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Aim: To study interesting phenomena in quantum many-body systems.

Examples: magnetism in spin chains, quantum Hall effect,
critical systems, topological phases, etc

Method: Use Tensor Networks and Quantum Field Theory
to construct simple models with particular physical properties.

Why?: Fundamental understanding of how the phenomena can arise.
Experimental simulations under well-controlled conditions.
Practical applications.

Wave functions and/or Hamiltonians



Plan of the talk

- Brief history of Tensor Networks

- A primer on Matrix Product States (MPS) 

- infinite MPS vs CFT  

- Application to the spin chains   

- Application to Fractional Quantum Hall 

- Field Tensor Networks



Wilson numerical RG (1975)
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Fannes, Nachtergaele, Werner (1992)Finite correlated states
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Östlund, Rommer (1995)
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Verstraete, Cirac (2004)

MERA

MPS

Vidal (2005)

TN



MPS



Matrix Product State (MPS)

bond dimension



Affleck Kennedy Lieb Tasaki state (AKLT)

spin 1 chain

Open chain: effective spins ½ at the edges  



Affleck Kennedy Lieb Tasaki state (AKLT)

Parent Hamiltonian

Spin-spin correlator

Finite energy gap

Symmetry Protected Topological state (SPT)

Haldane phase



Entanglement entropy of MPS

AB B

Area law in 1D



iMPS



auxiliary space

physical degrees 

Matrix Product State (MPS)

infinite Matrix Product State (iMPS)



iMPS = “string inspired” MPS

where the “string” mediator of entanglement



MPS satisfies area law

Critical 1D systems described by CFT: log violation      

One needs very large matrices to describe critical systems

An alternative to overcome this problem is the iMPS 

Holzhey, Larsen, Wilczek, 1994, 
Vidal, Latorre, Rico, Kitaev, 2003
Calabrese, Cardy, 2004

Tagliacozzo, de Oliveira, Iblisdir, Latorre, 2007
Pollmann, Mukerjee, Turner, Moore,  2008



Proposal

Use primary fields of a CFT as MPS “matrices”

MPS:

iMPS:

Similar to CFT ansatzs for Fractional Quantum Hall systems ( Moore and Read, 1991)

primary field of a CFT

matrix

MPS:

iMPS:

Cirac, GS, 2010



iMPS - XXZ



iMPS and CFT 

Consider a chiral massless boson            

are variational parameters obtained by minimization
of the GS energy and imposing the symmetries of a Hamiltonian 

𝑠 = 	±1



XXZ model of a spin 1/2 chain 

Translational invariance -> 

Marshall sign rule -> 

Minimize the energy ->  

CriticalFerromagnetic Antiferromagnetic

Δ		−1		 1		0		

𝑆*+ =
,
-
𝜎*+



Overlap of the exact and the CFT wave functions

Δ = 0 → | Ψ2 Ψ+3 | = 1

Δ = 1 → Ψ2 Ψ+3 = 0.99. .



Δ = −𝑐𝑜𝑠 2𝜋𝛼

−1 < 	Δ	 ≤ 1		 ↔ 		0 < 	𝛼	 ≤
1
2	

The parameter 𝛼	 (𝑁 = 20)

numerical

analytical



Renyi entropy

Entanglement properties

CFT prediction

One finds 
Fluctuations
depend on



Algebraic decay for

Spin-spin correlators

long range order for



Algebraic decay for

Spin-spin correlators

long range order for



Algebraic decay for

Spin-spin correlators

Correlator for Heisenberg model 

long range order for

universal term



Luttinger liquid of XXZ 

bosonization

𝛼 =
1
4 ↔ 𝐾 = 1 ↔ 	Δ = 0	 𝛼 =

1
2 ↔ 𝐾 =

1
2 ↔ 	Δ = 1	



Haldane-Shastry



The Haldane-Shastry model (1988)       

1D lattice of hard core bosons

= boson

1 2 3 4 5 6
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The Haldane-Shastry model (1988)       

1D lattice of hard core bosons

= boson

1 2 3 4 5 6

If the site n is occupied 

many body state

Constructed using the Gutzwiller projection of the Fermi state at half filling



is the ground state of the Hamiltonian

Map: hard core boson to  spin 1/2

N>>1

0 0.244

Critical Dimerized



Take 

Relation between HS and iMPS

Using the hard core boson – spin map



Connection: iMPS and the WZW

primary field             

fusion rule:

The HS wave function is a conformal block
(chiral correlator) 

𝑆𝑈 2 @𝑘 = 1



Derivation of the parent Hamiltonian from CFT 

Knizhnik-Zamolodchikov eq for 

Generalized Haldane-Shastry Hamiltonian

Reduces to HS if



Equations for spin correlators

One gets a linear system of equations for spin-spin correlators

In the uniform case we recover the Gebhard-Vollhardt result

But we also find an  exact formula for finite N



Four point spin correlator



iMPS = chiral correlators of CFT 

label the wave functions  given by the fusion rules

degenerate ground states

Examples: SU(2)@k   WZW model with k=1,2,…

Parent Hamiltonians can be constructed using the null vectors
of the primary fields : representation theory of Kac-Moody algebras

Nielsen,Cirac, GS, 2011



Primary fields: 

Fusion rule:

(See also M. Greiter et al for a s=1 Hamiltonian)



SU(2)@k=2 = Boson + Ising  (c= 3/2 = 1+ 1/2)

Primary spin 1 fields (h=1/2) 

Majorana fermion

Spin 1 wave function 



Renyi entropy

c=3/2



Spin-spin correlator

CFT prediction

Suggest existence of log corrections (Narajan and Shastry)



Ansatzs for excitations  
Herwerth et al

In 1D  one recovers the exacts results by Haldane, Calogero-Sutherland model



Fractional Quantum Hall

iMPS in 2D 



Wave function for the ground state at  filling fraction             

m is odd (even) for fermions (bosons)



Kalmeyer-Laughlin wave function (1987) 

Bosonic wave function at filling fraction 1/2 

- Hard-core bosons located on a square lattice

- ->  spin singlet state

- KL state describes a chiral spin liquid : “topological matter” 
-- gap in the bulk
-- gapless edge excitations
-- degenerate GS on the torus
-- indistinguisable by local observables
-- anyonic excitations (abelian)
-- topological entanglement entropy

Note:  if we take 



Relation with SU(2)@k=1 model

Take the z’s in the square lattice  

On large lattices 

including the gaussian factor

No need to add this factor by hand. Charge neutrality is 
automatically guaranteed in the spin variables.



Sum of two body and three body terms

g(z), h(z): generic

Parent Hamiltonian  

Breaks time reversal

Problem : it is long range

If 𝑤*F =
2𝑧*

𝑧* − 𝑧F
− 1 ->  HS Hamiltonian



The Haldane-Shastry state              The Kalmeyer-Laughlin state

conformal block

𝑁	 → 	∞∀	𝑁	



Spin-spin correlation function

200 spins on the sphere



Entanglement entropy of the cylinder 

Topological entanglement
entropy

Kitaev, Preskill, 2006
Levin, Wen, 2006



Overlap 

Truncated Hamiltonian for the KL state



Couplings:  U, t , t’  

Derivation from a Fermi-Hubbard Hamiltonian



U>>t, t’ -> Mott insulating regime: each site occupied by single fermion 

C= Chern number 

overlap of CFT/exact wf’s



FTNS



1D Field Tensor Network States
Nielsen, Herwerth, Cirac, Tilloy, 
Gasull, GS, 2020, 2022



Sewing condition

Closing condition



FTN representation of CFT correlators



Slicing the path integral



FTN amplitudes in 1D

Momentum space representation



Symmetries for MPS and FTNS Gasull, Tilloy, Cirac, GS

proyective irreps



Symmetries for MPS and FTNS

Conformal currents

𝑆𝑈(2),	

Gasull, Tilloy, Cirac, GS

Acting on functionals they are defined as 

proyective irreps





Proyective representation



SPT ground states and the Majundar-Ghosh states

trivial irrep non-trivial irrep

𝐽-
𝐽,
= 1/2



Infinite dimensional PEPS

2D Field Tensor Network States



Conjecture: sewing the amplitudes we get

The chiral 2D FTN could through light into the “no-go” theorem 
concerning the non-existence of a PEPS with finite bond        
dimension for the chiral topological states. 



FTN and MERA work in progress

J. Molina-Vilaplana
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FTN and MERA work in progress

J. Molina-Vilaplana



Conclusions

- Quantum Field Theory provides natural generalizations  of 
Tensor Networks where the auxiliary space becomes infinite 
dimensional. 

- This extension allows to described critical systems in 1D and
FQH systems in 2D that are intimately related via the edge-bulk 
correspondence. 

- FTN may provide a new way to study the topological properties of 
many body systems. 
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