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Frustrated magnetism

▶ magnetic insulators

▶ competing magnetic interactions

▶ no classical con�guration ful�lling all local constraints

▶ exotic physics: quantum spin liquids, residual entropy, order by disorder. . .

▶ highly relevant experimentally

▶ numerically challenging (sign problem)
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J1 − J2 Heisenberg model

▶ spin-1/2 on the square lattice

▶ J1 = 1 �rst neighbor interaction

▶ J2 > 0 second neighbor: magnetic frustration

▶ possible spin liquid realization

▶ describes iron-base superconductors magnetism

H =
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj

[Chandra & Douçot, 1988]

[Ferrari & Becca, 2020]

[Liu et al., 2022]

[Nomura & Imada, 2021]

Olivier Gauthé Thermal Tensor Networks SCS 2023 5 / 43

J1

J2



Shastry-Sutherland model

▶ JD = 1 dimer interaction

▶ J ′ square lattice interaction
▶ exact dimer product ground state for small J ′

▶ experimental realization in SrCu2(BO3)2

H = JD
∑

dimers

Si · Sj + J ′ ∑
square

Si · Sj

[Shastry & Sutherland, 1981]

[Kageyama et al., 1999]

[Corboz & Mila, 2013]
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Tensor description of a wavefunction

i1 i2 i3 i4

|Ψi1i2i3i4⟩ ≈
i1 i2 i3 i4

α1 α2 α3

▶ virtual variables of dimension D

▶ coe�cients obtained by summing over virtual variables:

ci1i2i2i4 = Tr
[
Ai1Bi2Ci3Di4

]
.

▶ D = 1: product state (mean-�eld)

▶ virtual variables carry entanglement
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Entanglement entropy and area law

Hilbert space

low entanglement

Most of the Hilbert space is junk!

▶ reduced density matrix of subregion A:

ρA = TrĀ |Ψ⟩ ⟨Ψ|

Sent(A) = −Tr ρA ln ρA

▶ random state obey volume law Sent(A) ∝ |A|
▶ low energy states of local Hamiltonians obey
area law:

Sent(A) ∝ |∂A|

▶ tensor networks: Sent(A) ≤ lnD

Tensor networks provide e�cient representation of

low-entanglement states!
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The problem

Tensor networks provide very good ansatze for low-energy states.
How to construct �nite temperature density matrix?

ρ(β) =
1

Z(β)
exp(−βH)

3 main solutions:

▶ puri�cation ▶ typical state sampling ▶ direct contraction of
MPO/PEPO

sweet: can implement any continuous symmetry for 2D systems!
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Thermal ensemble and puri�cation

▶ density matrix ρ obtained from puri�ed wavefunction |Ψ⟩
▶ |Ψ⟩ lives in enlarged Hilbert space H̃ = H ⊗H ′

|Ψ⟩ =
∑√

pi |i⟩ ⊗
∣∣i′〉

▶ trace over auxiliary degrees of freedom to recover thermal ensemble

ρ(β) = Trauxiliary |Ψ(β)⟩ ⟨Ψ(β)|

▶ use imaginary time evolution to reach thermal states

|Ψ(β)⟩ = e−
1
2
βH |Ψ(0)⟩
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Thermal tensor networks with ancilla

▶ thermal equilibrium: area law for entanglement

▶ weakly entangled |Ψ⟩: tensor networks ✓
▶ each site described by local tensor w. ancilla

▶ virtual dimension D controls approximation

▶ Matrix Product States (MPS) on the cylinder

▶ 2D: Projected Entangled Pair States (PEPS)

Ψ123... =
∑

virtual

A
[1]
abcdA

[2]
defgA

[3]
behi...
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|Ψ⟩ =

[Verstraete, García-Ripoll, & Cirac, 2004]

[Verstraete & Cirac, 2004]



Puri�cation: cooking recipe

1 choose tensor network geometry (MPS, PEPS)

2 �nite or repeated unit cell

3 start from exact product state at β = 0

4 imaginary time evolve up to β = 1/T
(TEBD, TDVP, SU, NTU, FU, eeFU, . . . )

5 trace over auxiliary variables

6 contract the tensor network and compute observables
(CTMRG, TRG, VUMPS, . . . )

7 enjoy with lettuce and olive oil
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Imaginary time evolution

▶ Trotter-Suzuki decomposition: exp(−βH) ≈ ∏
e−τhi with small τ

▶ start from |Ψ(D)⟩
▶ apply gate on physical legs: obtain

∣∣Ψ′(d2D)
〉

▶ renormalize tensors: �nd |Ψ′′(D)⟩ that maximizes �delity with |Ψ′⟩

▶ 2D: no optimal gauge!
▶ need (approximated) metric tensor

A B

Environment

e−τh1

≈ A′ B′
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[Czarnik & Dziarmaga, 2018]

[Czarnik, Dziarmaga, & Corboz, 2019]



Simple update

▶ contract only involved tensors

▶ apply gate e−τh

▶ diagonal weights λb as environment

▶ get new set of weights λb

▶ cheap

▶ stable

▶ automatically selects symmetry sector

▶ not well controlled (short range)

λ4

λ1

λ3

λ2

λ5

λ6

λ4

SVD

e−τh1
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[Jiang, Weng, & Xiang, 2008]



Simple update: next nearest neighbor

▶ similar for J2 with intermediate site

▶ apply twice e−
τ
2
h2 with di�erent proxy

▶ C4v asymmetric

▶ need to renormalize non-involved
intermediate tensor

λ4

λ1

λ3

λ2

λ5

λ6

λ4

λ5

λ7 λ8

e−
τ
2 h2

SVDs

Olivier Gauthé Thermal Tensor Networks SCS 2023 16 / 43

[Corboz, Jordan, & Vidal, 2010]



Neighborhood Tensor Update

▶ use single layer of tensor
environment as metric tensor

▶ stable

▶ moderately expensive

▶ cost of second neighbor update?

▶ better than SU (still short range)
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[Dziarmaga, 2021]

[Sinha et al., 2022]



Full Update

▶ use converged environment (CTMRG...)

▶ rigorous and controlled

▶ second neighbor with intermediate sites

▶ extremely expensive

▶ instable
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[Corboz et al., 2010]

[Phien et al., 2015]



Corner Transfer Matrix Renormalization Group

▶ 2D: contraction is hard

▶ de�ne bilayer tensor

▶ construct environment tensors

▶ corner dimension χ controls approximation

▶ most expensive part: O(D12)

▶ other algorithms: TRG, iTEBD, VUMPS

Work directly in the thermodynamic limit!
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[Nishino & Okunishi, 1996]

[Orús & Vidal, 2009]

[Corboz et al., 2011]



Benchmark: High Temperature Series Expansion

▶ J1 − J2 model with J2 = 0.50

▶ Padé approximant for lower temperature

▶ perfect agreement at high temperature

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

E

J2 = 0.50

HTSE(9)

HTSE Padé 4,5

D = 4 τ = 1e− 4 χ = 20

D = 7 τ = 1e− 2 χ = 49

D = 7 τ = 1e− 4 χ = 49

D = 10 τ = 1e− 4 χ = 100

D = 11 τ = 1e− 4 χ = 121

D = 16 τ = 1e− 4 χ = 256

D = 19 τ = 1e− 4 χ = 256
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[Rosner et al., 2003]



Benchmark: SU and FU

▶ Shastry Sutherland model

▶ dimer phase

▶ surprisingly good performances with SU
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[Wietek et al., 2019]



Critical point in the Shastry-Sutherland

▶ First order transition between dimer an plaquette phases

▶ Finite temperature: �rst order line and critical point

▶ Experimentally observed in SrCu2(BO3)2!
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[Jiménez et al., 2021]



Finite temperature phase transition in the J1 − J2

▶ Mermin�Wagner: SU(2) symmetry cannot be broken at T > 0

▶ �nite temperature Ising transition

▶ stripe direction selected before Néel order appears

▶ spontaneous Z2 symmetry breaking

▶ Ising transition in Heisenberg magnet
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[Chandra, Coleman, & Larkin, 1990]



Energy, speci�c heat and order parameter

▶ C = ∂E/∂T
α = 0

▶ σ =
∑
⟨i,j⟩|

⟨Si · Sj⟩−
∑
⟨i,j⟩−

⟨Si · Sj⟩

β = 1/8

J2 = 0.85 D = 16
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[Gauthé & Mila, 2022]



Correlation lengths

▶ compute transfer matrix
spectrum

▶ de�ne ξi = −1/ ln(|λi/λ0|)
▶ multiplet decomposition

▶ leading singlet: ν = 1

J2 = 0.85 D = 16 χ = 256
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teaser: ferroJ1 − J2

▶ J1 − J2 with ferromagnetic J1 < 0
▶ di�culties to directly probe �rst order transition

0.0 0.2 0.4 0.6 0.8

J2/|J1|
0.0

0.1

0.2

0.3

0.4

0.5
(a) horizontal 〈S · S〉

0.0 0.2 0.4 0.6 0.8

J2/|J1|
0.0

0.1

0.2

0.3

0.4

0.5
(b) vertical 〈S · S〉

0.0 0.2 0.4 0.6 0.8

J2/|J1|
0.0

0.1

0.2

0.3

0.4

0.5
(c) diagonal 〈S · S〉

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 −0.2 −0.1 0.0 0.1 0.2

See my poster!
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Any drawback?

▶ iPEPS is very expensive

▶ converging the environment sometimes fails

▶ D extrapolation is complicate
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Any drawback?

▶ iPEPS is very expensive

▶ converging the environment sometimes fails

▶ D extrapolation is complicate

▶ results can be totally wrong
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Problem: reaching low temperature

▶ energy rises at low T

▶ end of validity

▶ link with problem for Lorentzian PEPS?

▶ prevents any D scaling

0.0 0.1 0.2 0.3
T

−0.655

−0.650

−0.645

−0.640

−0.635

−0.630

−0.625

−0.620

E

J1 = −1 J2 = 1.00

D = 16 χ = 256

D = 19 χ = 256

D = 19 χ = 361
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Problem: results validity

▶ asymmetric Shastry-Sutherland

▶ JD1 ̸= JD2

▶ D looks converged

▶ cannot �nd dimer ground state

0.0 0.1 0.2 0.3 0.4 0.5
T

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

E

dimer energy

JD1
= 1.00 JD2

= 0.25 J ′ = 0.30

J1 − J2 D = 11

J1 − J2 D = 16

J1 − J2 D = 19
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Di�erent PEPS setups

J1 − J2 setup

1 tensor = 1 site
d = 2

favors Néel

dimer setup

1 tensor = 2 sites
d = 4

favors dimers

plaquette setup

1 tensor = 4 sites
d = 16

favors plaquettes

▶ T = 0: energy can be compared

▶ �nite temperature: uncontrolled bias
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Setup e�ects

▶ J1 − J2 setup imposes Néel like
correlations

▶ the phase was wrong

▶ dimer setup is correct

▶ ξ < 2 here!

0.0 0.1 0.2 0.3 0.4 0.5
T

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

E

dimer energy

JD1
= 1.00 JD2

= 0.25 J ′ = 0.30

J1 − J2 D = 11

J1 − J2 D = 16

J1 − J2 D = 19

dimers D = 13

dimers D = 13

dimers D = 16
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Setup e�ects: J1 − J2 for Shastry-Sutherland

▶ asymmetric Shastry-Sutherland

▶ JD1 ̸= JD2

▶ speci�c heat is negative

J1 − J2 setup

0.20 0.25 0.30 0.35 0.40
J ′
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0.100
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0.00

0.05

0.10

0.15

0.20

JD1
= 1.00 JD2

= 0.25 J1-J2 D = 16
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Setup e�ects: dimers for Shastry-Sutherland

▶ asymmetric Shastry-Sutherland

▶ JD1 ̸= JD2

▶ clean critical point

dimer setup

0.20 0.25 0.30 0.35 0.40
J ′

0.000

0.025

0.050

0.075

0.100
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0.20 0.25 0.30 0.35 0.40
J ′

0.000

0.025
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0.075

0.100

0.125
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0.175

0.200
specific heat

0.00

0.05

0.10

0.15

0.20

0.25

0.30

JD1
= 1.00 JD2

= 0.25 orthodimers D = 16
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Conclusion on puri�cation

▶ nearly exact at high temperature

▶ probes critical points and second order transition

▶ �rst order transition harder but possible

▶ hard to reach very low temperatures

▶ highly setup dependent: e�ect stronger than �nite D

▶ requires knowledge of zero temperature phase

▶ problem when phase boundary matches setup validity
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Typicality

▶ many-body Hilbert space is huge

▶ a random state is typical with probability 1 for large systems

Z(β) =
∑
i

⟨i|e−βH |i⟩

▶ sample states instead of full computation (TPQ)

▶ how to deal with entanglement?
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Minimally Entangled Typical Thermal States

▶ idea: use classical product state as sampling basis

▶ describe pure state as a MPS

▶ no puri�cation needed: gain factor d for each tensor!

▶ able to reach very low temperature

▶ currently cylinder MPS method (see Aritra Sinha's talk for 2D)

▶ �nite size systems
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[Stoudenmire & White, 2010]

[Wietek et al., 2021]



METTS: cooking recipe

▶ start from random product state

▶ imaginary time evolve MPS up to β
▶ compute observables

▶ project back to classical product state
▶ collapse each site at a time with probability given by overlap
▶ choose maximally mixed basis every other step

▶ iterate Markov process
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XTRG

▶ construct an MPO for e−τH with series expansion

▶ square the MPO: double τ

▶ renormalize MPO bond dimension

▶ reach exponentially fast any β

▶ cylinder MPS

▶ 2D generalization not straightforward
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[Chen et al., 2018]



Second order transition in the Shastry-Sutherland

▶ plaquettes appear at �nite
temperature

▶ lattice symmetry breaking

▶ extremely low temperature:
β > 100

▶ W = 6 L = 4W
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[Wang et al., 2023]



Conclusion

▶ tensor networks are a powerful tool to simulate �nite temperatures

▶ methodological developments still needed

▶ puri�cation is best at high temperature

▶ only naturally 2D method

▶ setup may lead to incorrect phase

▶ METTS and XTRG in 2D?
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Problem: results validity

▶ J1 − J2 model on the
checkerboard lattice

▶ D = 16 is o�

▶ D ≥ 19 e�ects still strong

0.0 0.1 0.2 0.3 0.4 0.5
T

−0.52

−0.50

−0.48

−0.46

−0.44

−0.42

E

checkerboard J× = 1.00 τ = 1e− 4

J1 − J2 D = 16

J1 − J2 D = 19

J1 − J2 D = 22

J1 − J2 D = 25
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Setup e�ects

▶ J1 − J2 setup imposes Néel
like correlations

▶ the phase was wrong

▶ ξ < 2 here!

▶ plaquette setup looks correct

0.0 0.1 0.2 0.3 0.4 0.5
T

−0.52

−0.50

−0.48
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−0.44

−0.42
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checkerboard J× = 1.00 τ = 1e− 4

J1 − J2 D = 19

J1 − J2 D = 22

J1 − J2 D = 25

Plaquette D = 13 χ = 169

Plaquette D = 17 χ = 289
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