}\rangle ^{2} \\ \text{etween the Lorentzian firewented due to a smeasure due to a smeasure the different losses (\gamma_{2}.)] + d(a_{1}^{+}a_{2} + a_{1}^{+}a_{1})$	$\frac{1}{1} - \omega_L \right)^2 + \frac{F_R}{2} \rightarrow 0$ $\frac{1}{2} - \omega_L \right)^2 + \frac{F_R}{16} \rightarrow 0$ $\frac{1}{2} - \omega_L \right)^2 + \frac{F_R}{16} \rightarrow 0$ $\frac{1}{2} - \omega_L \right)^2 + \frac{F_R}{16} \rightarrow 0$ $\frac{1}{2} + \frac{F_R}{16} \rightarrow 0$	that \tilde{E}_{p_1} and \tilde{E}_{p_2} or rise to the NHPB.
(low-pumping regime) g. • When $\frac{\tilde{E}_{\rm P2}}{2} = \tilde{E}_{\rm P1} = \omega_L$ and a Hybrid cavity ⁴ interacting with $R_0 = (\omega - \frac{v_P}{2})\sigma_{\pi}c$	$(2)_{r=0}(\omega_L) \approx \frac{ E_{P_1} - \omega_L }{\left \frac{E_{P_1} - \omega_L}{2}\right }$ $\Gamma_{P_2} \gg \Gamma_{P_1}, \text{ the populat}$ $\mathbf{NHPB in h}$ $h emitter (Y_e \ll \gamma_h) inc r_+ + \sum_{(n=1,2)} \left[(\omega - \frac{y_2}{2}) \right]$	$\frac{2}{2} \times \frac{\left[\left(p_2 \hat{F}_p p_i \right)\right]}{2} \times \frac{\left[\left(p_2 \hat{F}_p p_i \right)\right]}{2} \times \frac{\left[\left(p_2 \hat{F}_n p_i \right)\right]}{2} \times \frac{1}{2} \left[\left(p_1 p_i p_i \right)\right]}$ Ratio b con of the high-loss $ p_2 \rangle$ is p ybrid cavity interacting arporates optical modes wi \underline{n} $\underline{n}^* a_n + g_n (\sigma_+ a_n + a_n^* \sigma)$	$E_{D}E_{D}E_{D}E_{D}^{+}E_{D}^{+} p_{2}\rangle \propto \frac{(E_{p}}{E_{D}}E_{D}^{+} p_{1}\rangle ^{2}}{(\frac{E_{p}}{2})} \propto \frac{(E_{p}}{E_{D}}$ etween the Lorentzian free to revented due to a sim with two-level emit th different losses (γ_{2} , γ_{2}) $+ d(a_{1}^{+}a_{2} + a_{2}^{*}a_{1})$	$\begin{array}{l} \displaystyle \frac{1}{n} - \frac{\omega_{1}}{2} \right)^{2} + \frac{\mu_{1}}{p_{1}} \rightarrow 0 \\ \displaystyle \frac{1}{2} - \frac{\omega_{1}}{2} \right)^{2} + \frac{\mu_{2}}{p_{2}} \rightarrow 0 \\ \displaystyle \frac{1}{2} - \frac{\omega_{1}}{p_{1}} + \frac{\mu_{2}}{16} \\ \displaystyle \text{unctions of the density of states, giving} \\ \\ \text{inter } \\ \displaystyle \frac{\omega_{1}}{p_{1}} = \frac{1}{2} + \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} \\ \\ \displaystyle \frac{\omega_{1}}{p_{1}} - \frac{\omega_{1}}{p_{1}} = 10^{-4}, \\ \mu_{1} = 0, \\ \\ \displaystyle \frac{\omega_{1}}{p_{1}} = \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} + \frac{\omega_{1}}{p_{1}} \\ \end{array}$	at E_{p_1} and E_{p_2} prise to the NHPB. $I = P_{p_1} P_{p_2}$
(low-pumping regime) g: • When $\frac{p_{p_2}}{2} = E_{p_1} = \omega_L$ and Hybrid cavity- interacting wit $R_0 = \left(\omega - \frac{v_V}{2}\right)\sigma_+ c$ Engineering low-loss].	$\begin{aligned} & \frac{ \mathcal{E}_{P_{1}} - \omega_{L} }{\left \frac{\mathcal{E}_{P_{1}}}{2} - \omega_{L}\right } \\ & \frac{ \mathcal{E}_{P_{2}} - \omega_{L} }{ \mathcal{E}_{P_{2}} \gg \Gamma_{P_{1}}, \text{the populat}} \\ & \text{NHPB in h} \\ & \text{h emitter}(Y_{e} \ll Y_{n}) \text{inc} \\ & Y_{e} + \sum_{\{n=1,2\}} \left[\left(\omega - \frac{Y_{e}}{2}\right)^{2} \right] \\ & (\omega - \frac{Y_{e}}{2})^{2} \\ & ($	$\begin{split} & \frac{2}{2} \times \frac{\left[\left(p_2 \left P_1 \right p_1 \right) \right]}{2} \times \frac{\left[\left(p_2 \left P_1 \right p_1 \right) \right]}{2} \times \frac{\left[\left(p_2 \left P_1 \right p_1 \right) \right]}{2} \times \frac{2}{2} \right] \right] \\ & \text{Ratio b} \\ & \text{ion of the high-loss} \left[p_2 \right) \text{ is } p \\ & \text{ybrid cavity interacting} \\ & \text{orporates optical modes wi} \\ & \frac{\alpha}{2} \right) a_n^4 a_n + g_n \left(\sigma_* a_n + a_n^\dagger \sigma_* a_n \right) \\ & \text{ngineering high-loss} \left[p_2 \right) \end{aligned}$	$\begin{split} & E_{D}^{-}E_{D}^{+}E_{D}^{+}E_{D}^{+}\left[p_{2}\right]\right) \propto \frac{\left(\mathcal{E}_{p}}{\left(\frac{E_{p}}{E_{p}}\right)^{2}} \propto \frac{\left(\mathcal{E}_{p}}{\left(\frac{E_{p}}{E_{p}}\right)^{2}}\right)^{2}}{\left(\frac{E_{p}}{E_{p}}\right)^{2}} \end{split}$ extends the constraint of the extension	$\begin{aligned} \frac{1}{r_{r}} &= \frac{\omega_{r}}{2} \Big ^{2} + \frac{r_{F_{1}}}{r_{r}} \rightarrow 0 \\ \frac{1}{r_{r}} &= \frac{\omega_{r}}{2} \Big ^{2} + \frac{r_{F_{2}}}{r_{r}} \rightarrow 0 \\ \frac{1}{r_{r}} &= \frac{r_{F_{2}}}{r_{r}} \rightarrow 0 \\ \frac{1}{r_{r}} &= \frac{r_{F_{2}}}{r_{r}} \rightarrow 0 \\ \frac{1}{r_{r}} &= \frac{1}{r_{r}} \frac{1}{r_{r}} + \frac{r_{F_{2}}}{r_{r}} \rightarrow 0 \\ \frac{r_{r}}{r_{r}} &= \frac{1}{r_{r}} \frac{1}{r_{r}} \frac{1}{r_{r}} \frac{1}{r_{r}} + \frac{r_{F_{2}}}{r_{r}} \frac{1}{r_{r}} $	that E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) g_{-1} • When $\frac{\beta_{p_2}}{2} = \beta_{p_1} = \omega_L$ and Hybrid cavity's interacting with $H_0 = \left(\omega - \frac{i\gamma_L}{2}\right)\sigma_+\sigma$ Engineering low-loss When $g_1, \gamma_L, \gamma_L \ll g_2$ decoupling of the microsof	$ \begin{array}{l} \overset{(2)}{=} & (\omega_L) \approx \left \frac{E_{p_1} - \omega_L}{2} \right \\ & \frac{E_{p_2}}{2} - \omega_L} \right \\ \hline \\ & \Gamma_{p_2} \gg \Gamma_{p_1}, \text{ the populat} \\ \\ & \text{ NHPB in h} \\ & \text{h emitter} (\gamma_e \ll \gamma_h) \text{ inc} \\ & \tau_e + \Sigma_{(n=1,2)} \left[(\omega - \frac{i\gamma}{2} \right] \\ \hline \\ & \Gamma_h = 0 \\ & \frac{i\gamma_h}{2} \\ \\ & \frac{1}{2} \\ & \frac{1}{2} \\ \\ & \frac{1}{2} \\$	$\frac{2}{2} \times \frac{\left[\left(p_2 \left \hat{P}_p \right p_z \right) \right]^2}{2 \left(\left(p_1 \left \hat{P}_p \right 0 \right) \right]^2} \times \frac{\left(\left(p_2 \left \hat{P}_n \right p_z \right) \right)^2}{2 \left(\left(p_1 \right) \right]^2} \right)}$ Ratio b ion of the high-loss $\left(p_2 \right)$ is p ybrid cavity interacting proporates optical modes wi $\frac{m}{2} \right) a_n^4 a_n + g_n (\sigma_* a_n + a_n^{\dagger} \sigma_z)$ ngineering high-loss $\left(p_2 \right)$ oss of $\left(p_2 \right)$ is controlled by it	$\begin{split} & E_{D}E_{b}E_{b}E_{b}\left[p_{2}\right) \propto \frac{\left(\mathcal{E}_{p}}{\left(\frac{1}{\mathcal{E}_{p}}\right)^{2}}\right)^{2}}{\left(\frac{1}{\mathcal{E}_{p}}\right)^{2}} \\ & structure the Locentrian for a contraint for a set of the set $	$\frac{(1-\omega_{1})^{2} + \frac{1}{p_{1}}}{(1-\omega_{1})^{2} + \frac{1}{10}} \rightarrow 0$ $\frac{(1-\omega_{1})^{2} + \frac{1}{10}}{(1-\omega_{1})^{2} + \frac{1}{10}}$ and the density of states, giving itter $\gg \gamma_{1}: \underbrace{\mathbb{R}}_{p_{1}} = 10^{+} \underbrace$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) get $R_{p_1} = R_{p_1} = \omega_L$ and $R_{p_2} = R_{p_1} = \omega_L$ and $R_{p_2} = (\omega - \frac{v_L}{v_2})\sigma_+\sigma$	$\begin{split} & \underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\underset{r=0}{\overset{(2)}{\underset{r=0}{\atopr=0}{\underset{r=0}{\underset{r=0}{\underset{r=0}{\underset{r=0}{\underset{r=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr=0}{\atopr=0}{\atopr=0}{\atopr=0}{\atopr=0}{\atopr=0}{\atopr=0}{\atopr=0}{\\r=0}{r}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{2}{2} \times \frac{\left[(p_2 F_p p_r) \right]^2}{2 ((p_1 F_p 0))^2} \times \frac{\left[(p_2 F_p 0) \right]^2}{2 ((p_1 p_1 0))^2} \times \frac{1}{2 ((p_1 p_1 0))^2} \\ Ratio b to of the high-loss p_2 \rangle is p ybrid cavity interacting corporates optical modes with a_1^2 a_1^2 a_1 a_1 + g_n (\sigma_* a_n + a_n^* \sigma_*) angineering high-loss p_2 \rangle is controlled by it plasmonic component: (p_1 a_1^2 a_1 p_1).$	$\begin{split} & \left[E_{D}^{*} E_{D}^{*} E_{D}^{*} E_{D}^{*} p_{2} \rangle \right] \times \underbrace{\left(E_{D}^{*} E_{D}^{*} E_{D}^{*} p_{2} \rangle \right]}_{E_{D}^{*} E_{D}^{*} p_{2} \rangle p_{2}^{*}} \times \underbrace{\left(E_{D}^{*} E_{D}^{*} p_{2} \rangle \right)}_{e_{D}^{*} e_{D}^{*} e_{D}^{$	$\begin{array}{l} \displaystyle (-\infty_{2})^{2} + \frac{F_{p_{1}}}{2} \rightarrow 0 \\ \displaystyle (-\infty_{2})^{2} + \frac{F_{p_{2}}}{2} \rightarrow 0 \\ \displaystyle (-\infty_{2})^{2} + \frac{F_{p_{2}}}{16} \\ \displaystyle \text{unctions of the density of states}, \\ \text{giving} \\ \begin{array}{l} \text{intermations of the density of states}, \\ \text{giving} \\ \hline \\ \begin{array}{l} \text{intermations of the density of states}, \\ \text{giving} \\ \hline \\ \begin{array}{l} \text{giving} \\ \text{giving} \\ \end{array} \end{array}$	at E_{p_1} and E_{p_2} prise to the NHPB.
(low-pumping regime) get • When $\frac{E_{P_2}}{2} = E_{P_1} = \omega_L$ and H_2 Hybrid cavity's interacting with $H_0 = \left(\omega - \frac{V_P}{2}\right)\sigma_+ \sigma$ Engineering low-loss [When $g_1, \gamma_2, \gamma_3 \ll g_2$ decoupling of the microcav	$\begin{split} & \underset{r=0}{\overset{(\Omega)}{=}} (\omega_{t}) \approx \frac{ E_{p_{1}} - \omega_{t} }{ \frac{E_{p_{1}}}{2} - \omega_{t} } \\ & \frac{ E_{p_{1}} - \omega_{t} }{ \frac{E_{p_{1}}}{2} - \omega_{t} } \\ & \Gamma_{p_{2}} \gg \Gamma_{p_{1}}, \text{ the populat} \\ & \mathbf{NHPB in h} \\ & \text{hemitter} (r_{\theta} \ll r_{h}) \text{ int} \\ & r_{\tau} + \Sigma_{(n=1,2)} \left[\left(\omega - \frac{tr_{\tau}}{2} \right) \right] \\ & (m_{\tau} + \Sigma_{(n=1,2)}) \left[\left(\omega - \frac{tr_{\tau}}{2} \right) \right] \\ & (m_{\tau} + 1) \\ & $	$\frac{2}{2} \times \frac{\left[\left(p_2 P_k p_z \right) \right]^2}{2 \left((p_1 P_k p_i) \right)^2} \times \frac{\left[\left(p_2 P_k p_i \right) \right]^2}{2 \left((p_1 p_i) \right)^2} \times \frac{1}{2 \left((p_1 p_i) \right)^2} \right]}$ Ratio b ion of the high-loss $ p_2 \rangle$ is p ybrid cavity interacting porporates optical modes wi <u>m</u>) $a_n^* a_n + g_n (\sigma_x a_n + a_n^* \sigma_i^*)$ ngineering high-loss $ p_2 \rangle$ plasmonic component: $ p_2 a_n^2 a_2 p_2 \rangle_i$ n it overcomes $\frac{p_1}{p_2}$	$E_{D}^{\infty}E_{D}^{\delta}E_{D}^{\delta} p_{2}\rangle \propto \left(\frac{E_{p}}{E_{D}^{\delta}E_{D}^{\delta} p_{2}\rangle}{E_{D}^{\delta}E_{D}^{\delta} p_{2}\rangle}\right)^{2} \propto \frac{(E_{p}}{(E_{p})}$ etween the Lorentzian frequencies of the theorem the constraint of the theorem the different losses (y_{2}) $(E_{p}) = (E_{p})^{2}$ $(E_{p})^{2}$	$\begin{array}{l} (1-\omega_{1})^{2}+\frac{1}{p_{1}}\frac{p_{1}}{2}\rightarrow 0\\ \frac{1}{q}-\omega_{2})^{2}+\frac{1}{p_{2}}\frac{p_{2}}{2}\rightarrow 0\\ \frac{1}{q}-\omega_{2})^{2}+\frac{1}{p_{2}}\frac{p_{2}}{2}\\ \text{unctions of the density of states, giving}\\ \text{inter }\\ (1-\omega_{1})^{2}\frac{p_{1}}{p_{1}}\frac{p_{2}}{2}\frac{p_{2}}{2}\frac{p_{2}}{2}\frac{p_{2}}{2}\\ (1-\omega_{1})^{2}\frac{p_{2}}{p_{2}}\frac{p_{2}}{2}\frac$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) get • When $\frac{E_{P2}}{2} = E_{P1} = \omega_L$ and Hybrid cavity: interacting with $H_0 = \left(\omega - \frac{v_P}{2}\right)\sigma_z\sigma$ Engineering low-loss I; When $g_1, \gamma_0, \gamma_1 \ll g_{2z}$ decoupling of the microcav	$\begin{split} & \underset{t=0}{\overset{(2)}{\underset{t=0}{(\omega_t)}}} \ll \frac{ E_{p_1} - \omega_t }{ \frac{E_{p_2}}{2} - \omega_t } \\ & \qquad \qquad$	$ \begin{array}{l} \frac{2}{2} \times \frac{\left[\left(p_{2} \mid \beta_{1} \mid p_{1}\right)\right]^{2}}{2\left(\left(p_{1} \mid \beta_{1} \mid p_{1}\right)\right)^{2}} \times \frac{\left[\left(p_{2} \mid \beta_{1} \mid p_{1}\right)\right]^{2}}{2\left(\left(p_{1} \mid \beta_{2} \mid p_{1}\right)\right)^{2}} \\ \end{array} \right] \\ \begin{array}{l} \text{Ratio b} \\ \text{solino of the high-loss } \left[p_{2}\right) \text{ is p} \\ \text{solino of the high-loss } \left[p_{2}\right) \text{ is potential modes will a modes will a mode will be a model of the high-loss } \\ \begin{array}{l} p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{3} \\ p_{4} \\ p_{4} \\ p_{2} \\ p_{4} \\ p$	$\begin{split} & E_{D}^{-}E_{D}^{+}E_{D}^{+}[p_{2}]] \propto \frac{\left(\mathcal{E}_{p}}{\left(\frac{E_{p}}{E_{D}}\right)^{2}}\right)^{2}}{\left(\frac{E_{p}}{E_{D}}\right)^{2}} \approx \frac{\left(\mathcal{E}_{p}}{\left(\frac{E_{p}}{E_{D}}\right)^{2}}\right)^{2}}{\left(\frac{E_{p}}{E_{D}}\right)^{2}} \\ & steven the Lorentzian frequencies of the transmission of transmi$	$\frac{1}{r_{r}} = \frac{\omega_{r}}{\omega_{r}} \frac{2}{r_{r}} \frac{F_{r}}{r_{r}} \rightarrow 0$ $\frac{1}{r_{r}} = \frac{1}{\omega_{r}} \frac{1}{r_{r}} \frac{F_{r}}{r_{r}} \rightarrow 0$ $\frac{1}{r_{r}} = \frac{1}{\omega_{r}} \frac{F_{r}}{r_{r}} \rightarrow 0$ $\frac{1}{r_{r}} = \frac{1}{\omega_{r}} \frac{1}{r_{r}} \frac{F_{r}}{r_{r}} \rightarrow 0$ $\frac{1}{r_{r}} = \frac{1}{\omega_{r}} \frac{F_{r}}{r_{r}} = \frac{1}{\omega_{r}} = \frac{1}{\omega_{r}} = \frac{1}{\omega_{r}} = \frac{1}{\omega_{r}} = \frac{1}{\omega_{r}} = \frac{1}{\omega_{r}} = \frac{1}$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) get • When $\frac{\beta_{P_2}}{2} = \beta_{P_1} = \omega_L$ and Hybrid cavity's interacting with $R_0 = (\omega - \frac{\alpha_L}{2})\sigma_+ \alpha$ Engineering low-loss], When $g_1, \gamma_+ \gamma_1 \ll g_2$, decoupling of the microast	$\begin{split} & \underset{r_{2}=0}{\overset{(2)}{\longrightarrow}} (\omega_{t}) \approx \frac{ E_{p_{1}} - \omega_{t} }{ \frac{E_{p_{2}}}{2} - \omega_{t} } \\ & \qquad \qquad$	$ \begin{array}{l} \frac{2}{2} \times \frac{\left[\left(p_{2} \left k_{p} \right p_{z} \right)\right]^{2}}{2\left((p_{1} \left k_{p} \right 0\right)\right]^{2}} \times \frac{\left((p_{2} \left k_{p} \right 0\right)\right]^{2}}{2\left((p_{1} \left p_{z} \right 0\right)\right]^{2}} \\ \end{array} \right] \\ \begin{array}{l} \text{Ratio b} \\ \text{solution of the high-loss } \left p_{2} \right) \text{ sp} \\ \text{ybrid cavity interacting} \\ orporates optical modes will a mode a mode will a mode a m$	$\begin{split} & \underbrace{E_{D}E_{D}E_{D}E_{D}E_{D}E_{D}}_{E_{D}E_{D}$	$\begin{array}{c} -\infty_{2})^{2} + \frac{F_{p_{1}}}{2} \rightarrow 0 \\ a_{1} - \infty_{2})^{2} + \frac{F_{p_{1}}}{16} \rightarrow 0 \\ a_{2} - \infty_{2})^{2} + \frac{F_{p_{2}}}{16} \\ \text{unctions of the density of states, giving} \\ \hline \\ \text{itter} \\ \gg \gamma_{1}): \underbrace{a_{1}}_{p_{1}} + \underbrace{a_{2}}_{p_{2}} \underbrace{a_{2}} \underbrace{a_{2}}_{p_{2}} \underbrace{a_{2}}_{p_{2}} $	Let E_{p_1} and E_{p_2} prise to the NHPB.
(low-pumping regime) 9. When $\frac{\beta_{P_2}}{2} = \beta_{P_1} = \omega_L$ and Hybrid cavity's interacting with $R_0 = (\omega - \frac{\alpha_E}{2})\sigma_e \alpha$. Engineering low-loss]. When $g_1, \gamma_e, \gamma_1 \ll g_2$, decoupling of the microave	$\begin{split} & \underset{r=2}{\overset{(2)}{\underset{\sigma=2}{(\omega_{L})}}(\omega_{L}) \approx \frac{ E_{p_{1}}-\omega_{L} }{ \frac{E_{p_{2}}}{2}-\omega_{L} } \\ & \prod_{p_{2}\gg F_{p_{1}}, \text{the populat}} \\ & \frac{\text{NHPB in h}}{r_{2}+\Sigma_{\{n=1,2\}}} \prod_{q=0}^{(n-1)} \left(\frac{m_{1}}{2} - \frac{m_{2}}{2} \right) \\ & \frac{m_{1}}{r_{1}} \prod_{q=0}^{(n-1)} \prod_{q=0}^{(n-1)$	$\frac{2}{2} \times \frac{\left[(p_2 F_k p_2) \right]^2}{2[(p_1 F_k](p_1)]^2} \times \frac{\left[(p_2 F_k](p_1) \right]^2}{2[(p_1 F_k](p_1)]^2} \times \frac{1}{22[(p_1 F_k](p_1)]^2} \right]$ Ratio bion of the high-loss p_2) is p ybrid cavity interacting orporates optical modes wi application of the second s	$\frac{E_{p}E_{b}E_{b}E_{b}(p_{2})}{E_{p}E_{b}E_{b}(p_{2})} \propto \frac{(E_{p}}{(E_{p})} \frac{E_{p}}{(E_{p})} E_{p$	$\frac{1}{n} - \frac{\omega_{1}}{2} + \frac{F_{p_{1}}}{2} \rightarrow 0$ $\frac{1}{2} - \frac{\omega_{1}}{2} + \frac{F_{p_{1}}}{2} \rightarrow 0$ $\frac{1}{2} - \frac{1}{2} + \frac{F_{p_{1}}}{2} \rightarrow 0$ $\frac{1}{2} + \frac{F_{p_{1}}}{2} + \frac{F_{p_{1}$	Let E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) get • When $\frac{E_{P_2}}{2} = E_{P_1} = \omega_L$ and Hybrid cavity+ interacting with $H_0 = \left(\omega - \frac{V_2}{2}\right)\sigma_+ \alpha$ Engineering low-loss [] When $g_1, \gamma_2, \gamma_1 \ll g_2$. The provided of the microcometry of	$\begin{split} & \underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\underset{r=0}{\overset{(\Omega)}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr=0}{\underset{r=0}{\atopr}}{\underset{r=0}{\atopr}{r}}{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{2}{2} \times \frac{\left[(p_2 F_p p_2) \right]^2}{2[(p_1 F_p 0)]^2} \times \frac{\left[(p_2 F_p T_p) \right]^2}{2[(p_1 T_p 0)]^2} \times \frac{1}{2[(p_1 T_p 0)]^2} \times \frac{1}{2} \frac{1}{2}$	$\begin{split} & \frac{E_{p}E_{b}E_{b}E_{b}E_{b}(p_{2}) }{E_{p}E_{b}E_{b}(p_{2}) ^{2}} \ll \frac{(E_{p}}{(E_{p}^{2})} \\ & \frac{E_{p}E_{b}E_{b}(p_{2}) ^{2}}{(E_{p}^{2})} \ll \frac{(E_{p}^{2})}{(E_{p}^{2})} \\ & tween the Lorentzian frequencies of the second secon$	$\begin{array}{c} & -\infty_{2} \\ & -\infty$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) get • When $\frac{E_{P2}}{2} = E_{P1} = \omega_L$ and Hybrid cavity-interacting with $H_0 = \left(\omega - \frac{V_P}{2}\right)\sigma_r\sigma_r$ Engineering low-loss [, When $g_{1}, \gamma_{2}, \gamma_{3} \ll g_{2}$ decoupling of the microcav	$\begin{split} & \underset{\tau=0}{\overset{(\Omega)}{=}} \left(\omega_{\tau} \right) \approx \frac{\left E_{P_{1}} - \omega_{t} \right }{\left \frac{E_{P_{2}}}{2} - \omega_{t} \right } \\ & \Gamma_{P_{2}} \gg \Gamma_{P_{1}}, \text{ the populat} \\ & \mathbf{NHPB in h} \\ \text{hemitter} \left(r_{\theta} \ll r_{h} \right) \text{ inc} \\ & \tau_{\tau} + \Sigma_{\{n=1,2\}} \left[\left(\omega - \frac{tr_{\tau}}{2} \right) \right] \\ & \Gamma_{h} \text{ int} \\ & \text{with and} \end{split}$	$ \frac{2}{2} \times \frac{\left[\left(p_2 P_k p_1 \right) \right]}{2} \times \frac{\left[\left(p_2 P_k p_1 \right) \right]}{2} \times \frac{\left[\left(p_2 P_k p_1 \right) \right]}{2} \times \frac{1}{2} \right] \left(p_1 p_1 p_1 \right)} $ Ratio b loon of the high-loss $ p_2 \rangle$ is p ybrid cavity interacting orporates optical modes wi <u>m</u>) $a_n^* a_n + g_n (\sigma_k a_n + a_n^* \sigma_i^* \sigma_i^*)$ ngineering high-loss $ p_2 \rangle$ loss of $ p_2 \rangle$ is controlled by it plasmonic component: $\langle p_2 a_n^2 a_2 \rangle p_2 \rangle$, in to vercomes $\frac{p_1}{p_2}$ with higher loss than $ p_1 $ • By engineering high-dese (solid • This single-phote	$\begin{split} & E_{D}E_{D}E_{0}E_{0}E_{0}E_{0}E_{0}E_{0}E_{0}E_{0$	$\begin{array}{c} 1-\omega_{2})^{2}+\frac{\mu_{E}}{2} \rightarrow 0 \\ \frac{1}{2}-\omega_{2})^{2}+\frac{\mu_{E}}{2} \rightarrow 0 \\ \frac{1}{2}-\omega_{2})^{2}+\frac{\mu_{E}}{2} \rightarrow 0 \\ \text{inctions of the density of states}, giving \\ \text{inter ensity of states, giving} \\ \frac{\mu_{E}}{2}=10^{-1}\frac{\mu_{E}}{2}=10^{-1}\frac{\mu_{E}}{2}=0^{-1}\frac{\mu_{E}}{2}=\frac{1}{2}0^{-1}\frac{\mu_{E}}{2}=0^{-1}\mu$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) $\begin{aligned} \theta_{2} &= \theta_{p_{1}} = \omega_{L} \text{ and } \\ \\ \text{Hybrid cavity: interacting with } \\ \theta_{0} &= \left(\omega - \frac{v_{p}}{2}\right)\sigma_{r}\sigma \\ \\ \\ \text{Engineering low-loss }_{1} \\ \\ \\ \\ \text{When } g_{1}, \gamma_{o}, \gamma_{1} \ll g_{2} \\ \\ \\ \\ \text{decoupling of the microcale} \\ \end{aligned}$	$\begin{split} & \underset{\tau=4}{\overset{(\Omega)}{\underset{\tau=4}{(\omega_{\tau})}}} \left(\omega_{\tau} \right) \approx \frac{\left \frac{E_{p_{\tau}} - \omega_{t}}{\left \frac{E_{p_{\tau}}}{2} - \omega_{t}} \right }{\left \frac{E_{p_{\tau}}}{2} - \omega_{t}} \right } \\ & \qquad \qquad$	$\frac{2}{2} \times \frac{\left[(p_2 \beta_k p_2) \right]^2}{2 ((p_1 \beta_k p_2))^2} \times \frac{\left[(p_2 \beta_k p_2) \right]^2}{2 ((p_1 q_2 q_2))^2} \times \frac{1}{2 ((p_1 q_2))^2} \times \frac{1}{2 ((p$	$\begin{split} & E_{D}E_{D}E_{0}E_{0}E_{0}E_{0} p_{2}\rangle \propto \left(\frac{E_{p}}{E_{D}E_{0}} p_{2}\rangle\right) \approx \left(\frac{E_{p}}{E_{D}E_{0}} p_{2}\rangle\right)^{2} \approx \left(\frac{E_{p}}{E_{D}E_{0}} p_{2}\rangle\right)^{2} \approx tween the Lorentzian frequence the Lorentzian frequence the due to a sm with two-level emission is well different losses (Y_{2}) = (Y_{2})^{2} + (Y_{2})$	$\begin{array}{c} 1-\omega_{2} \end{pmatrix}^{2}+\frac{\Gamma_{p_{1}}^{p_{1}}}{2}\rightarrow 0\\ \frac{1}{2}-\omega_{2} \end{pmatrix}^{2}+\frac{\Gamma_{p_{2}}^{p_{2}}}{16}\rightarrow 0\\ anctions of the density of states, giving interval density of the density of states, giving interval of the density of states, giving interval of the density of $	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) 9. • When $\frac{p_{22}}{2} = E_{p_1} = \omega_L$ and Hybrid cavity: interacting with $B_0 = (\omega - \frac{v_P}{2})\sigma_r \alpha$. Ingineering low-loss J When $g_1, y_0, y_1 \ll g_{22}$ decoupling of the microcas	$\begin{split} & \underset{r_{2}=0}^{(2)}(\omega_{t}) \approx \frac{ E_{p_{1}}-\omega_{t} }{ \frac{E_{p_{2}}}{2}-\omega_{t} } \\ & \qquad \qquad$	$ \frac{2}{2} \times \frac{\left[(p_2 k_2 p_2) \right]^2}{2[(p_1 k_2 p_2)]^2} \times \frac{\left[(p_2 k_2 p_2) \right]^2}{2[(p_1 k_2 p_2)]^2} \times \frac{1}{22[(p_1 k_2 p_2)]^2} \right] $ Ratio bio of the high-loss $ p_2\rangle$ is p ybrid cavity interacting orporates optical modes wi with $a_n^2 = a_n a_n + a_n^2 \sigma_n^2$ radia $a_n + g_n (\sigma_n a_n + a_n^4 \sigma_n^2)$ and $a_n^2 = h_{2n} a_{2n} a_{2n} + a_n^2 \sigma_n^2$ radia $a_n + g_n (\sigma_n a_n + a_n^4 \sigma_n^2)$ radia $a_n + g_n (\sigma_n a_n^2)$ radia	$\begin{split} & \frac{E_{p}E_{b}E_{b}E_{b}(p_{2}) }{E_{p}E_{b}E_{b}(p_{2}) ^{2}} \ll \frac{(E_{p}}{(E_{p})} \\ & \frac{E_{p}E_{b}E_{b}(p_{2}) ^{2}}{E_{p}E_{b}(p_{2}) ^{2}} \ll \frac{(E_{p})}{(E_{p})} \\ & tween the Lorentzian frequence of the transformation of the transfo$	$\frac{1}{1-\infty_{1}^{2}} + \frac{1}{r_{1}} \frac{r_{1}}{2} \rightarrow 0$ $\frac{1}{r_{1}} - \frac{1}{r_{2}} \frac{1}{r_{2}} \frac{1}{r_{2}} \rightarrow 0$ unctions of the density of states, giving itter $\approx \gamma_{1} : \underbrace{e}_{1} = \underbrace{e_{1}}_{r_{1}} \underbrace{e_{2}}_{r_{1}} \underbrace{e_{2}}_{r_{2}} \underbrace{e_{2}} \underbrace{e_{2}}_{r_{2}} e$	Let E_{p_1} and E_{p_2} prise to the NHPB.
(low-pumping regime) 9. • When $\frac{\beta_{p_2}}{2} = \beta_{p_1} = \omega_L$ and Hybrid cavity-interacting with $\beta_0 = \left(\omega - \frac{i \omega_L}{2}\right) \sigma_r \alpha$ Ingineering low-loss [], When $g_1, \gamma_0, \gamma_1 \ll g_2$, decoupling of the microcar		$ \frac{2}{2} \times \frac{\left[(p_2 F_p p_z) \right]^2}{2 [(p_1 F_p 0)]^2} \times \frac{\left[(p_2 F_p 0)\right]^2}{2 [(p_1 F_p 0)]^2} \times \frac{1}{2 [(p_1 F_p 0)]^2} \times \frac{1}{2 [(p_1 F_p 0)]^2} \right] $ Ratio bion of the high-loss $ p_2 \rangle$ is proported optical modes with a statistical mode with a statistic optical mode wi	$\begin{split} & \frac{E_{p}E_{b}E_{b}E_{b}(p_{2}) }{E_{p}E_{b}E_{b}(p_{2}) ^{2}} \ll \frac{(E_{p}}{(E_{p})} \\ & \frac{E_{p}E_{b}E_{b}(p_{2}) ^{2}}{E_{p}E_{b}(p_{2}) ^{2}} \ll \frac{(E_{p})}{(E_{p})} \\ & etween the Lorentzian frequencies of the second sec$	$\begin{array}{c} 1-\omega_{2} \right)^{2}+\frac{\mu_{p_{1}}}{2}\rightarrow 0\\ a_{1}-\omega_{2} \right)^{2}+\frac{\mu_{p_{1}}}{16}\rightarrow 0\\ a_{2}-\omega_{2} \right)^{2}+\frac{\mu_{p_{2}}}{16}\\ a_{$	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) 9. • When $\frac{E_{P_2}}{2} = E_{P_1} = \omega_L$ and Hybrid cavity: interacting with $H_0 = (\omega - \frac{v_L}{2})\sigma_z\sigma_z$ Engineering low-loss When $g_1, v_2, v_1 \ll g_2$, decoupling of the microcar	$\begin{split} & \underset{r=0}{\overset{(\Omega)}{=}} \left(\omega_{r} \right) \approx \frac{\left \frac{E_{P_{1}} - \omega_{r} \right }{\left \frac{E_{P_{2}}}{2} - \omega_{l} \right } \\ & \qquad \qquad$	$ \frac{2}{2} \times \frac{\left[(p_2 F_k p_2) \right]^2}{2[(p_1 F_k 0)]^2} \times \frac{\left[(p_2 F_k p_2) \right]^2}{2[(p_1 F_k 0)]^2} \times \frac{1}{2[(p_1 F_k 0)$	$\begin{split} & \frac{E_{p}E_{s}E_{s}^{b}E_{s}^{b}\left[p_{2}\right)\right]}{E_{p}E_{s}^{b}E_{s}^{b}\left[p_{2}\right)\right]^{2}} \ll \frac{\left(\mathcal{E}_{p}\right)}{\left(\frac{E_{p}}{E_{s}}\right)^{2}} & \approx \frac{\left(\mathcal{E}_{p}\right)}{\left(\frac{E_{p}}{E_{s}}\right)^{2}} \\ & \text{tween the Lorentzian frequences the theorem the lorentzian frequences of the theorem the different losses (p_{2}) \\ & theorem theorem$	$\frac{1}{1} - \frac{\omega_{1}}{2} + \frac{F_{E_{1}}}{2} \rightarrow 0$ $\frac{1}{2} - \frac{\omega_{1}}{2} + \frac{F_{E_{1}}}{2} \rightarrow 0$ $\frac{1}{2} - \frac{\omega_{1}}{2} + \frac{F_{E_{2}}}{2} \rightarrow 0$ $\frac{1}{2} + \frac{F_{E_{1}}}{15}$ $\frac{1}{2} + \frac{1}{15}$ $\frac{1}{2} + \frac{1}{15} $	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) 9. When $\frac{E_{P2}}{2} = E_{P1} = \omega_L$ and Hybrid cavity: interacting with $H_0 = \left(\omega - \frac{V_P}{2}\right)\sigma_+ \alpha$ Ingineering low-loss I; When $g_{11}, \gamma_{02}, \gamma_1 \ll g_{23}$ decoupling of the microscale	$\begin{split} & \underset{r=1}{\overset{(\Omega)}{\vdash}} (\omega_{r}) \approx \frac{ E_{P_{1}} - \omega_{r} }{ \frac{E_{P_{2}}}{2} - \omega_{l}} \\ & \frac{ E_{P_{2}} - \omega_{r} }{ \frac{E_{P_{2}}}{2} - \omega_{l} } \\ & \Gamma_{P_{2}} \gg \Gamma_{P_{1}} \text{ the populat} \\ & \mathbf{NHPB in h} \\ & \text{hemitter} (r_{g} \ll r_{h}) \text{ inc} \\ & \tau_{z} + \Sigma_{(n=1,2)} \left[(\omega - \frac{tr_{z}}{2} - \omega_{h}) \right] \\ & \tau_{z} + \Sigma_{(n=1,2)} \left[(\omega - \frac{tr_{z}}{2} - \omega_{h}) \right] \\ & \text{The int} \\ & \text{with and} \\ & \text{The int} $	$ \begin{array}{l} \frac{2}{2} \times \frac{\left[\left(p_2 k_1 p_1 \right)\right]^2}{2} \times \frac{\left[\left(p_2 k_1 p_1 \right)\right]^2}{2} \times \frac{\left[\left(p_2 k_1 p_1 \right)\right]^2}{2} \times \frac{1}{2} \left(p_1 p_1 p_1 \right)\right] \\ \end{array} \right] \\ \\ \begin{array}{l} \text{Ratio b} \\ \text{solon of the high-loss } \left[p_2\right) \text{ is p} \\ \text{yhid cavity interacting} \\ \text{gorporates optical modes wi} \\ \frac{\alpha}{2} \right] \\ \frac{\alpha}{n} a_n^+ a_n + a_n (\alpha_n a_n + a_n^+ \alpha_n^+ \alpha_n$	$\begin{split} & E_{D}E_{D}E_{0}E_{0}E_{0}E_{0}E_{0}P_{0}) \sim \left(\frac{(E_{p})}{(E_{p})} - \frac{(E_{p})}{(E_{p})} - \frac{(E_{p})}{(E_{p})} \right) ^{2} \sim \left(\frac{(E_{p})}{(E_{p})} - \frac{(E_{p})}{(E_{p})} - \frac{(E_{p})}{(E_{p})} \right) ^{2} \\ & tween the Lorentzian frequencies of the tweether the sense of the tweether the sense of the tweether tweether$	$\begin{array}{c} 1-\omega_{2} \right)^{2}+\frac{\mu_{R}}{2}\rightarrow 0\\ \frac{1}{2}-\omega_{2} \right)^{2}+\frac{\mu_{R}}{2}\rightarrow 0\\ \frac{1}{2}-\omega_{2} \right)^{2}+\frac{\mu_{R}}{2}\rightarrow 0\\ \text{inctions of the density of states}, giving \\ \text{intermations of the density of states, giving \\ \text{itter}\\ \end{array}$ $\begin{array}{c} \gg\gamma_{1}):\underbrace{e}_{p} \qquad \underbrace{e}_{p} \qquad \underbrace{e}_{p} \\ \sum_{n=1}^{p} $	at E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) 9. • When $\frac{E_{P2}}{2} = E_{P1} = \omega_L$ and Hybrid cavity: interacting with $B_0 = (\omega - \frac{v_P}{2})\sigma_z \alpha$. In Engineering low-loss]: When $g_{1,Y_0,Y_1} \ll g_{2,2}$ decoupling of the microsol	$\begin{aligned} & \underset{r_{a}=0}{\overset{(2)}{\longrightarrow}} (\omega_{t}) \approx \frac{ E_{p_{1}} - \omega_{t} }{ \frac{E_{p_{2}}}{2} - \omega_{t} } \\ & \qquad \qquad$	$\frac{2}{2} \times \frac{\left[\left(p_2 F_{k} p_{k} \right)\right]^{2}}{2\left[(p_1 F_{k} p_{k} \right)\right]^{2}} \times \frac{\left[(p_2 F_{k} p_{k} \right]^{2}}{2\left[(p_1 F_{k} p_{k} \right]^{2}} \times \frac{1}{2\left[(p_1 F_{k} p_{k} \right]^{2}}\right]} \\ Ratio bion of the high-loss p_2) is pybrid cavity interactingorporates optical modes wia2) a2nan + gn(\alpha_{n}a_{n} + a^{4}_{n}\sigma_{n}regimeering high-loss p_2)oss of p_2) is controlled by itplasmonic component:(p_1 a^{2}_{n} p_{k} p_{$	$\frac{E_{p}E_{b}E_{b}E_{b}E_{b}[p_{2})]}{E_{p}E_{b}E_{b}[p_{1}]} \approx \frac{(E_{p}}{(E_{p})} \frac{E_{p}E_{b}E_{b}[p_{2})]^{2}}{(E_{p})} \approx \frac{(E_{p}}{(E_{p})} \frac{E_{p}}{(E_{p})} \frac{E_{p}}{(E$	$\frac{1}{1-\frac{\omega_{1}}{2}} + \frac{1}{\frac{\mu_{1}}{2}} - 0$ $\frac{1}{2} - \frac{\omega_{1}}{2} + \frac{1}{\frac{\mu_{1}}{2}} - 0$ $\frac{1}{2} - \frac{\omega_{1}}{2} + \frac{1}{\frac{\mu_{2}}{2}} - 0$ $\frac{1}{2} - \frac{1}{2} + \frac{1}{\frac{\mu_{1}}{2}} - 0$ $\frac{1}{2} - \frac{1}{\frac{\mu_{1}}{2}} + \frac{1}{\frac{\mu_{2}}{2}} + \frac{1}{\mu$	Let E_{p_1} and E_{p_2} rise to the NHPB.
(low-pumping regime) 9. • When $\frac{E_{P_2}}{2} = E_{P_1} = \omega_L$ and Hybrid cavity- interacting with $H_0 = (\omega - \frac{t_L}{2})\sigma_r \alpha$. Interacting low-loss []. When $g_1, \gamma_c, \gamma_1 \ll g_2$. Caroling of the microcar		$\frac{2}{\pi} \times \frac{\left[\left(p_{2} k_{p} p_{z} \right)\right]^{2}}{2\left[\left(p_{1} k_{p} n_{z} \right)\right]^{2}} \times \frac{\left[\left(p_{2} k_{p} n_{z} \right)\right]^{2}}{2\left[\left(p_{1} n_{z} \right)\right]^{2}} \times \frac{1}{2\left[\left(p_{1} n_{z} \right)\right]^{2}} \times \frac{1}{2\left[\left(p_{1} $	$\begin{split} & \left \frac{E_{p}}{E_{p}} E_{$	$\frac{1}{1-\infty_{2}} = \frac{p_{1}}{p_{1}} = \frac{p_{1}}{p_{1}} = 0$ $\frac{1}{p_{1}} = \frac{p_{1}}{p_{1}} = \frac{p_{1}}{p_{1}} = 0$ $\frac{1}{p_{1}} = \frac{p_{1}}{p_{1}} = \frac{p_{1}}{p_{$	at E_{p_1} and E_{p_2} rise to the NHPB.

Combine few-mode quantization with molecular dynamics

We can now do molecular dynamics simulations with the full complexity of the molecules & the full complexity of the nanophotonic system in an efficient manner.

Summary

- Novel few-mode quantization method for nanophotonic systems
 - Efficient & simple mapping between nanophotonics and quantum optics
 - Mode interactions are an intrinsic feature of nanophotonic systems
 - Naturally non-Hermitian
 - Can deal with multiple emitters
 - Not restricted to any particular system or coupling regime

• Example applications

- Ultrastrong coupling
- Nonclassical light emission. R. Sáez-Blázquez et al., Nano Lett. 22, 2365 (2022), A. Ben-Asher et al., arXiv:2212.06307
- Molecular dynamics in nanophotonic structures
- Outlook:
 - Exploit mapping to provide **new directions for quantum optics & nanophotonics**
 - Further theory developments
 - Input-output theory
 - Non-dipole interactions

Team & Acknowledgements

Maksim Lednev Ruth H. Tichauer Anael Ben-Asher

Lednev JF Alan Torres r Diego Fernández de la Pradilla -Asher Petros Pantazopoulos Jacopo Fregoni

Alan TorresJacob A. BuscheradillaDaniela Gallegopo FregoniXabier Arrieta

Francisco J. García Vidal

Mónica Sánchez Barquilla

Rocío Saéz Blázquez

Antonio I. Fernández Domínguez

Ivan Medina

Gerrit Groenhof

GOBIERNO DE ESPAÑA Y UNIVERSIDADES

European Research Council Established by the European Commission

https://mmuscles.eu @MMUSCLES_UAM

Open-source codes: https://github.com/jfeist