Converting long-range entanglement into mixture: a tensor network approach to local equilibration

Miguel Frías-Pérez arXiv: 2308.04291

MAX PLANCK INSTITUTE OF QUANTUM OPTICS

Entanglement growth in non-equilibrium scenarios limits the applicability of TN

Entanglement growth in non-equilibrium scenarios limits the applicability of TN

Hinders simulations that could resolve both fundamental and practical questions

Entanglement barrier

White and Feiguin, 2004 Vidal, 2004 Haegeman et al., 2011

Unitary evolution $U(t) = e^{-iHt}$

Low entangled state or operator

t=0 $t=\infty$

Entanglement barrier

White and Feiguin, 2004 Vidal, 2004 Haegeman et al., 2011

Unitary evolution $U(t) = e^{-iHt}$

Low entangled state or operator

Simple macroscopic behavior

$$t=0$$
 $t=\infty$

Entanglement barrier: global quench

White and Feiguin, 2004 Vidal, 2004 Haegeman et al., 2011

Unitary evolution $U(t) = e^{-iHt}$

Product state

Thermal reduced density matrices

t=0 $t=\infty$

Calabrese and Cardy, 2005

Quasiparticle picture

Quasiparticle picture

Quasiparticle picture

 $\left|\phi^{+}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|00\right\rangle + \left|11\right\rangle\right)$

Quasiparticle picture

 $|\phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$

Long-range entanglement decoupling (integrable)

$$H = -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} \right)$$

t

9

Long-range entanglement decoupling (integrable)

9

Long-range entanglement decoupling (non-integrable)

$$H = -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

10

Long-range entanglement decoupling (non-integrable)

$$H = -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

$$= -\sum_{n} \left(\sigma_{n}^{z} \sigma_{n+1}^{z} + g \sigma_{n}^{x} + J_{2} \sigma_{n}^{z} \sigma_{n+2}^{z} \right)$$

t

Mixing the long-range degrees of freedom

Fast degrees of freedom contribute via their reduced density matrices to the local observables in the neighbouring blocks

Mixing the long-range degrees of freedom

Fast degrees of freedom contribute via their reduced density matrices to the local observables in the neighbouring blocks

Substitute them by the product of their marginals

Mixing the long-range degrees of freedom

Fast degrees of freedom contribute via their reduced density matrices to the local observables in the neighbouring blocks

Truncation results

Truncation results

Improved heuristic algorithm

Improved heuristic algorithm

The original decomposition was a constructive way to construct states that preserved the marginals. We can also variationally look for states with smaller bond dimension that preserve them.

Improved heuristic algorithm

such that

Results integrable
$$H = -\sum_{n} (\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x) \qquad g = 2$$

Results integrable
$$H = -\sum_{n} (\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x) \qquad g = 2$$

Results integrable $H = -\sum_n \left(\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x\right) \qquad g = 2$

Results non-integrable
$$H = -\sum_n \left(\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x + J_2 \sigma_n^z \sigma_{n+2}^z\right)$$
 $\begin{array}{c} g = 2\\ J_2 = 0.1 \end{array}$

 \sim

Results non-integrable
$$H = -\sum_n \left(\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x + J_2 \sigma_n^z \sigma_{n+2}^z\right)$$
 $\begin{array}{c} g = 2\\ J_2 = 0.1 \end{array}$

Results non-integrable
$$H = -\sum_n \left(\sigma_n^z \sigma_{n+1}^z + g \sigma_n^x + J_2 \sigma_n^z \sigma_{n+2}^z\right)$$
 $g = 2$
 $J_2 = 0.1$

Conclusions

- We identify the long-range entanglement produced after a quantum quench and propose a technique to convert it into mixture
- Our approach is inspired by the intuitive understanding of entanglement dynamics in terms of the radiation of quasiparticles
- We have generalized our intuition to an algorithm that goes beyond the quasiparticle regime

arXiv: 2308.04291

arXiv: 2308.04291

Thank you for your attention!

arXiv: 2308.04291