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1. Quantum Simulation

2. Variational Quantum Algorithms

3. Squeezing the NISQ lemon

4. Variational Quantum Eigensolver

5. Quantum Approximate Optimization Algorithm

6. Quantum Machine Learning

7. Take home messages

Outlook

Tutorials (Tequila):

github.com/AlbaCL/VQA_tutorials



Digitalizing Quantum Simulation
(Blackboard)



Variational Quantum Algorithms

Resources:

Noisy intermediate-scale quantum (NISQ) algorithms
Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, et al, 
Rev. Mod. Phys. 94, 015004 (2022) (arXiv:2101.08448 [quant-ph])

Variational quantum algorithms
M. Cerezo, Andrew Arrasmith, Ryan Babbush, et al, 
Nature Reviews Physics 3, 625–644 (2021) (arXiv:2012.09265 [quant-ph])



Lost in (quantum) space

Dimension 2 ∙ 2𝑛 − 2

𝑛 qubits Hilbert 
space (search space)

Product states

Initial 
state

Final 
state

Theoretical quantum 
circuit/operation/evolution

How can we find the path (theory)?
How can we implement the path (experiment)?



Variational circuits
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Imperfect gate operations.

We cannot run:

➢ Algorithms that require perfect 
implementation (e.g. Grover, QFT, …)

➢ Circuits that require many gates (due to 
limited coherence)



Variational circuits
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Tunable gate operations (gates that depend on  
controllable parameter).

We will finetune these parameters to find the 
best algorithm implementation.

We can run:

➢ Algorithms that do not require specific 
quantum gates.

➢ Circuits that require a few gates.

Can we design algorithms with this flexibility in the gates?



Variational Quantum Algorithms

Hybrid quantum-classical computing

Quantum circuit 
that depend on

𝜽
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Variational principle:  E = 𝜓 𝐻 𝜓 ≥ 𝐸0

Parameterized 
quantum circuit

Classical optimization

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Assumptions:

1. There exist a set of parameters that approximates the ground state

2. Our PQC can represent that solution

3. We can converge towards the solution (we do not get trapped in local minima)

4. The PQC can be run on a NISQ computer

Parameterized quantum circuits
Our Parameterized Quantum Circuit (PQC)

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Parameterized quantum circuits

1. Problem-inspired PQC ansatz.

a) Approximation to the solution by construction.
b) High-circuit depth/# gates in general 

(not always hardware-friendly)

How can we design 𝑈 𝜃 ?

Two strategies:

2. Hardware-efficient ansatz.

a) Heuristic ansatz
b) Low circuit depth/# gates in general-

(hardware-friendly)

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Objective function

It encodes the problem in a quantum operator, e.g. a Hamiltonian

The objective is decomposed into Pauli strings which expectation value can be measured with the 
quantum computer.

An objective can also be the fidelity w.r.t. a particular 
target state that we are trying to match. 

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Measurement

We need to find a way to extract information from our quantum computer.

In general, quantum devices project in a particular basis, normally the z-basis.

This means we only measure the eigenvalues of the 𝜎𝑧 operator, namely the 
“0”s and the “1”s

In other basis, we need to 
rotate the state to that 
particular basis first

Probability of 
obtaining |0>

…and measure how many “0” we 
obtain as in the 𝜎𝑧 case.

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Classical optimization

We need to navigate the quantum circuit parameter space, e.g. by using gradiend based 
methods

The gradients are expectation values of the quantum circuit derivatives w.r.t. a parameter.

Example: parameter-shift rule

Eigenvalues of 𝑔 are ±𝜆

Gradient-free: genetic algorithms, reinforcement learning, …

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Variational Quantum Algorithms

Applications in chemistry, optimization, machine learning, …

A. Peruzzo et. al., Nature Comm. 5,  4213 (2014)

Bond dissociation curve of the He–H+ molecule.

Variational Quantum 
Eigensolver (VQE)

Quantum Approximate 
Optimization Algorithm (QAOA)

Quantum Machine 
Learning
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E. Farhi, J. Goldstone, S. Gutmann, 
arXiv:1411.4028 [quant-ph]
Leo Zhou et. al. Phys. Rev. X 10, 021067 (2020)

K. Bharti, A. Cervera-Lierta, Thi Ha Kyaw, Rev. Mod. Phys. 94, 015004 (2022)



Squeezing NISQ computers



A set of classical post-processing techniques and active operations on hardware that allow to correct 
or compensate the errors from a noisy quantum computer.

Quantum Error Mitigation

Theoretically (post) analysis

Zero-noise extrapolation 

Instead of running our circuit unitary 𝑈, we run 

different circuits 𝑈 𝑈𝑈†
𝑛

(increasingly noisy). 

Extrapolate the result for zero-noise 𝑈

Probabilistic error cancellation

Stabilizer based approach 

Relies on the information associated with conserved 
quantities such as spin and particle number conserving 
ansatz. If any change in such quantities is detected, one 
can pinpoint an error in the circuit.



Quantum Error Mitigation

Experimental mitigation

Quantum Optimal Control strategies 

Dynamical Decoupling: 

Designed to suppress decoherence via fancy pulses 
to the system so that it cancels the system-bath 
interaction to a given order in time dependent 
perturbation theory.

Pulse shaping technique: 

Passive cancellation of system-bath interaction.

Among many others…



The barren-plateaux problem

With no prior knowledge about the solution, Ԧ𝜃 parameters are initialized at random.

The expected value of the gradient is zero!
The expected value of the variance is also zero!

Consequence: barren-plateaux

- Use parameters close to the solution.
- Use local cost functions instead of global ones.
- Introduce correlations between parameters.

Solutions

Ref.: M. Cerezo et. al. Nature Communications 12, 1791 (2021)

Global cost function Local cost function

Compute the gradients with the quantum circuit and use these values to run a classical minimizer, e.g. Nelder-
Mead, Adam, …

McClean, J.R., Boixo, S., Smelyanskiy, V.N. et al. Nat Commun 9, 4812 (2018)



Expressibility

When setting a PQC ansatz we have to be careful to not narrow the Hilbert space accesible by the 
PQC so we can reach a good approximation of the solution state.

PQC

Solution

Initial state

SU(N)

Space of all possible 
quantum circuits Ideally…

Space of all possible 
quantum circuits 
generated by the PQC



Expressibility

When setting a PQC ansatz we have to be careful to not narrow the Hilbert space accesible by the 
PQC so we can reach a good approximation of the solution state.

Solution

SU(N)
… possible reality

PQC

Initial state



Circuit compilation

Native and universal gate sets: 

Solovay-Kitaev theorem: With a universal gate set we can approximate with epsilon accuracy any SU(N) with a 
circuit of polynomial depth.

Gottesman–Knill theorem: Circuits composed by gates from the Clifford group (Clifford circuits) can be simulated 
efficiently with a classical computer.

Gate sets are usually composed by Clifford gates + one non-clifford gate, e.g. {H, S, CNOT} + T

However, depending on the hardware implementation, some gates are easier to control. 

Theoretical circuit
Decomposition 

into native gates
Simplification 

(circuit identities)
Mapping to qubit 

chip topology

The more native gates, the shorter and simpler the circuit



Circuit compilation

Theoretical circuit
Decomposition 

into native gates
Simplification 

(circuit identities)
Mapping to qubit 

chip topology

Qubits connectivity (routing) problem: not all qubits are physically connected, so we have to map our 
quantum circuits to the real devices.

Circuit simplification: use identities or tools like the ZX calculi (graph representation of quantum circuits)



Pulses and VQA’s
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Ideal quantum gates Variational quantum gates Physical pulses

We can design a VQA directly with the physical pulses! And optimize the pulse 
parameters instead of the gates.

Controlled Variational Quantum Eigensolver (Ctrl-VQE)

O. Romesh Meitei et al, npj Quantum Information 7, 155 (2021) 



Resources:

- Artur Izmaylov “Quantum Chemistry on a Quantum Computer” course on Youtube

- “Quantum Chemistry in the Age of Quantum Computing”, 

Y. Cao et al, Chem. Rev., 119, 19, 10856–10915 (2019), arXiv:1812.09976 [quant-ph]

Tutorials:

- Qiskit: https://qiskit.org/textbook/ch-applications/vqe-molecules.html

- Tequila: https://github.com/aspuru-guzik-group/tequila-tutorials

- Pennylane: https://pennylane.ai/qml/demos/tutorial_vqe.html

Variational Quantum Eigensolver (VQE)



Electronic structure problem

The electronic structure Hamiltonian describes the dynamics of an atom or a molecule.

In the Born-Oppenheimer approximation, it has two main terms:

The wavefunction can be factorized as well

The part of interest for chemistry is 
solving the electronic one:

Kinetic 
energy
electrons

Interaction 
electrons-
nucleus

Interaction 
between 
electrons



Electronic structure problem

How does the wave-function look like?

Single electrons wavefunction are the electronic orbitals.

Two-electron wavefunctions are a combinations of these 
orbitals in what are called Slater determinants.

Slater determinants manipulation in the first quantization 
might be cumbersome, so we move to the second 
quantization or Fock space:

| ۧ𝜓 = 

𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠

𝐶𝑘 ۧ|𝑛1, … , 𝑛𝑘

Occupation number of that orbital 
= 0 (no orbital) 
or 1 (there is an electron in that orbital)

Electronic wave-function



Electronic structure problem

The electronic Hamiltonian in the second quantization becomes:
Adds an electron to the “p” 
orbital

Removes an electron from the “q” 
orbital

Creation and annihilation operators:

Single-excitations
1-electron moves 
from one orbital to 
another

Double-excitations
2-electrons move 
from one orbital to 
another

“Couple-Cluster Single-Double” model (CCSD)



CCSD on a quantum computer

We can not compute expectation values of the creation and annihilation operators.

We apply a unitary transformation that maps these operators into Pauli strings:

e.g. by means of the Jordan-
Wigner transformation:

𝑎𝑘
† = ෑ

𝑗=1

𝑘−1

−𝜎𝑗
𝑧 𝜎𝑘

𝑥 + 𝑖𝜎𝑘
𝑦

2

We have our objective function to minimize with our VQA!

Next, what do we use as a PQC ansatz?



UCCSD ansatz

We are looking for a quantum circuit (a.k.a. unitary operation) that generates the 
ground state of an electronic structure Hamiltonian:

𝑈𝑈𝐶𝐶𝑆𝐷~𝑒
𝑖 𝐻𝑈𝐶𝐶𝑆𝐷

Hartree-Fock approximation: single electron 
orbitals (first-order approximation)

Couple-cluster operators 
(single, double, triple, … 
excitations).

We transform it into spin 
operators (Jordan-Wigner, etc) 
and use it as a unitary 
generators)

Remember that 𝑒𝑖 𝜃 𝜎𝑥 = 𝑅𝑥(𝜃) etc. From Pauli strings we can obtain the necessary quantum gates.

Coefficients to be 
determined (with our VQA!)



The Variational Quantum Eigensolver
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Classical optimization

We will use the classical subroutine to obtain the parameters from the UCC 
operator



The Variational Quantum Eigensolver

A. Peruzzo et. al., Nature Comm. 5,  4213 (2014)

Bond dissociation curve of the He–H+ molecule.
A. Kandala et. al., 
Nature 549, 242–246 
(2017)

Google AI Quantum 
and Collaborators, 
Science 369, 6507, 
1084-1089 (2020)

H chains

Noisy Intermediate-Scale Quantum (NISQ) algorithms, K. Bharti, ACL, T.H. Kyaw, et. al., arXiv:2101.08448 (2021)



Quantum Approximate Optimization Algorithm 
(QAOA)

Resources:

Musty Thoughts blog (Michał Stęchły): 

https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained

Tutorials:

- Qiskit: https://qiskit.org/textbook/ch-applications/qaoa.html

- Pennylane: https://pennylane.ai/qml/demos/tutorial_qaoa_intro.html, 

https://pennylane.ai/qml/demos/tutorial_qaoa_maxcut.html

https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained


Preliminaries

➢Universal computational model.

➢We start with an “easy” Hamiltonian and evolve it adiabatically to the final target Hamiltonian.

➢ If the conditions of the Adiabatic Theorem are fulfilled, we end up in the g.s. of the target Hamiltonian

Adiabatic Quantum Computation

A physical system remains in its instantaneous eigenstate if a given perturbation is 
acting on it slowly enough and it there is a gap between the eigenvalue and the rest 

of the Hamiltonian spectrum.

Adiabatic Theorem

Aharonov, D., W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev (2008), SIAM review 50 (4), 755.



Preliminaries

➢For AQC we need a well isolated system (a change in the Hamiltonian will break the conditions of the 
theorem).

➢Depending on the gap, we might require a very long time to run.

➢How can we perform AQC on a quantum computer?

➢Having an adiabatic quantum computer

➢ Is there a way to perform or simulate AQC with a gate-based quantum computer?

Adiabatic Quantum Computation



Preliminaries
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𝑒𝐴+𝐵 = lim
𝑛→∞

𝑒𝐴/𝑛 𝑒𝐵/𝑛
𝑛

𝐻 = 𝐻1 + 𝐻2

𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝑡𝐻1−𝑖𝑡𝐻2 = lim
𝑛→∞

𝑒−𝑖𝑡𝐻1/𝑛 𝑒−𝑖𝑡𝐻2/𝑛
𝑛

Apply alternatively

𝑒−𝑖𝑡𝐻1 𝑒−𝑖𝑡𝐻2

in intervals of 𝑡/𝑛

Time evolution:

Trotterization

Adiabatic Quantum 
Evolution

𝐻 = 𝐻𝑀 + 𝐻𝑃

𝐻 𝑠 = 𝑠𝐻𝑀 + 1 − 𝑠 𝐻𝑃
If s small, we end up in the ground state of 
𝐻𝑃 (under certain assumptions)



Quantum Approximate Optimization Algorithm

Can be understood as an approximation of the Trotter decompositiong of adiabatic evolution.

Problem HamiltonianMixing Hamiltonian

Construct the circuit ansatz by alternating the problem and mixing Hamiltonians where 𝛽 and 𝛾 are the 
variational parameters to be optimized classically.

full superposition state (in general)

Objective function:



Quantum Machine Learning



Quantum and Classical Machine Learning

QML*
Quantum algorithms feed with classical or 
quantum data

➢ Supervised Learning

➢ Unsupervised Learning

➢ Reinforcement Learning

CC CQ

QC QQ
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Classic Quantum
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*Note: QML also stands for classical ML used to infer knowledge about a quantum 
system (e.g. identification of quantum phase transitions with a neural network).



From classical to quantum NN

M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Phys. Rev. A 101, 032308 (2020)

Encoding Processing Measure

E. Farhi and H.Neven, arXiv:1802.06002 (2018)

M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019)

Input
neurons

Hidden
neurons

Output
neurons

Classical Quantum

K Mitarai, M Negoro, M Kitagawa, K Fujii Phys. Revs A 98 (3), 032309 (2018)



Supervised Learning

M. Schuld, arXiv:2101.11020 [quant-ph] 

𝑺(𝒙, 𝜽) 𝑼(𝝓)

Encode the data 
(quantum feature 

space)

Rotate to the 
correct 

measurement 
basis

We can then compute the Kernel

Or minimize the fidelity w.r.t. target states



The minimal QNN

A. Pérez-Salinas,  ACL, E. Gil-Fuster and J. I. Latorre, Quantum 4, 226 (2020)

What is the simplest (but universal) NN?

What is the simplest (but universal) QNN?

Single hidden layer NN

Single-qubit QNN



Encoding the data

A. Pérez-Salinas,  ACL, E. Gil-Fuster and J. I. Latorre, Quantum 4, 226 (2020)

A product of unitaries can be written with 
a single unitary 𝑈 𝜙1 …𝑈 𝜙𝑁 ≡ 𝑈 𝜑

Data re-uploading
If we add some fixed parameter dependency (the 
data), the operation becomes flexible and data-
depedent.

Data point 2

Correct label

Data point 1

Correct label

𝑈 𝜑

𝑈 𝜙1 …𝑈 𝜙𝑁

The paths 
depend on 
the data x

Initial state



Fourier Series and more

B. Casas Font, ACL, arXiv:2302.03389 [quant-ph]
Z. Yu, H. Yao, M. Li, X. Wang, arXiv:2205.07848 [quant-ph] (2022)
M. Schuld, R. Sweke, J. J. Meyer, Phys. Rev. A, 103 032430 (2021)



Example 1: single-qubit classifier

A. Pérez-Salinas,  ACL, E. Gil-Fuster and J. I. Latorre, Quantum 4, 226 (2020)

Target states

Divide the Bloch sphere into #classes sections

ۧ|𝟎

ۧ|𝟏

Class 0

Class 1PQC

Layers of single-qubit gates where we encode the
data and variational parameters into the angles.

Loss function

Overlap between the target state and the output 
state for all training points

Quantum classifier

Once trained, we introduce the test points and classify them
according to the qubit state.



Example 2: single-qubit approximant

A.Pérez-Salinas, D. López-Núñez, A. García-Sáez, P. Forn-Díaz, J. I. Latorre, arXiv:2102.04032 [quant-ph]

M. Schuld, R. Sweke, J. J. Meyer, arXiv:2008.08605 [quant-ph] 

Quantum circuits can be theoretically written as partial Fourier series and, therefore, they can be 
universal function approximators. The more data re-uploading, the more precision can be achieved.

Same PQC as the quantum classifier but the 
loss function will be:



What’s the true goal of VQE?

ACL, J. Kottmann, A. Aspuru-Guzik, PRX Quantum 2, 020329 (2021)

Bond dissociation curve of the He–H+ molecule.

To obtain this you need to scan from 0 to 300.

Each blue point is a VQE, that is, you have to
prepare, run and optimize the quantum 
circuit.

Can we avoid to compute the uninteresting 
points?

A. Peruzzo, et. al., Nature Comm. 5,  4213 (2014)



Example 3: Meta-VQE
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VQEs 
(individual 
minimizations)

Standard VQE

𝝀
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One minimization 
(training points)

Meta-VQE

Evaluation curve (test)

Parameterized Hamiltonian 𝐻 Ԧ𝜆

Goal: to find the quantum circut that encodes the ground 

state of the Hamiltonian for any value of Ԧ𝜆

- Training points: Ԧ𝜆𝑖 for 𝑖 = 1,… ,𝑀

- Data re-uploading to encode the Ԧ𝜆𝑖 into the circuit

- Loss function with all 𝐻( Ԧ𝜆𝑖)

Option 1: run the circuit with test Ԧ𝜆 and obtain the g.s. energy profile.

Option 2: use Φ𝑜𝑝𝑡 and Θ𝑜𝑝𝑡 as starting point of a standard VQE 

optimization (opt-meta-VQE) 

ACL,  J. K. Kottmann, A. Aspuru-Guzik, PRX Quantum 2, 020329 (2021) 



There are basically three types of quantum algorithms: those 
based on the QFT (hidden subgroup problem), oracle based and 
quantum simulation.

Qubits can contain an exponentially large amount of information, 
but most of it is unavailable for us (unless we assume exponential 
number of measurements). 

When designing a new quantum algorithm, we need to find 
efficient ways to 1) construct the unitary operation and 2) extract 
the right amount of information.

Quantum computers are noisy, so until we have fault-tolerant QC, 
we need to be creative and find noise resistance algorithms.

Hybridizing quantum and classical subroutines, we can construct 
hardware-friendly quantum circuits and design a great variety of 
applications (Variational Quantum Computing).

Still many theoretical challenges to properly design quantum 
algorithms (barren plateaus, efficient decompositions, qubit 
mapping, …)

Feasible application can be closer than you thought! Talk to your 
theoretician friend about which operations they need and 
contribute to close the experiment-theory gap ☺

Alba Cervera Lierta

Senior researcher and Quantum Spain 
coordinator

alba.cervera@bsc.es

Thanks for your 
attention
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