Dualities in one-dimensional quantum lattice models ${ }^{\text {ab }}$

Entanglement in Strongly Correlated Systems 2023, Benasque

Laurens Lootens, Clement Delcamp, Gerardo Ortiz and Frank Verstraete
August 16, 2023

Kramers-Wannier duality

Consider the transverse field Ising model

$$
\mathbb{H}_{A}=-J \sum_{\mathrm{i}} X_{\mathrm{i}-\frac{1}{2}} X_{\mathrm{i}+\frac{1}{2}}-J g \sum_{\mathrm{i}} Z_{\mathrm{i}+\frac{1}{2}}, \quad \text { global } \bigotimes_{\mathrm{i}} Z_{\mathrm{i}+\frac{1}{2}} \text { symmetry, broken when } g<1
$$

Kramers and Wannier introduced the following transformation:

$$
X_{\mathrm{i}-\frac{1}{2}} X_{\mathrm{i}+\frac{1}{2}} \rightarrow X_{\mathrm{i}}, \quad Z_{i+\frac{1}{2}} \rightarrow Z_{\mathrm{i}} Z_{\mathrm{i}+1}
$$

This defines the dual Hamiltonian

$$
\mathbb{H}_{B}=-J \sum_{\mathrm{i}} X_{\mathrm{i}}-J g \sum_{\mathrm{i}} Z_{\mathrm{i}} Z_{\mathrm{i}+1}, \quad \text { global } \bigotimes_{\mathrm{i}} X_{\mathrm{i}} \text { symmetry, broken when } g>1
$$

Kramers-Wannier duality is a non-local transformation:

$$
X_{\mathrm{i}-\frac{1}{2}} \rightarrow \prod_{\mathrm{j} \geq \mathrm{i}} X_{\mathrm{j}}
$$

Generalities on dualities

We characterize a duality as follows:

- unitary (isometric) transformation relating two models
- symmetric local operators \rightarrow dual symmetric local operators (e.g. Hamiltonians)
- non-symmetric order operators \rightarrow dual non-symmetric (string) order operators

Dualities are dictated by symmetries
\rightsquigarrow two models with the same symmetries admit the same dualities

Symmetric Hamiltonians: ordinary symmetries

Define a symmetric Hamiltonian as a sum of local terms $\mathbb{H}_{A}=\sum_{\mathrm{i}} \mathfrak{h}_{A, \mathrm{i}}$ with

$$
\mathbb{R}_{A, i}=\sum_{t} A_{r^{\prime} s^{\prime}}^{t} \bar{A}_{r s}^{t}\left|r^{\prime}, s^{\prime}\right\rangle\langle r, s| \equiv \sum_{t} \int_{r}^{(A)} t\left|r^{\prime}, s^{\prime}\right\rangle\langle r, s| \equiv
$$

For instance, consider a (finite) group symmetry G, which implies

Wigner-Eckart theorem $\rightsquigarrow A$ is built from Clebsch-Gordan coefficients:

$$
A_{r s}^{t} \equiv A_{\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)}^{\left(j_{3} m_{3}\right)} \equiv A_{j_{1} j_{2}}^{j_{3}} C_{m_{1} m_{2} m_{3}}^{j_{1} j_{2} j_{3}}
$$

Symmetric Hamiltonians: ordinary symmetries

Clebsch-Gordan coefficients are recoupled using F-symbols:

$$
\sum_{m_{6}} C_{m_{2} m_{3} m_{6}}^{j_{2} j_{3} j_{6}} C_{m_{1} m_{6} m_{4}}^{j_{1} j_{6} j_{4}}=\sum_{j_{5}, m_{5}}\left(F_{j_{4}}^{j_{1} j_{2} j_{3}}\right)_{j_{5}}^{j_{6}} C_{m_{1} m_{2} m_{5}}^{j_{1} j_{2} j_{5}} C_{m_{1} m_{6} m_{4}}^{j_{1} j_{6} j_{4}}
$$

which up to a phase are the $6 j$ symbols; graphically,

This data defines an "input" fusion category \mathcal{D}

Algebra of symmetric operators

Recoupling theory allows computation of symmetric operator products:

$$
\mathcal{O}_{x} \mathcal{O}_{y}=\sum_{z} f_{x y}^{z}(F) \mathcal{O}_{z},
$$

Symmetric operators generate an algebra; this algebra is known as the bond algebra, and it is characterized by F-symbols of the input fusion category \mathcal{D}.

Symmetric Hamiltonians: Ising model

Ising model: $\mathcal{D}=\mathrm{Vec}_{\mathbb{Z}_{2}}$, two 1 d irreps $\{0,1\}, j_{1} \otimes j_{2}=j_{1}+j_{2} \bmod 2$, with Clebsch-Gordan coefficients given by

In terms of the CG coefficients, we can write

Symmetric Hamiltonians: Kramers-Wannier dual of Ising model

Given recoupling equation for $\mathcal{D}=\mathrm{Vec}_{\mathbb{Z}_{2}}$ there is another solution

$$
\left.\left.\right|_{j_{1} \otimes j_{2}} ^{j_{1}} \equiv \sum_{j}^{j_{2}}\right\rangle_{j \otimes j_{1}}^{j}{ }^{j} /{ }_{j \otimes j_{2}}^{j_{2}}=\sum_{j}\left|j \otimes j_{1}\right\rangle|j\rangle\left|j \otimes j_{2}\right\rangle\left\langle j \otimes j_{1}\right|\left\langle j \otimes j_{2}\right|
$$

Same linear combination that yielded $X_{i-\frac{1}{2}} X_{\mathrm{i}+\frac{1}{2}}$ now gives the dual operator

Dual realizations of operators obtained in this way generate the same algebra!

General result

Generalized Clebsch-Gordan coefficients are determined by the data ${ }^{\triangleleft} F$ of a chosen module category \mathcal{M} over the input fusion category \mathcal{D} :

satisfying

Dual models

- Dual models are characterized by the same fusion category \mathcal{D}, with the same recoupling theory, but different choices of module category \mathcal{M}. Duality is an isomorphism of the algebra of local symmetric operators.
- Dualities are implemented by matrix product operator (MPO) intertwiners that can be constructed from the categorical data.
- Dual models have equivalent but distinct realizations of (MPO) symmetries, determined by the choice of \mathcal{M}.

MPO intertwiners

For different choices of module categories \mathcal{M}_{1} and \mathcal{M}_{2} one can compute an MPO intertwiner as a \mathcal{D}-module functor $X \in \operatorname{Fun}_{\mathcal{D}}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)$:
where ${ }^{X} \omega$ is determined by:

MPO symmetries

For the case where $\mathcal{M}_{1}=\mathcal{M}_{2}=\mathcal{M}$, we get an MPO symmetry $a \in \operatorname{End}_{\mathcal{D}}(\mathcal{M})$:
such that

Examples

1. $\mathcal{D}=\mathrm{Vec}_{\mathbb{Z}_{2}}: \mathbb{Z}_{2}$ symmetry

- $\mathcal{M}=$ Vec: transverse field Ising model
- $\mathcal{M}=\mathrm{Vec}_{\mathbb{Z}_{2}}$: Kramers-Wannier dual
- $\mathcal{M}=\mathrm{sVec} /\langle\psi \simeq \mathbb{1}\rangle$: free fermion

2. $\mathcal{D}=\mathrm{Vec}_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}: \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry

- $\mathcal{M}=$ Vec: spin 1 Heisenberg model, non-trivial SPT (Haldane phase)
- $\mathcal{M}=\mathrm{Vec}^{\psi}$: Kennedy-Tasaki dual (trivial SPT), related to SPT entangler

3. $\mathcal{D}=$ Ising: \mathbb{Z}_{2} symmetry + Kramers-Wannier self-duality

- $\mathcal{M}=$ Ising: critical transverse field Ising model
- $\mathcal{M}=$ Ising $/\langle\psi \simeq \mathbb{1}\rangle$: massless free fermion

4. $\mathcal{D}=$ Ising $^{\boxed{ } ख^{2}}:\left(\mathbb{Z}_{2}+\text { Kramers-Wannier self-duality }\right)^{\otimes 2}$

- $\mathcal{M}=\mathrm{Ising}^{2}$: two decoupled critical transverse field Ising models
- $\mathcal{M}=$ Ising: critical $X Y$ model
- $\mathcal{M}=\mathrm{Ising} /\langle\psi \simeq \mathbb{1}\rangle$: massless Dirac fermion

Examples

5. $\mathcal{D}=\mathrm{Vec}_{\mathbb{Z}_{2}}: \mathbb{Z}_{2}$ symmetry

- $\mathcal{M}=$ Vec: XXZ model
- $\mathcal{M}=\mathrm{sVec}: t-J_{z}$ model

6. $\mathcal{D}=\operatorname{Rep}\left(\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)\right)$: quantum deformed $S U(2)$ symmetry

- $\mathcal{M}=\operatorname{Rep}\left(\mathrm{U}_{q}\left(\mathfrak{F l}_{2}\right)\right)$: solid-on-solid (SOS) models
- $\mathcal{M}=$ Vec: 6 -vertex model (XXZ)

7. $\mathcal{D}=\mathcal{H}_{3}$: exotic fusion category, "Haagerup subfactor"

- $\mathcal{M}=\mathcal{H}_{3}: ?^{[1][2]}$
- $\mathcal{M}=\mathcal{M}_{3,2}$: ?
- $\mathcal{M}=\mathcal{M}_{3,1}:$?
${ }^{[1]}$ Huang, Lin, Ohmori, Tachikawa, Tezuka, Numerical evidence for a Haagerup conformal field theory, Phys. Rev. Lett. 128, 231603
${ }^{[2]}$ Vanhove, LL, Van Damme, Wolf, Osborne, Haegeman, Verstraete, A critical lattice model for a Haagerup conformal field theory, Phys. Rev. Lett. 128, 231602

Examples

8. $\mathcal{D}=\operatorname{Rep}\left(S_{3}\right)$

- $\mathcal{M}=$ Vec: XXZ model
- $\mathcal{M}=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$:

$$
\mathbb{H}=\sum_{\mathrm{i}} Z_{\mathrm{i}-1} Z_{\mathrm{i}+1}+Z_{\mathrm{i}-1} X_{\mathrm{i}} Z_{\mathrm{i}+1}+\Delta X_{\mathrm{i}}
$$

Interestingly, this model has a non-invertible $\operatorname{Rep}\left(S_{3}\right)$ symmetry!

- $\mathcal{M}=\operatorname{Rep}\left(\mathbb{Z}_{3}\right)$: modified 3-state Potts model
- $\mathcal{M}=\operatorname{Rep}\left(S_{3}\right): \operatorname{Rep}\left(S_{3}\right)$ anyonic spin chain

Examples for any duality can be systematically generated
Alternatively, given a Hamiltonian with some (categorical) symmetry, all its duals can be obtained (generalized Wigner-Eckart theorem ${ }^{[3]}$)
${ }^{[3]}$ Bridgeman, LL, Verstraete, Invertible bimodule categories and generalized Schur orthogonality, Communications in Mathematical Physics, 1-24 (2023)

Duality as an isometry

Hilbert space and Hamiltonian split into superselection sectors, which have to match between models:

$$
\begin{aligned}
\mathcal{H}_{A} & =\bigoplus_{i}^{n} \mathcal{H}_{A, i} \quad \text { and } \quad \mathcal{H}_{B}=\bigoplus_{i}^{n} \mathcal{H}_{B, i}, \\
\mathbb{H}_{A} & =\bigoplus_{i}^{n} H_{A, i} \quad \text { and } \quad H_{B}=\bigoplus_{i}^{n} H_{B, i} .
\end{aligned}
$$

although they need not be the same size (different degeneracies). Dualities are isometries that interchange these sectors:

$$
\mathbb{U}_{i}: \mathcal{H}_{A, i} \rightarrow \mathcal{H}_{B, i}, \quad \text { s.t. } \quad \mathbb{U}_{i}\left(\mathbb{H}_{A, i}\right) \mathbb{U}_{i}^{\dagger}=\mathbb{H}_{B, i}
$$

Here, superselection sectors refer to symmetry charges and boundary conditions

Symmetry twisted boundary conditions

Symmetry twisted boundary conditions locally change the bonds in the Hamiltonian

in such a way that translation invariance is preserved up to local unitaries. The symmetry operators now act as symmetry "tubes":

Superselection sectors

These symmetry tubes span an algebra, known as the tube algebra. Superselection sectors are irreducible representations of this algebra, which are described by the Drinfel'd center $\mathcal{Z}(\mathcal{C})$ of the fusion category \mathcal{C} that describes the symmetry operators. We can similarly define intertwiner tubes, that will implement the duality operator in the presence of a symmetry twist:

Superselection sectors

These intertwiner tubes allow us to relate dual topological sectors labeled by $\mathcal{Z}\left(\mathcal{C}_{i}\right) \simeq \mathcal{Z}\left(\mathcal{C}_{j}\right)$, which in general involves a permutation of the topological sectors. The simplest example is the interchange of charges and fluxes for the \mathbb{Z}_{2} Kramers-Wannier duality:

$$
\begin{aligned}
\left(\text { periodic, } \mathbb{Z}_{2}-\text { even }\right) & \rightarrow\left(\text { periodic, } \mathbb{Z}_{2}-\text { even }\right) \\
\left(\text { periodic, } \mathbb{Z}_{2}-\text { odd }\right) & \rightarrow\left(\text { anti-periodic, } \mathbb{Z}_{2}-\text { even }\right) \\
\left(\text { anti-periodic, } \mathbb{Z}_{2}-\text { even }\right) & \rightarrow\left(\text { periodic, } \mathbb{Z}_{2}-\text { odd }\right) \\
\left(\text { anti-periodic, } \mathbb{Z}_{2}-\text { odd }\right) & \rightarrow\left(\text { anti-periodic, } \mathbb{Z}_{2}-\text { odd }\right)
\end{aligned}
$$

These maps can be computed explicitly for any duality ${ }^{[4]}$
${ }^{[4]}$ LL, Delcamp, Verstraete, Dualities in one-dimensional quantum lattice models: topological sectors 2211.03777

Conclusion

- Given Hamiltonian \mathbb{H}, its duals can be systematically constructed via identification of underlying categorical structures describing its symmetries:

- Dualities and symmetries are realized as MPOs
- Generalization to higher dimensions is systematic ${ }^{[5][6]}$
${ }^{[5]}$ Delcamp, Tensor network approach to electromagnetic duality in $(3+1)$ d topological gauge models, JHEP 149 (2022)
${ }^{[6]}$ Delcamp, Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems, 2301.01259

Application: symmetric MPS

Dualities provide framework for understanding MPS with symmetries ${ }^{[7]}$:

where $\mathcal{N}=\operatorname{Fun}_{\mathcal{D}}(\mathcal{M}, \mathcal{O})$
${ }^{[7]}$ LL et. al, Variational MPS with (generalized) symmetries, in preparation

Given a symmetry described by $(\mathcal{C}, \mathcal{M}, \mathcal{D})$, we can write a generic MPS in the phase given by $\mathcal{N}^{[8]}$ with excitations \mathcal{E} as

The action of the Hamiltonian $\mathbb{H}(\mathcal{D}, \mathcal{M})$ on this MPS is given by the dual Hamiltonian $\mathbb{H}(\mathcal{D}, \mathcal{O})$; this dual model typically has a constrained Hilbert space

This ansatz provides a characterization of an MPS in a given phase with the smallest number of variational parameters \rightsquigarrow numerically more efficient

[^0]
[^0]: ${ }^{[8]}$ Garre-Rubio, LL, Molnar, Classifying phases protected by matrix product operator symmetries using matrix product states, Quantum 7, 927 (2023)

