Tensor Network Methods in 2D at Finite Temperature

Olivier Gauthé

Entanglement in Strongly Correlated Systems Benasque

August, 16th 2023

SCS 2023

1/43

Olivier Gauthé

Menú del día

Primer plato

▶ Frustrated Spin Systems at Finite Temperature in 2D

Segundo plato

▶ Purification and Ancilla

Postre

SCS 2023

2/43

▶ METTS and XTRG

Olivier Gauthé

$\operatorname{Contents}$

1 Frustrated Spin Systems at Finite Temperature in 2D

Purification and Ancilla

Frustrated magnetism

- ▶ magnetic insulators
- competing magnetic interactions
- ▶ no classical configuration fulfilling all local constraints

- \blacktriangleright exotic physics: quantum spin liquids, residual entropy, order by disorder...
- ▶ highly relevant experimentally
- ▶ numerically challenging (sign problem)

$J_1 - J_2$ Heisenberg model

- spin-1/2 on the square lattice
- $J_1 = 1$ first neighbor interaction
- ▶ $J_2 > 0$ second neighbor: magnetic frustration
- ▶ possible spin liquid realization
- ▶ describes iron-base superconductors magnetism

Shastry-Sutherland model

- $J_D = 1$ dimer interaction
- ▶ J' square lattice interaction
- \blacktriangleright exact dimer product ground state for small J'
- ▶ experimental realization in SrCu₂(BO₃)₂

[Shastry & Sutherland, 1981] [Kageyama et al., 1999] [Corboz & Mila, 2013]

SCS 2023 6 / 43

Tensor description of a wavefunction

$$\ket{\Psi_{i_1 i_2 i_3 i_4}}_{i_1 \ i_2 \ i_3 \ i_4} pprox \left(1 - \frac{\alpha_1}{\alpha_2} - \frac{\alpha_2}{\alpha_3} - \frac{\alpha_3}{\alpha_4} - \frac{\alpha_2}{\alpha_3} - \frac{\alpha_3}{\alpha_4} - \frac{\alpha_4}{\alpha_4} - \frac{\alpha_4}{\alpha_$$

- \blacktriangleright virtual variables of dimension D
- ▶ coefficients obtained by summing over virtual variables:

$$c_{i_1 i_2 i_2 i_4} = \operatorname{Tr} \left[A^{i_1} B^{i_2} C^{i_3} D^{i_4} \right].$$

- ▶ D = 1: product state (mean-field)
- virtual variables carry entanglement

Entanglement entropy and area law

Most of the Hilbert space is junk!

• reduced density matrix of subregion A:

 $\rho_A = \operatorname{Tr}_{\bar{A}} |\Psi\rangle \left\langle \Psi \right|$

$$S_{\rm ent}(A) = -\operatorname{Tr} \rho_A \ln \rho_A$$

- ▶ random state obey volume law $S_{\text{ent}}(A) \propto |A|$
- low energy states of local Hamiltonians obey area law:

 $S_{\rm ent}(A) \propto |\partial A|$

• tensor networks: $S_{\text{ent}}(A) \leq \ln D$

Tensor networks provide efficient representation of low-entanglement states!

Olivier Gauthé

The problem

Tensor networks provide very good ansatze for low-energy *states*. How to construct finite temperature *density matrix*?

$$\rho(\beta) = \frac{1}{Z(\beta)} \exp(-\beta \mathcal{H})$$

3 main solutions:

▶ purification
 ▶ typical state sampling
 ▶ direct contraction of MPO/PEPO

sweet: can implement any continuous symmetry for 2D systems!

Olivier Gauthé

Frustrated Spin Systems at Finite Temperature in 2D

2 Purification and Ancilla

Thermal Tensor Networks

Thermal ensemble and purification

- \blacktriangleright density matrix ρ obtained from purified wavefunction $|\Psi\rangle$
- $|\Psi\rangle$ lives in enlarged Hilbert space $\tilde{H} = H \otimes H'$

$$\ket{\Psi} = \sum \sqrt{p_i} \ket{i} \otimes \Ket{i'}$$

▶ trace over auxiliary degrees of freedom to recover thermal ensemble

$$\rho(\beta) = \operatorname{Tr}_{\operatorname{auxiliary}} |\Psi(\beta)\rangle \langle \Psi(\beta)|$$

▶ use imaginary time evolution to reach thermal states

$$|\Psi(\beta)\rangle = e^{-\frac{1}{2}\beta\mathcal{H}} |\Psi(0)\rangle$$

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Thermal tensor networks with ancilla

- \blacktriangleright thermal equilibrium: area law for entanglement
- weakly entangled $|\Psi\rangle$: tensor networks \checkmark
- ▶ each site described by local tensor w. ancilla
- \blacktriangleright virtual dimension D controls approximation

- ▶ Matrix Product States (MPS) on the cylinder
- ▶ 2D: Projected Entangled Pair States (PEPS)

$$\Psi_{123...} = \sum_{\text{virtual}} A^{[1]}_{abcd} A^{[2]}_{defg} A^{[3]}_{behi}...$$

[Verstraete, García-Ripoll, & Cirac, 2004] [Verstraete & Cirac, 2004]

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Purification: cooking recipe

- choose tensor network geometry (MPS, PEPS)
- **2** finite or repeated unit cell
- **③** start from exact product state at $\beta = 0$
- imaginary time evolve up to $\beta = 1/T$ (TEBD, TDVP, SU, NTU, FU, eeFU, ...)
- trace over auxiliary variables
- contract the tensor network and compute observables (CTMRG, TRG, VUMPS, ...)
- O enjoy with lettuce and olive oil

Imaginary time evolution

- ► Trotter-Suzuki decomposition: $\exp(-\beta \mathcal{H}) \approx \prod e^{-\tau h_i}$ with small τ
- start from $|\Psi(D)\rangle$
- ▶ apply gate on physical legs: obtain $|\Psi'(d^2D)\rangle$
- renormalize tensors: find $|\Psi''(D)\rangle$ that maximizes fidelity with $|\Psi'\rangle$
- ▶ 2D: no optimal gauge!
- ▶ need (approximated) metric tensor

[Czarnik & Dziarmaga, 2018] [Czarnik, Dziarmaga, & Corboz, 2019]

SCS 2023

14/43

Olivier Gauthé

Simple update

- ▶ contract only involved tensors
- ▶ apply gate $e^{-\tau h}$
- ▶ diagonal weights λ_b as environment
- get new set of weights λ_b

- \blacktriangleright cheap
- \blacktriangleright stable
- ▶ automatically selects symmetry sector
- ▶ not well controlled (short range)

[Jiang, Weng, & Xiang, 2008]

15/43

SCS 2023

Olivier Gauthé

Simple update: next nearest neighbor

similar for J₂ with intermediate site
 apply twice e<sup>-^τ/₂h₂ with different proxy
</sup>

- C_{4v} asymmetric
- need to renormalize non-involved intermediate tensor

Olivier Gauthé

Neighborhood Tensor Update

 use single layer of tensor environment as metric tensor

- ▶ stable
- moderately expensive
- cost of second neighbor update?
- ▶ better than SU (still short range)

[Dziarmaga, 2021] [Sinha et al., 2022]

17/43

SCS 2023

Olivier Gauthé

Full Update

▶ use converged environment (CTMRG...)

- ▶ rigorous and controlled
- ▶ second neighbor with intermediate sites
- extremely expensive
- \blacktriangleright instable

[Corboz et al., 2010] [Phien et al., 2015]

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 18 / 43

Corner Transfer Matrix Renormalization Group

- ▶ 2D: contraction is hard
- define bilayer tensor
- construct environment tensors
- corner dimension χ controls approximation
- most expensive part: $O(D^{12})$
- ▶ other algorithms: TRG, iTEBD, VUMPS

Work directly in the thermodynamic limit!

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 19 / 43

Benchmark: High Temperature Series Expansion

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 20 / 43

Benchmark: SU and FU

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 21 / 43

Critical point in the Shastry-Sutherland

- ▶ First order transition between dimer an plaquette phases
- ▶ Finite temperature: first order line and critical point
- Experimentally observed in $SrCu_2(BO_3)_2!$

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 22 / 43

Finite temperature phase transition in the $J_1 - J_2$

- ▶ Mermin–Wagner: SU(2) symmetry cannot be broken at T > 0
- ▶ finite temperature Ising transition

- \blacktriangleright stripe direction selected before Néel order appears
- ▶ spontaneous \mathbb{Z}_2 symmetry breaking
- ▶ Ising transition in Heisenberg magnet

[Chandra, Coleman, & Larkin, 1990]

Thermal Tensor Networks

Energy, specific heat and order parameter

Correlation lengths

- compute transfer matrix spectrum
- define $\xi_i = -1/\ln(|\lambda_i/\lambda_0|)$
- multiplet decomposition
- leading singlet: $\nu = 1$

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 25 / 43

teaser: ferro $J_1 - J_2$

• $J_1 - J_2$ with ferromagnetic $J_1 < 0$

▶ difficulties to directly probe first order transition

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Any drawback?

- ▶ iPEPS is very expensive
- ▶ converging the environment sometimes fails
- \blacktriangleright D extrapolation is complicate

Any drawback?

- ▶ iPEPS is very expensive
- converging the environment sometimes fails
- \blacktriangleright D extrapolation is complicate
- ▶ results can be totally wrong

Problem: reaching low temperature

- $\blacktriangleright\,$ end of validity
- ▶ link with problem for Lorentzian PEPS?
- \blacktriangleright prevents any D scaling

Olivier Gauthé

Thermal Tensor Networks

SCS 2023 29 / 43

Problem: results validity

- ► asymmetric Shastry-Sutherland
- $\blacktriangleright \ J_{D_1} \neq J_{D_2}$
- \blacktriangleright D looks converged
- ▶ cannot find dimer ground state

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Different PEPS setups

 $J_1 - J_2$ setup

1 tensor = 1 sited = 2favors Néel

dimer setup

1 tensor = 2 sitesd = 4favors dimers

plaquette setup

 $\begin{array}{l} 1 \ \text{tensor} = 4 \ \text{sites} \\ d = 16 \\ \text{favors plaquettes} \end{array}$

- T = 0: energy can be compared
- ▶ finite temperature: uncontrolled bias

Setup effects

- ► J₁ − J₂ setup imposes Néel like correlations
- \blacktriangleright the *phase* was wrong
- ▶ dimer setup is correct
- $\xi < 2$ here!

Olivier Gauthé

Setup effects: $J_1 - J_2$ for Shastry-Sutherland

- ▶ asymmetric Shastry-Sutherland
- $\blacktriangleright \ J_{D_1} \neq J_{D_2}$
- ▶ specific heat is negative

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Setup effects: dimers for Shastry-Sutherland

- ▶ asymmetric Shastry-Sutherland
- $\blacktriangleright \ J_{D_1} \neq J_{D_2}$
- \blacktriangleright clean critical point

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Conclusion on purification

- ▶ nearly exact at high temperature
- ▶ probes critical points and second order transition
- ▶ first order transition harder but possible

- ▶ hard to reach very low temperatures
- \blacktriangleright highly setup dependent: effect stronger than finite D
- ▶ requires knowledge of zero temperature phase
- ▶ problem when phase boundary matches setup validity

Frustrated Spin Systems at Finite Temperature in 2D

Purification and Ancilla

- ▶ many-body Hilbert space is huge
- ▶ a random state is typical with probability 1 for large systems

$$Z(\beta) = \sum_{i} \langle i | e^{-\beta H} | i \rangle$$

- ▶ sample states instead of full computation (TPQ)
- ▶ how to deal with entanglement?

Minimally Entangled Typical Thermal States

- ▶ idea: use classical product state as sampling basis
- ▶ describe pure state as a MPS
- \blacktriangleright no purification needed: gain factor d for each tensor!
- ▶ able to reach very low temperature
- ▶ currently cylinder MPS method (see Aritra Sinha's talk for 2D)
- ▶ finite size systems

[Stoudenmire & White, 2010] [Wietek et al., 2021]

38/43

SCS 2023

Olivier Gauthé

METTS: cooking recipe

- ▶ start from random product state
- \blacktriangleright imaginary time evolve MPS up to β
 - compute observables
- ▶ project back to classical product state
 - ▶ collapse each site at a time with probability given by overlap
 - ► choose maximally mixed basis every other step
- ▶ iterate Markov process

- ▶ construct an MPO for $e^{-\tau H}$ with series expansion
- \blacktriangleright square the MPO: double τ
- ▶ renormalize MPO bond dimension
- \blacktriangleright reach exponentially fast any β
- \blacktriangleright cylinder MPS
- ▶ 2D generalization not straightforward

[Chen et al., 2018]

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Second order transition in the Shastry-Sutherland

- ▶ plaquettes appear at finite temperature
- lattice symmetry breaking
- extremely low temperature: $\beta > 100$

 $\blacktriangleright W = 6$ L = 4W

Olivier Gauthé

Thermal Tensor Networks

- ▶ tensor networks are a powerful tool to simulate finite temperatures
- ▶ methodological developments still needed
- ▶ purification is best at high temperature
- ▶ only naturally 2D method
- ▶ setup may lead to incorrect phase
- ▶ METTS and XTRG in 2D?

Acknowledgements

Frédéric Mila

Sylvain Capponi Philippe Corboz Juraj Hasik Loïc Herviou Andreas Laüchli Mithilesh Nayak Samuel Nyckees Didier Poilblanc Alexander Wietek

Thank you for your attention!

Olivier Gauthé

Thermal Tensor Networks

SCS 2023

Problem: results validity

checkerboard $J_{\times} = 1.00$ $\tau = 1e - 4$ -0.42-0.44 \blacktriangleright $J_1 - J_2$ model on the -0.46Echeckerboard lattice \triangleright D = 16 is off -0.48 \triangleright D \geq 19 effects still strong • $J_1 - J_2$ D = 16-0.50 $\lor J_1 - J_2 \quad D = 19$ + $J_1 - J_2$ D = 22 $J_1 - J_2 \quad D = 25$ -0.520.1 0.2 0.3 0.40.5T

Olivier Gauthé

Setup effects

Olivier Gauthé