Matrix product operator algebras

```
arXiv:2204.05940
```

Andras Molnar, José Garre Rubio, Alberto Ruiz-de-Alarcón, Norbert Schuch, David Pérez-García, Ignacio Cirac
?

(Intrinsic) Topological order

- Gapped phases
- Degenerate ground space, number of GS ~ topology
- Different GS are locally indistinguishable \Rightarrow no local order parameter for PT
- Excitations: point-like, free, anyons

Toy models for spin systems

Kitaev models

- Groups
- C^{*}-Hopf algebras
- C^{*}-Weak Hopf algebras

Hamiltonian: commuting projectors
Anyons described by "doubled" object PEPS description

Topological PEPS

- PEPS allows perturbation from RFP, phase transitions
- Origin of topological properties: symmetry of the PEPS tensor
- Purely virtual
- "Size-independent"
- Matrix product operators

Topological PEPS

- PEPS allows perturbation from RFP, phase transitions
- Origin of topological properties: symmetry of the PEPS tensor
- Purely virtual
- "Size-independent"
- Matrix product operators

Topological PEPS

- PEPS allows perturbation from RFP, phase transitions
- Origin of topological properties: symmetry of the PEPS tensor
- Purely virtual
- "Size-independent"
- Matrix product operators

Size-independence of the symmetry

MPO symmetry of the PEPS tensor:

Size-independence of the symmetry

MPO symmetry of the PEPS tensor:

Symmetry of large area:

Size-independence of the symmetry

MPO symmetry of the PEPS tensor:

Symmetry of large area:

Size-independence of the symmetry

MPO symmetry of the PEPS tensor:

Symmetry of large area:

Size-independence of the symmetry

MPO symmetry of the PEPS tensor:

Symmetry of large area:

Topological ground space degeneracy

Hamiltonian:

Hamiltonian does not detect the symmetry operator:

Topological ground space degeneracy

Hamiltonian:

Hamiltonian does not detect the symmetry operator:

Topological ground space degeneracy

Hamiltonian:

Hamiltonian does not detect the symmetry operator:

Topological ground space degeneracy

Hamiltonian:

Hamiltonian does not detect the symmetry operator:

Excitations - example

[Bultinck:1511.08090]

The MPO symmetries

Toric code: 2 MPOs,

G-injective PEPS: MPOs elements of G

String-net models: MPO = elements of fusion category \mathcal{C}

Algebra of symmetries

Algebra of symmetries

Linear combination and product of MPOs is symmetry:

$$
\left(O_{a}+O_{b}\right)|T\rangle=\left(\lambda_{a}+\lambda_{b}\right)|T\rangle \quad \text { and } \quad O_{a} \cdot O_{b}|T\rangle=\lambda_{a} \cdot \lambda_{b}|T\rangle
$$

Algebra of symmetries

Linear combination and product of MPOs is symmetry:

$$
\left(O_{a}+O_{b}\right)|T\rangle=\left(\lambda_{a}+\lambda_{b}\right)|T\rangle \quad \text { and } \quad O_{a} \cdot O_{b}|T\rangle=\lambda_{a} \cdot \lambda_{b}|T\rangle
$$

Algebra of symmetries:

$$
\mathcal{A}_{P B C} \equiv\left\{\sum_{a} \lambda_{a} \cdot\left[-\cdots-1 \mid \lambda_{a} \in \mathbb{C}\right\}\right.
$$

Algebra of symmetries

Linear combination and product of MPOs is symmetry:

$$
\left(O_{a}+O_{b}\right)|T\rangle=\left(\lambda_{a}+\lambda_{b}\right)|T\rangle \quad \text { and } \quad O_{a} \cdot O_{b}|T\rangle=\lambda_{a} \cdot \lambda_{b}|T\rangle
$$

Algebra of symmetries:

$$
\mathcal{A}_{P B C} \equiv\left\{\underset{\square}{\stackrel{\lambda}{a} \cdots \cdots} \mid \lambda=\bigoplus_{a} \lambda_{a} \cdot \mathbb{1}_{D_{a}}\right\}
$$

Algebra of symmetries

Linear combination and product of MPOs is symmetry:

$$
\left(O_{a}+O_{b}\right)|T\rangle=\left(\lambda_{a}+\lambda_{b}\right)|T\rangle \quad \text { and } \quad O_{a} \cdot O_{b}|T\rangle=\lambda_{a} \cdot \lambda_{b}|T\rangle
$$

Algebra of symmetries:

$$
\mathcal{A}_{P B C} \equiv\left\{\underset{\square}{\stackrel{\lambda}{a} \cdots \cdots} \mid \lambda=\bigoplus_{a} \lambda_{a} \cdot \mathbb{1}_{D_{a}}\right\}
$$

The product for groups:

$$
O_{g} \cdot O_{h}=O_{g h}
$$

Algebra of symmetries

Linear combination and product of MPOs is symmetry:

$$
\left(O_{a}+O_{b}\right)|T\rangle=\left(\lambda_{a}+\lambda_{b}\right)|T\rangle \quad \text { and } \quad O_{a} \cdot O_{b}|T\rangle=\lambda_{a} \cdot \lambda_{b}|T\rangle
$$

Algebra of symmetries:

$$
\mathcal{A}_{P B C} \equiv\left\{\underset{\square}{\stackrel{\lambda}{a} \cdots \cdots} \mid \lambda=\bigoplus_{a} \lambda_{a} \cdot \mathbb{1}_{D_{a}}\right\}
$$

The product for fusion categories:

$$
O_{a} \cdot O_{b}=\sum_{c} N_{a b}^{c} O_{c}, \quad N_{a b}^{c} \in \mathbb{Z}^{+}
$$

PEPS from MPO symmetries

Special element $O \in \mathcal{A}_{P B C}$:
$O_{a} \cdot O=d_{a} O$ or

PEPS from MPO symmetries

Special element $O \in \mathcal{A}_{P B C}$:

Then a symmetric PEPS tensor is:

[Bultinck:1511.08090, Lootens:2008.11187]

Our perspective

Open boundary MPOs are also symmetries:

Open boundary MPOs form an algebra: $\forall B, C \exists D$ s.t.

The algebra of symmetries:

$$
\mathcal{A}_{O B C} \equiv\left\{\square_{a}^{B} \mathcal{M}\left(D_{a}\right)\right\}
$$

Weak Hopf algebra

- Injective tensors:

$$
\mathcal{A} \equiv\left\{{ }^{B}\right.
$$

Weak Hopf algebra

- Injective tensors:

$$
\mathcal{A} \equiv\left\{\square_{\square}^{B} \mid B \in \bigoplus_{a} \mathcal{M}\left(D_{a}\right)\right\}
$$

Weak Hopf algebra

- Injective tensors:

$$
\mathcal{A} \equiv\left\{\square_{\square}^{B} \mid B \in \bigoplus_{a} \mathcal{M}\left(D_{a}\right)\right\}
$$

- Growing of MPO: $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ "coproduct":

Weak Hopf algebra

- Injective tensors:

$$
\mathcal{A} \equiv\left\{\square_{\square}^{B} \mid B \in \bigoplus_{a} \mathcal{M}\left(D_{a}\right)\right\}
$$

- Growing of MPO: $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ "coproduct":

- $(\mathcal{A}, \Delta)+$ additional properties $=($ weak $)$ Hopf algebra [Bohm:math/9805116, Montgomery: Rep Theory of Semisimple Hopf]

Weak Hopf algebra

- Injective tensors:

$$
\mathcal{A} \equiv\left\{\square_{\bullet}^{B} \mid B \in \bigoplus_{a} \mathcal{M}\left(D_{a}\right)\right\}
$$

- Growing of MPO: $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ "coproduct":

$$
\Delta: \square^{B} \mapsto \square \mathcal{A}
$$

- $(\mathcal{A}, \Delta)+$ additional properties $=($ weak $)$ Hopf algebra [Bohm:math/9805116, Montgomery: Rep Theory of Semisimple Hopf]
- Fusion category \equiv Weak Hopf algebras
[Etingof:math/0203060, Kitaev:1104.5047]

Use of algebraic formulation

- Transfer operator of topological PEPS: renormalization fixed point MPDO
[Ruiz-de-Alarcón:2204.06295]
- Phase classification of RFP MPDO
[Ruiz-de-Alarcón:2204.06295]
- Characterization of symmetries in topologically ordered PEPS [Molnar: in preparation]
- Other possibly interesting states with topological properties

New models?

- Algebraic object
- Unitary Fusion Category
- C* weak Hopf algebra
- MPO representations
- Special algebra element \rightarrow PEPS
- Kitaev/String-net Hamiltonian
- Parent Hamiltonian

New models?

- Algebraic object
- Unitary Fusion Gategory
- C* weak Hopf algebra

Taft Hopf algebra

- MPO representations
- Special algebra element \rightarrow PEPS
- Kitaev/String-net Hamiltonian
- Parent Hamiltonian

New models?

- Algebraic object
- Unitary Fusion Gategory
\downarrow C* * weak Hopf algebra
Taft Hopf algebra
- MPO representations
- Special algebra element \rightarrow PEPS
- Kitaev/String net Hamiltonian
- Parent Hamiltonian

Taft-Hopf-injective PEPS

- The PEPS is non-zero on finite region, torus
- The PEPS is zero on a sphere
- The GS of the parent Hamiltonian is the expected one
- Rotation: local unitaries
- Not zero correlation length
- Nicer Hamiltonian? Excitations?
- Connection to non-semisimple TQFTs?

Conclusion

- Topological order: MPO symmetries
- Topological GS degeneracy, anyons
- MPO from fusion categories
- Alternative formulation: weak Hopf algebra

MPO injectivity of string-net models

- MPOs built from fusion categories
- 2 types of MPO tensors (incoming vs outgoing index)
- Blue and green tensors: quantum dimensions

