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Kramers-Wannier duality

Consider the transverse field Ising model

HA = −J
ÿ

i

Xi− 1
2
Xi+ 1

2
−Jg

ÿ

i

Zi+ 1
2
, global

â

i

Zi+ 1
2
symmetry, broken when g < 1

Kramers and Wannier introduced the following transformation:

Xi− 1
2
Xi+ 1

2
→ Xi, Zi+ 1

2
→ ZiZi+1

This defines the dual Hamiltonian

HB = −J
ÿ

i

Xi − Jg
ÿ

i

ZiZi+1, global
â

i

Xi symmetry, broken when g > 1

Kramers-Wannier duality is a non-local transformation:

Xi− 1
2
→

ź

j≥i

Xj
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Generalities on dualities

We characterize a duality as follows:

• unitary (isometric) transformation relating two models

• symmetric local operators → dual symmetric local operators (e.g. Hamiltonians)

• non-symmetric order operators → dual non-symmetric (string) order operators

Dualities are dictated by symmetries

⇝ two models with the same symmetries admit the same dualities
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Symmetric Hamiltonians: ordinary symmetries

Define a symmetric Hamiltonian as a sum of local terms HA =
ř

i hA,i with

hA,i =
ÿ

t

At
r′s′Ā

t
rs |r′, s′⟩⟨r, s| ≡

ÿ

t

t

sr

s′r′

Ā

A

|r′, s′⟩⟨r, s| ≡
Ā

A

For instance, consider a (finite) group symmetry G, which implies

A

U3
g

=
A

U
2gU

1
g

, with U i
g =

à

ji

Dji(g)

Wigner-Eckart theorem ⇝ A is built from Clebsch-Gordan coefficients:

At
rs ≡ A

(j3m3)
(j1m1)(j2m2)

≡ Aj3
j1j2

Cj1j2j3
m1m2m3
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Symmetric Hamiltonians: ordinary symmetries

Clebsch-Gordan coefficients are recoupled using F -symbols:

ÿ

m6

Cj2j3j6
m2m3m6

Cj1j6j4
m1m6m4

=
ÿ

j5,m5

(
F j1j2j3
j4

)j6
j5
Cj1j2j5
m1m2m5

Cj1j6j4
m1m6m4

which up to a phase are the 6j symbols; graphically,

j6

j1 j2 j3

j4

=
ÿ

j5

(
F j1j2j3
j4

)j6
j5

j5

j1 j2 j3

j4

This data defines an “input” fusion category D
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Algebra of symmetric operators

Recoupling theory allows computation of symmetric operator products:

OxOy =
ÿ

z

fzxy(F )Oz,
F−→

Symmetric operators generate an algebra; this algebra is known as the bond algebra,

and it is characterized by F -symbols of the input fusion category D.
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Symmetric Hamiltonians: Ising model

Ising model: D = VecZ2 , two 1d irreps {0, 1}, j1 b j2 = j1 + j2 mod 2, with

Clebsch-Gordan coefficients given by

j1 j2

j1bj2

≡

j1 j2

j1bj2

= |j1⟩|j2⟩⟨j1 b j2|

In terms of the CG coefficients, we can write

Xi− 1
2
Xi+ 1

2
=

0 1

0 1

+

0 1

1 0

+

1 0

0 1

+

1 0

1 0
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Symmetric Hamiltonians: Kramers-Wannier dual of Ising model

Given recoupling equation for D = VecZ2 there is another solution

j1 j2

j1bj2

≡
ÿ

j
jbj1 jbj2

j

=
ÿ

j

|j b j1⟩|j⟩|j b j2⟩⟨j b j1|⟨j b j2|

Same linear combination that yielded Xi− 1
2
Xi+ 1

2
now gives the dual operator

0 1

0 1

+

0 1

1 0

+

1 0

0 1

+

1 0

1 0

= Xi

Dual realizations of operators obtained in this way generate the same algebra! 7



General result

Generalized Clebsch-Gordan coefficients are determined by the data ◁F of a chosen

module category M over the input fusion category D:

γ

α β

A B

C

j

k

i l

:=
(
◁FAαβ

B

)γ,jk
C,il

satisfying

ν

β γ

B D

C

j

b c

δ

α ν

A D

B

k

d

a
=

ÿ

µ

ÿ

i,l

(
Fαβγ
δ

)ν,jk
µ,il

µ

α β

A C

B

i

a b

δ

µ γ

A D

C

l

d

c
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Dual models

• Dual models are characterized by the same fusion category D, with the

same recoupling theory, but different choices of module category M.

Duality is an isomorphism of the algebra of local symmetric operators.

• Dualities are implemented by matrix product operator (MPO) intertwiners

that can be constructed from the categorical data.

• Dual models have equivalent but distinct realizations of (MPO) symmetries,

determined by the choice of M.
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MPO intertwiners

For different choices of module categories M1 and M2 one can compute an MPO

intertwiner as a D-module functor X ∈ FunD(M1,M2):

X

γ

l

k

i j

A1 B1

A2 B2

:=
(
XωA2γ

B1

)B2,lj

A1,ik

where Xω is determined by:

β γ

X

ν

m

A2 C2

A1 C1

B1

n

k l

i j

=

ν

β γ

X

B1

m

B2

A2 C2

A1 C1

n

i

k

j

l
⇔ A

=
B
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MPO symmetries

For the case where M1 = M2 = M, we get an MPO symmetry a ∈ EndD(M):

a

α

l

k

i j

A B

C D

=
(
▷◁F aCα

B

)A,jk

D,il

such that

α β

a

γ

m

A E

B D

C

n
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γ

α β

a

C

m

F

A E

B D

n

i

k

j

l
⇔ A

=
A
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Examples

1. D = VecZ2 : Z2 symmetry
• M = Vec: transverse field Ising model

• M = VecZ2 : Kramers-Wannier dual

• M = sVec/⟨ψ ≃ 1⟩: free fermion

2. D = VecZ2×Z2 : Z2 × Z2 symmetry
• M = Vec: spin 1 Heisenberg model, non-trivial SPT (Haldane phase)

• M = Vecψ: Kennedy-Tasaki dual (trivial SPT), related to SPT entangler

3. D = Ising: Z2 symmetry + Kramers-Wannier self-duality
• M = Ising: critical transverse field Ising model

• M = Ising/⟨ψ ≃ 1⟩: massless free fermion

4. D = Isingb2: (Z2 + Kramers-Wannier self-duality)b2

• M = Ising2: two decoupled critical transverse field Ising models

• M = Ising: critical XY model

• M = Ising/⟨ψ ≃ 1⟩: massless Dirac fermion 12



Examples

5. D = VecZ2 : Z2 symmetry

• M = Vec: XXZ model

• M = sVec: t-Jz model

6. D = Rep(Uq(sl2)): quantum deformed SU(2) symmetry

• M = Rep(Uq(sl2)): solid-on-solid (SOS) models

• M = Vec: 6-vertex model (XXZ)

7. D = H3: exotic fusion category, “Haagerup subfactor”

• M = H3: ?
[1][2]

• M = M3,2: ?

• M = M3,1: ?

[1]Huang, Lin, Ohmori, Tachikawa, Tezuka, Numerical evidence for a Haagerup conformal field theory,

Phys. Rev. Lett. 128, 231603
[2]Vanhove, LL, Van Damme, Wolf, Osborne, Haegeman, Verstraete, A critical lattice model for a

Haagerup conformal field theory, Phys. Rev. Lett. 128, 231602
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Examples

8. D = Rep(S3)
• M = Vec: XXZ model

• M = Rep(Z2):

H =
ÿ

i

Zi−1Zi+1 + Zi−1XiZi+1 +∆Xi

Interestingly, this model has a non-invertible Rep(S3) symmetry!

• M = Rep(Z3): modified 3-state Potts model

• M = Rep(S3): Rep(S3) anyonic spin chain

Examples for any duality can be systematically generated

Alternatively, given a Hamiltonian with some (categorical) symmetry, all its duals can

be obtained (generalized Wigner-Eckart theorem[3])

[3]Bridgeman, LL, Verstraete, Invertible bimodule categories and generalized Schur orthogonality,

Communications in Mathematical Physics, 1-24 (2023)
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Duality as an isometry

Hilbert space and Hamiltonian split into superselection sectors, which have to match

between models:

HA =
n

à

i

HA,i and HB =
n

à

i

HB,i ,

HA =
n

à

i

HA,i and HB =
n

à

i

HB,i .

although they need not be the same size (different degeneracies). Dualities are

isometries that interchange these sectors:

Ui : HA,i → HB,i, s.t. Ui(HA,i)U
†
i = HB,i

Here, superselection sectors refer to symmetry charges and boundary conditions
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Symmetry twisted boundary conditions

Symmetry twisted boundary conditions locally change the bonds in the Hamiltonian

Y
i− 1

2
Y
i+1

2

Ỹ
i− 1

2
Ỹ
i+1

2

Yij k → Y

Y
L+1

2
Y 3

2

Ỹ
L+1

2
Ỹ 3

2

A

j k

in such a way that translation invariance is preserved up to local unitaries. The

symmetry operators now act as symmetry “tubes”:

TA,A′,X,X′,k,k′

M|M = X X′ X

A′

A
Y
L+1

2
Y 3

2

k k′

M̃L

ML

M̃L+1

M1

M̃1

ML+1

M̃2

M2
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Superselection sectors

These symmetry tubes span an algebra, known as the tube algebra. Superselection

sectors are irreducible representations of this algebra, which are described by the

Drinfel’d center Z(C) of the fusion category C that describes the symmetry operators.

We can similarly define intertwiner tubes, that will implement the duality operator in

the presence of a symmetry twist:

TA,B,X,X′,k,k′

M|N = X X′ X

B

A
Y
L+1

2
Y 3

2

k k′

NL

ML

NL+1

M1

N1

ML+1

N2

M2
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Superselection sectors

These intertwiner tubes allow us to relate dual topological sectors labeled by

Z(Ci) ≃ Z(Cj), which in general involves a permutation of the topological sectors.

The simplest example is the interchange of charges and fluxes for the Z2

Kramers-Wannier duality:

(periodic,Z2 − even) → (periodic,Z2 − even)

(periodic,Z2 − odd) → (anti-periodic,Z2 − even)

(anti-periodic,Z2 − even) → (periodic,Z2 − odd)

(anti-periodic,Z2 − odd) → (anti-periodic,Z2 − odd)

These maps can be computed explicitly for any duality[4]

[4]LL, Delcamp, Verstraete, Dualities in one-dimensional quantum lattice models: topological sectors

2211.03777
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Conclusion

• Given Hamiltonian H, its duals can be systematically constructed via identification

of underlying categorical structures describing its symmetries:

H(D,M) H(D,M′)
FunD(M,M′)

FunD(M,M) FunD(M′,M′)

• Dualities and symmetries are realized as MPOs

• Generalization to higher dimensions is systematic[5][6]

[5]Delcamp, Tensor network approach to electromagnetic duality in (3+1)d topological gauge models,

JHEP 149 (2022)
[6]Delcamp, Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems,

2301.01259
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Application: symmetric MPS

Dualities provide framework for understanding MPS with symmetries[7]:

where N = FunD(M,O)

[7]LL et. al, Variational MPS with (generalized) symmetries, in preparation
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Given a symmetry described by (C,M,D), we can write a generic MPS in the phase

given by N [8] with excitations E as

,

The action of the Hamiltonian H(D,M) on this MPS is given by the dual Hamiltonian

H(D,O); this dual model typically has a constrained Hilbert space

This ansatz provides a characterization of an MPS in a given phase with the smallest

number of variational parameters ⇝ numerically more efficient

[8]Garre-Rubio, LL, Molnar, Classifying phases protected by matrix product operator symmetries using

matrix product states, Quantum 7, 927 (2023)
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