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Example 1: Free spinless fermions

(a) (b) (c)

∆(   )N

δ (   )N

k

(   )ε k

1/N

∆(   )N

δ (   )N

k

(   )ε k

1/N

∆(   )N

δ (   )N

k

(   )ε k

1/N

µ µ µ

The ground states are gapless and non-degenerate in the thermodynamic
limit N →∞.
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The ground states are gapped and non-degenerate in the thermodynamic
limit N →∞.
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Example 2: Nearest-neighbor repulsive interactions between spinless fermions

at the filling fraction ν = 1/2
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The ground states are gapped, finitely degenerate, and long-range ordered in
the thermodynamic limit N even→∞.
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Example 3: Strong nearest-neighbor repulsive interactions between spinless

fermions at the filling fraction 0 < ν < 1/2.
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The ground states are gapped and infinitely degenerate in the
thermodynamic limit N →∞. There is no long-range order.
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Example 4: Strongly attractive fermions
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The ground states are gapped, infinitely degenerate, and violate the
clustering property in the thermodynamic limit N →∞.

In general, a quantum many body state |Φ〉 is said to satisfy the cluster decomposition property or clustering property if, for any
pair of local operators Ô1(r) and Ô2(r), the identity

lim
|r−r′|→∞

〈
Φ
∣∣∣ Ô1(r) Ô2(r′)

∣∣∣Φ
〉

= lim
|r−r′|→∞

〈
Φ
∣∣∣ Ô1(r)

∣∣∣Φ
〉 〈

Φ
∣∣∣ Ô2(r′)

∣∣∣Φ
〉

(1)

holds.
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Comments:

There were no examples in one-dimensional space of local and
Gtrsl × Gf -symmetric Hamiltonian with

1 gapped,
2 n-fold degenerate with 1 < n <∞,
3 and Gtrsl × Gf -symmetric

ground states.

This is not an accident!
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Question:

Can one make any general statement about the degeneracy of gapped
superconducting ground states of local lattice Hamiltonians?
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Main results: No-go Theorem I

... ...
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Theorem (no-go theorem I)

Any one-dimensional lattice Hamiltonian that is
(i) local,
(ii) admits the global symmetry group Gtrsl × Gf ,

where the fermionic symmetry group Gf is an on-site symmetry
that is realized locally by a nontrivial projective representation,

cannot have nondegenerate, gapped, and Gtrsl × Gf -symmetric ground
states that can be described by even- or odd-parity injective fermionic
matrix product states (FMPS).
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Fermionic symmetry group Gf

A symmetry group is called fermionic if it contains a normal cyclic subgroup of
order two

ZF
2 ≡

{
p, p2 ≡ id

}
(2)

that cannot be broken (neither explicitly nor spontaneously).
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On-site symmetry group Gf

A symmetry group Gf is on-site if any one of its elements g is represented quantum
mechanically by an operator Û(g) obeying the factorization

Û(g) =



∏
j∈Λ

ûj (g), if unitary,

[∏
j∈Λ

ûj (g)

]
K, if non-unitary,

(3a)

where
1 Λ denotes the lattice,
2 ûj (g) only acts non-trivially on site j ,

3 the pair ûj (g) and ûj′(g
′) for any two distinct sites j, j ′ ∈ Λ and any two elements

g, g′ ∈ Gf either commute or anticommute,

ûj (g) ûj′(g
′) = η(g, g′) ûj′(g

′) ûj (g),

η(g, g′) = (−1)ρ(g) ρ(g′), ρ(g), ρ(g′) = 0, 1.
(3b)

Here, g is represented by a bosonic (fermionic) operator if ρ(g) = 0 [ρ(g) = 1].

C. Mudry (PSI) Lieb-Schultz-Mattis type theorems for Majorana models with discrete symmetries 12 / 38



Projective representations

Let G be a group with the composition rule ? by which

g1 ? g2 = g12, g1, g2, g12 ∈ G. (4)

An n-dimensional representation of G is a group homomorphism on the space of
linear maps acting on an n-dimensional vector space.
In quantum mechanics, any group element g is assigned an operator Ûg acting on an
Hilbert space. This assignemnt is not unique, since physical states are rays in the
Hilbert space. Hence,

Ûg1
Ûg2

= e
iφg1,g2 Ûg12

, g1, g2, g12 ∈ G. (5)

Here, the function
φ : G× G→ [0, 2π[ (6)

must be compatible with the associativity of ?. The presence of the phase factor on
the right-hand side of Eq. (5 ) defines a projective representation of the group G.
This projective representation is trivial if it is possible to choose

φg1,g2
= 0 mod 2π, ∀g1, g2 ∈ G. (7)

Otherwise, this projective representation of G is nontrivial.
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Examples of nontrivial projective representations

1 For any half-integer spin (spinor) representation of SO(3), a 2π-rotation squares to minus the identity.

2 Reversal of time

T : Rd × R→ Rd × R,
(x, t) 7→ (x,−t),

(8a)

generates the cyclic group
G ..=

{
T ,T 2 ≡ id

}
. (8b)

In quantum mechanics, it is represented on the Hilbert space

Ht ..= L2
t (Rd ; C2) (9a)

for square-integrable spinors by the antilinear transformation

T̂ : Ht →H−t ,

Ψ(x, t) 7→ iσ2 Ψ∗(x,−t).
(9b)

Because of

T̂ 2 =
(

iσ2 K
) (

iσ2 K
)

=
(

iσ2
)2 (K)2 = (i)2

σ0 ≡ −
(

1 0
0 1

)
, (9c)

T̂ squares to minus the identity and not to the identity. This is why T is represented projectively onHt .
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Fermionic matrix product states (FMPS)
An even parity FMPS obeying periodic boundary conditions is defined by∣∣∣{A(0)

σj

}〉
..=
∑
σ

tr
(

P A(0)
σ1
· · ·A(0)

σN

)
|Ψσ〉 . (10)

An odd parity FMPS obeying periodic boundary conditions is defined by∣∣∣{A(1)
σj

}〉
..=
∑
σ

tr
(

Y A(1)
σ1
· · ·A(1)

σN

)
|Ψσ〉 . (11)
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Main results: No-go Theorem II

... ...︸ ︷︷ ︸
Gtrsl×Gf

Theorem (no-go theorem II)

Any translationally invariant and local d-dimensional lattice Majorana
Hamiltonian with an odd number of Majorana degrees of freedom per
repeat unit cell that is invariant under the symmetry group Gtrsl × Gf ,
cannot have nondegenerate, gapped, and Gtrsl × Gf -symmetric ground
states.
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Main results: Comments

1 The thermodynamic limit is implicit in both theorems.

2 Theorem I is only predictive when Gf is realized by a nontrivial projective
representation on the local Fock space. When Gf is a Lie group with a
trivial projective representation on the local Fock space, then Theorem I
is not predictive. However, one can use complementary arguments,
such as the adiabatic threading of a gauge flux (Laughlin 1981,
Oshikawa 2000), to decide if a symmetric and gapped ground state is
degenerate. It is when Gf is a finite group that the full power of Theorem
I is unleashed.

3 Theorem II for one-dimensional lattices can be proved with the help of
Theorem I.

4 A weaker form of Theorem I holds in any dimension if it is assumed that
Gf is Abelian and can be realized locally using unitary operators.

5 Theorem II holds in any dimension without any restriction on Gf .

6 The proof of Theorems I makes use of the direct product in the
symmetry group Gtrsl × Gf .
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A brief review of the Lieb-Schultz-Mattis theorem

One motivation by Lieb, Schultz, and Mattis in 1961was to find an
analytical argument that could decide if the nearest-neighbor
antiferromagnetic quantum spin-1/2 Heisenberg chain supports
antiferromagnetic long-range order at zero temperature.

Although they could not answer this question rigorously (Mermin and
Wagner in 1966 proved rigorously that the ground state does not
support antiferromagnetic long-range order), they could show
rigorously that the antiferromagnetic quantum spin-1/2 XY
Hamiltonian has a gapless spectrum with all correlation functions
of spins decaying algebraically in space.

In modern (1980’s onward) parlance, the antiferromagnetic quantum
spin-1/2 XY chain realizes the Gaussian conformal field theory with
central charge c = 1.
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In their appendices, Lieb, Schultz, and Mattis also established two theorems,
the second of which is now called the Lieb-Schultz-Mattis theorem:

Theorem (3)

The ground state of the nearest-neighbor antiferromagnetic quantum spin-1/2
Heisenberg chain made of N sites is annihilated by the total spin operator

Ŝ ..=
N∑

j=1

Ŝj (12)

for any even integer N.

Theorem (Lieb-Schultz-Mattis)

The nearest-neighbor antiferromagnetic quantum spin-1/2 Heisenberg chain
made of N sites and obeying periodic boundary conditions supports an
excited eigenstate with an energy of order 1/N above the nondegenerate
ground state for any even integer N.
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Remark (1)
The (original) proof of the LSM theorem does not apply to the nearest-neighbor antiferromagnetic quantum spin-1 Heisenberg
chain. It is still possible to show for S = 1 that there exists a state with an energy of order 1/N above the ground state for any N,
however, it is not possible to show that this state is orthogonal to the ground state.

Remark (2)
The LSM Theorem only proves the existence of at least one excited state with an energy that collapses like 1/N to that of the
ground state in the thermodynamic limit N →∞. This state could be isolated and there is no guarantee that the thermodynamic
limit of the ground state and this excited state are distinct. Hence, neither the existence of a gapless continuum of states above
the ground state nor the nondegeneracy of the ground state in the thermodynamic limit have been shown (one would need the
Bethe Ansatz).

Remark (3)
The (original) proof of the LSM Theorem makes use of the global SU(2) symmetry, time-reversal symmetry, and of Theorem 3
(i.e., the fact that the ground state is nondegenerate).

Remark (4)
The same constructive proof applied to a dimension of space d larger than one would imply the bound Nd−2 between the ground
state and the excited states. This bound is thus useless when d > 1.
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The qualitative difference (Haldane 1983) between half-integer and integer
antiferromagnetic quantum spin-S Heisenberg chains motivated the following
important refinements of the Lieb-Schultz-Mattis Theorem:

1 Affleck and Lieb in 1986 showed that any half-integer antiferromagnetic quantum
spin-S Heisenberg chain with translation and global internal U(1) spin invariance
has a nondegenerate ground state for any finite chain made of an even number
N of sites with a gap of order 1/N. In the thermodynamic limit, the ground states
are either degenerate or nondegenerate and gapless.

2 Oshikawa, Yamanaka, and Affleck in 1997 replaced the condition of Affleck and
Lieb that S is a half integer with the condition that ν ..= Mz

N + S is not an integer.
3 An analogous theorem was proven by Yamanaka, Oshikawa, and Affleck in 1997

for any local lattice models of interacting electrons for which the electronic
charge is conserved, translation symmetry holds, and the ratio ν between the
(conserved) total number of electrons Nf and the number of sites N on the ring is
not an integer.

4 All these papers had always chosen Hamiltonians for which either reversal of
time or inversion in space were symmetries. This assumption was shown by
Koma in 2000 to be superfluous.
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The most recent and general extension of the Lieb-Schultz-Mattis Theorem is due to Tasaki in
2018. Its proof relies on three steps:

1 First, variational states are constructed.
2 Second, the energy expectation values for these variational states are shown to collapse

to the ground-state energy in the thermodynamic limit.
3 Third, the variational states are shown to be orthogonal with each other and with the

ground state for any fixed number of degrees of freedom.
4 Finally, the conditions are given (no spontaneous symmetry breaking of translation

symmetry) under which these orthogonalities survive the thermodynamic limit.

The variational states in the first step are constructed by deformations in position space of the
ground state that are local and smooth. Here, the existence of an on-site global continuous
symmetry of the Hamiltonian is crucial.
The degree of smoothness of these local deformations is controlled by the length of the
one-dimensional lattice hosting the quantum degrees of freedom and the continuity of the on-site
global symmetry of the Hamiltonian. The longer the length of the one-dimensional lattice, the
smoother the local deformations in position space of the ground state are and the closer the
energy expectation values of the variational states relative to the ground state energy are. The
locality of the Hamiltonian is needed to control the separation in energy between the variational
and ground states. The conditions for degenerate ground states in the thermodynamic limit are
given: either infinite degeneracy or spontaneous symmetry breaking of translation symmetry.
The proof of orthogonality in the third step hinges on the filling fraction ν not being integer valued
and the existence of translation symmetry in addition to a continuous symmetry. No more
information from the Hamiltonian is needed to complete this step of the proof.
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Question 1: Can the condition that the Hamiltonian is invariant under
an on-site continuous symmetry be weaken by demanding that the
on-site symmetry group is no more than a discrete group?

Question 2: Can this discrete group accomodate the conservation of
fermion parity?

To answer these questions, we start from the logical contraposition
of Tasaki’s extension of the Lieb-Schultz-Mattis Theorem. It applies to
a local lattice Hamiltonian that is invariant under translation of the
lattice repeat unit cell by one lattice spacing and invariant under a
continuous on-site symmetry group. It also presumes the existence of
a positive real-valued number ν, the filling fraction of the repeat unit
cell. It states that, if the ground-states are finitely degenerate and
separated by a gap from all excited states in the thermodynamic limit,
then either translation symmetry is spontaneously broken or ν is an
integer.
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Theorem I revisited

If
1 space is d-dimensional,

2 Hamiltonian is local,

3 Hamiltonian has Gtrsl × Gf symmetry, with Gf Abelian an on-site
fermionic symmetry that is represented unitarily,

4 Hamiltonian has gapped ground-states,

5 which are nondegenerate and Gtrsl × Gf symmetric,

then Gf must have a trivial projective representation.

Our method is inspired by the one used by Yao and Oshikawa 2021 for
quantum spin Hamiltonians.

C. Mudry (PSI) Lieb-Schultz-Mattis type theorems for Majorana models with discrete symmetries 24 / 38



Step 1 proof Theorem I revisited

By assumption, the combined symmetry group is the direct product

Gtotal ≡ Gtrsl × Gf . (13)

Any translationally- and Gf -invariant and local Hamiltonian can be written in
the form

Ĥpbc ..=
d̂∑
µ̂=1̂

Nµ̂∑
nµ̂=1

(
T̂µ̂
)nµ̂

ĥj

(
T̂ †µ̂
)nµ̂

,
(

T̂µ̂
)Nµ̂

= îd by Eq. (13), (14a)

where ĥj is a local Hermitian operator centered at an arbitrarily chosen
repeat unit cell j . More precisely, it is a finite-order polynomial in the Majorana
operators centered at j that is also invariant under all the non-spatial
symmetries, i.e.,

ĥj = Û(g) ĥj Û−1(g) =
(

ĥj

)†
(14b)

for any g ∈ Gf .
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Step 2 proof Theorem I revisited

By construction

Ĥpbc,

T̂µ̂, ∀µ̂ = 1̂, · · · , d̂ ,

Û(g), ∀g ∈ Gf ,

(15)

commute pairwise.
Energy eigenvalues of

Ĥpbc

can thus be labeled by the eigenvalues of

T̂µ̂ ∀µ̂ = 1̂, · · · , d̂ ,

and of
Û(g) ∀g ∈ Gf .

However, nothing can be said about the degeneracies of the eigenvalues of
Ĥpbc.
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Step 3 proof Theorem I revisited
Yao-Oshikawa conjecture: When a local quantum many-body Hamiltonian
with lattice translation invariance and a global (continuous or discrete)
symmetry has a gapped spectrum with nondegenerate ground states under
periodic boundary conditions, the same must be true under any
symmetry-twisted boundary conditions.

Figure: Example of a path that visits all the sites of a two-dimensional lattice
that decorates the surface of a torus.
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Withoult loss of generality, d = 1 and |Λ| = N. Define

Ĥ tilt
twis(g) ..=

N∑
a=1

(
T̂1̂(g)

)a
ĥtilt

1

(
T̂−1

1̂
(g)
)a
, (16a)

T̂1̂(g) ..= û1(g) T̂1̂ =⇒ T̂1̂(g) χ̂j T̂−1
1̂

(g) =


(−1)ρ(g) χ̂j+1, if j 6= N

and ρ(g) = 0(1) if û1(g) commutes (anticommutes)
with on-site fermion parity,

û1(g) χ̂1 û−1
1 (g), if j = N,

(16b)

then (!!!key step of the proof!!!)

[
T̂1̂(g)

]N
= Û(g), g ∈ Gf and Û(h)−1 T̂1̂(g) Û(h) = eiχ(g,h) T̂1̂(g), h ∈ Gf , (16c)

where the phase χ(g, h) ∈ [0, 2π[ is gauge invariant and given by

χ(g, h) ..= φ(h, g)− φ(g, h) + (N − 1)π ρ(h)[ρ(g) + 1]︸ ︷︷ ︸
only 6= 0 if ∃ Majoranas

. (16d)

Non obvious fact: The phase χ(g, h) is vanishing if and only if the second cohomology class [φ] is trivial.

If χ(g, h) cannot be made to vanish for all g, h, then one-dimensional representations of (16c) are not allowed.

The ground states of any Hamiltonian of the form (16a) are then either degenerate or spontaneously break the symmetry in the
thermodynamic limit.

We have derived the Theorem I revisited for the Abelian group Gf that is represented unitarily when symmetry-twisted boundary
conditions apply.
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Theorem II revisitd

... ...︸ ︷︷ ︸
Gtrsl×Gf

If
1 space is d-dimensional,

2 Hamiltonian Ĥpbc is local,

3 Hamiltonian Ĥpbc is invariant under the symmetry group Gtrsl × Gf ,

4 each repeat unit cell labeled by j ∈ Λ (|Λ| must be even) hosts the odd
number 2n + 1 of Majorana operators χ̂j,l with l = 1, · · · ,2n + 1,

then the Hamiltonian Ĥpbc cannot have nondegenerate, gapped, and
Gtrsl × Gf -symmetric ground states.
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Step 1 proof Theorem II revisited
Substitute

Gtrsl ≡ ZN
1̂
× · · · × ZN

d̂
(17)

in Gtrsl × Gf by the cyclic group

Gtilt
trsl ≡ ZN

1̂
···N

d̂
≡ Z|Λ|. (18)

Figure: Example of a path that visits all the sites of a two-dimensional lattice
that decorates the surface of a torus.
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Step 2 proof Theorem II revisited

At the quantum level, substitute

T̂µ̂ χ̂j

(
T̂µ̂
)−1

= χ̂j+e
µ̂
,

(
T̂µ̂
)Nµ̂

= îd , (19a)

and

Ĥpbc ..=
d̂∑
µ̂=1̂

Nµ̂∑
n
µ̂

=1

(
T̂µ̂
)nµ̂

ĥj

(
T̂ †µ̂
)nµ̂

(19b)

by

T̂µ̂ χ̂j T̂−1
µ̂ = χ̂t

µ̂
(j),

(
T̂µ̂
)Nµ̂

=


T̂
µ̂+1̂, if µ̂ = 1̂, · · · , d̂ − 1̂,

îd , if µ̂ = d̂ ,

(20a)

where tµ̂(j) is the action of the generator of Gtilt
trsl on the repeat unit cell j ∈ Λ, and

Ĥ tilt ..=
|Λ|∑
a=1

(
T̂µ̂
)a

ĥtilt
j

(
T̂ †µ̂
)a

(choices of µ̂ and j are arbitrary) , (20b)

respectively.
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Step 3 proof Theorem I revisited is not needed for Theorem II

We define for any g ∈ Gf with c(g) = +1 the generator of symmetry twisted translation

T̂1̂(g) ..= ûI (g) T̂1̂, û−1
I (g) = û†I (g), (21a)

through its action

T̂1̂(g) χ̂j T̂−1
1̂

(g) =


(−1)ρ(g) χ̂t

1̂
(j), if j 6= N ,

ÛI (g) χ̂I Û−1
j (g), if j = N ,

(21b)

on any Majorana operator labeled by j ∈ Λ. Here, I ≡ (1, · · · , 1) ∈ Λ,
N = (N1̂, · · · ,Nd̂ ) ∈ Λ, and j = (n1̂, · · · , nd̂ ) with nµ̂ = 1, · · · ,Nµ̂.

One verifies the symmetry twisted algebra

Û(h)−1 T̂1̂(g) Û(h) = eiχ(g,h) T̂1̂(g), (22a)

where

χ(g, h) ..= φ(g, h)− φ(h, g) + (|Λ| − 1)π ρ(h)[ρ(g) + 1], (22b)
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Step 4 proof Theorem II revisited

Instead of extracting spectral properties of Hamiltonian Ĥpbc directly, we shall do so
with the family of Hamiltonians indexed by g ∈ Gf and given by

Ĥ tilt
twis(g) ..=

|Λ|∑
a=1

(
T̂1̂(g)

)a
ĥtilt

I

(
T̂−1

1̂
(g)
)a
, (23)

where ĥtilt
1 is a Gf -symmetric and local Hermitian operator.
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Step 5 proof Theorem II revisited

In terms of the Majorana spinors χ̂j , the total fermion parity operator P̂ has the
representation

P̂ := i|Λ|/2
∏
j∈Λ

2n+1∏
l=1

χ̂j,l . (24)

Conjugation of the fermion parity operator P̂ by the tilted translation operator T̂1̂
delivers

T̂
1̂

P̂ T̂−1
1̂

= (−1)|Λ|−1P̂ = −P̂, (25)

where we arrived at the last equality by noting that |Λ| is an even integer. The factor
(−1)|Λ|−1 arises since each spinor χ̂j consists of an odd number of Majorana
operators.

The nontrivial algebra (25) implies that the ground state of any Hamiltonian that
commutes with P̂, T̂1̂, and the generators of Gf is either degenerate or spontaneously
breaks translation or Gf symmetry.
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Quantum field theories in (d + 1) spacetime

Let space be d = 0,1,2, · · · dimensional.

Spacetime is then (d + 1) = 1,2,3, · · · dimensional.

A quantum field theory in (d + 1)-dimensional space time is defined
by the unitary time evolution

U(t2, t1) :=

∫
D[ϕ, ∂µϕ, · · · ] e

+ i
~

t2∫
t1

dt L[ϕ,∂µϕ,··· ]

(26)

for given initial and final fields at time t1 and t2, respectively.
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Anomalies in quantum (d + 1) space quantum field
theory
If a quantum field theory is invariant under a global internal
symmetry, while it is impossible to gauge consistently this global
internal symmetry by the addition of local terms to the Lagrangian
density, then the (many-body) eigenstates are constrained by a ’t
Hooft anomaly.

The ’t Hooft anomaly matching condition implies that the ground
state of the quantum field theory must be compatible with the ’t Hooft
anomaly.

Any trivially gapped and non-degenerate ground state is free from a
’t Hooft anomaly.

The ’t Hooft anomaly matching condition thus requires that any
trivially gapped ground state must necessarily break the global internal
symmetry down to a subgroup that trivializes its t’Hooft anomaly.
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LSM anomalies

The LSM Theorem I is the lattice counterpart to the ’t Hooft anomaly
in quantum-field theory.

We thus reinterpret the LSM Theorem I as an LSM anomaly.
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LSM anomalies and crystalline invertible topological
phases of matter
The boundaries of crystalline invertible topological phases of matters
hosting topologically protected zero modes realize LSM anomalies.

L R

L R

(a) (c)

(b)

In one-dimensional space, fermionic invertible topological phase of matter are labeled by three indices ν, ρ, and µ associated to
the second cohomology group

([(ν, ρ)], [µ]) ∈ H2(Gf ,U(1)c
)
, Gf a central extension of G by ZF

2, i.e., Gf /Z
F
2 = G.
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