
Superconducting Quantum Circuits

Interaction engineering

Benasque Spring School on
Superconducting Qubit Technology

April 17th, 2023

Juan José García Ripoll (IFF-CSIC, Spain)

https://quinfog.hbar.es

jj.garcia.ripoll@csic.es

jjgarciaripoll

✉

https://quinfog.hbar.es/


Outline

- Motivations / basic ideas

- Passive coupling

- Dipolar coupling

- Ultrastrong coupling

- Mediated coupling

- Tunable coupling

- Active coupling

- Photon-assisted coupling

- Parametric coupling

- Some applications

- Motivations / basic ideas

- Superconductivity

- Quantum circuit theory

- Microwave photons

- Superconducting qubits

- Qubit-photon interaction

- Qubit redesigns

- Quantum links



Coupling quantum systems

Gate-based quantum 
computers

Moderate strength.
High tuneability: gates.

High strength.
Don’t matter if fixed

Engineering new 
quantum systems /

new physics
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Arbitrary strength.
Tuneability to study e.g.

phase transitions
Quantum simulation / 
quantum optimizers

https://commons.wikimedia.org/wiki/File:Caffeine_Molecule.png


Material

- Complete, standalone lectures 

on superconducting circuits, 

quantum optics and quantum 

information applications.

- Emphasis on this lecture on 

state-of-the-art literature with 

references throughout the 

presentation.

- A copy of the book will be gifted 

at the end of the school.



Surface plasmons

Excitations in the superconductor 

are surface waves of charge 

accompanied by E.M. field 

excitations (photons).

- Light: fast motion, close to 

speed of light.

- Matter: excitations may 

interact (Coulomb) and be 

confined to the superconductor 

(trapping).

𝜌 𝑥

𝜌 𝑥 , 𝑉(𝑥) 𝐽 𝑥 , 𝐵(𝑥)



Quantum circuits

Lagrangian

Kirchoff theory

𝐶𝑖𝑗 ሶ𝑉𝑗 =
1

𝐿𝑖𝑗
𝑉𝑖 − 𝑉𝑗

+⋯

Vg Cg

C

J

Flux variables

𝑉 =
𝑑𝜙

𝑑𝑡

𝑆 = න
𝑡0

𝑡𝑓

𝐿 ሶ𝜙, 𝜙 𝑑𝑡

Hamiltonian

𝐻 = 𝐻 𝑞, 𝜙

𝑞 = 𝜕 Τ𝐿 𝜕 ሶ𝜙

Quantization

෠𝜙, ො𝑞 = 𝑖ℏ

𝐻 =
1

𝐶𝑔 + 𝐶
𝑞2 + 𝑉𝑔𝑞 +

1

2𝐿
ϕ2 + 𝐽ϕ0cos Τϕ Φ0



Charge-like qubits

Effective Hamiltonian

𝐻 =
1

2𝐶
ො𝑞2 − 𝐸𝐽 Φ𝑒𝑥𝑡 cos

2𝜋 ෠𝜙

Φ0

≃ 4𝐸𝐶 ො𝑛
2 − 𝐸𝐽cos( ො𝜑)

Two regimes

- 𝐸𝐶 ≫ 𝐸𝐽, charge qubit

- 𝐸𝐶 ≪ 𝐸𝐽, transmon

In both, charge d.o.f. most 

dominantly couples to world.

Φ



Flux-like qubits

Supercurrents on a JJ-enabled ring
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Flux-like qubits

Supercurrents on a JJ-enabled ring. 

For instance, rf-squid:

𝐻 =
1

2𝐶
ො𝑞2 +

෠𝜙2

2𝐿
− 𝐸𝐽 cos

2𝜋 ෠𝜙

Φ0

Two supercurrent states form a 

qubit subspace.



Flux-like qubits

Supercurrents on a JJ-enabled ring. 

For instance, rf-squid:

𝐻 =
1

2𝐶
ො𝑞2 +

෠𝜙2

2𝐿
− 𝐸𝐽 cos

2𝜋 ෠𝜙

Φ0

Two supercurrent states form a 

qubit subspace.

Those currents predominantly 

couple to external magnetic fields.

⊙ 𝐵



LC resonator

Effective Hamiltonian (V=0)

𝐻 =෍

𝑘

ℏ𝜔𝑘 ො𝑎𝑘
+𝑎𝑘 +

1

2

Best of both worlds

- Points where electric field are 

maxima, optimal coupling to 

charge

- Areas where currents dominate, 

optimal magnetic coupling.

But always linear!

𝐼 = 0,
𝑉 = 𝑉max 𝐼 = 𝐼max,

𝑉 = 0

© Blake Johnson, Yale University (2009)



Dipolar coupling

We identify “dipolar moment” 

observables for each qubit

- Electric dipole for transmon 

qubit, 𝑑 ∼ ො𝑞

- Magnetic dipole for flux qubits, , 

𝑑 ∝ |𝐿⟩⟨𝐿| − |𝑅⟩⟨𝑅| ∼ 𝜎𝑥

Pose an effective interaction 

between them

𝐻𝑖𝑛𝑡 = 𝛼 መ𝑑1 መ𝑑2



Dipolar coupling

This may be justified from circuit 

theory. For transmon qubits,

𝐻 =
1

2
𝑄𝑇𝐶−1𝑄 +෍

𝑖

𝐸𝐽 cos
𝜙

𝜑0

With capacitance matrix

𝐶 =
𝐶 + 𝐶𝑔 −𝐶𝑔
−𝐶𝑔 𝐶 + 𝐶𝑔

Note how 𝐶𝑔 appears everywhere!
𝐶

𝐸𝐽

𝐶

𝐸𝐽



Dipolar coupling

Same thing happens for a qubit in 

a waveguide resonator

𝐻 = ℏ𝜔01𝜎
𝑧 + ℏ𝜔ො𝑎+ ො𝑎

+𝑔𝜎𝑥( ො𝑎+ + ො𝑎)

With the dipolar interpretation

𝑔𝜎𝑥 ො𝑎+ + ො𝑎 ∼
𝐶𝑔

𝐶𝐶𝐽
ො𝑞𝑞𝑏 ෠𝑉𝐿𝐶

Access also to multiple modes.



Long-range cross-talk

Typical structure

𝐿 =
1

2
ሶ

𝜙𝑇𝐶
ሶ

𝜙 −
1

2
𝜙𝑇𝐿𝜙 − 𝑉(𝜙)

When computing the charge Ԧ𝑞 = 𝐶
ሶ

𝜙

makes the inverse of the matrix 

appear

𝐻 =
1

2
Ԧ𝑞𝑇𝐶−1 Ԧ𝑞 +

1

2
𝜙𝑇𝐿𝜙 + 𝑉(𝜙)

The inverse does not respect the 

structure of interactions in “C”

C=

⋱ ⋱
⋱ 𝑋 𝐺

𝐺 𝑋 𝐺
𝐺 𝑋 𝐺

𝐺 𝑋 𝐺
𝐺 𝑋 ⋱

⋱ ⋱

0

0

𝐶−1 =

⋱ ⋱
⋱ 𝐴 𝐵

𝐵 𝐴 𝐵
𝐵 𝐴 𝐵

𝐵 𝐴 𝐵
𝐵 𝐴 ⋱

⋱ ⋱

≠ 0

≠ 0

Unwanted cross-talk?



Challenges

- Non-perturbative, arbitrarily 

large couplings

- Consider renormalization effects  

due to couplings.

- Consider and ideally cancel 

spurious couplings

𝐶𝑖𝑗
−1 ≠ 0‼!

- Introduce some kind of 

tuneability / adjustments



Hard
mathematical
problems

Quantum 
matter
models

Coherent
Quantum  

Annealer

http://avaqus.eu



Quantum annealer

Requirements:

- High-coherence qubits / qudits

- Potentially strong interactions

- Tunable interactions for adiabatic 

preparation of ground states

- Possibly, interactions beyond Ising 

(non-stoquastic)

- Greater physical interest

- Greater computational complexity

Coherent
Quantum  

Annealer

𝐻 ∼෍

𝑖

Δ𝑖𝜎𝑖
𝑧 +෍

𝑖𝑗

𝐽𝑖𝑗
𝛼𝜎𝑖

𝛼𝜎𝑗
𝛼



Enhancing couplings

Explore these requirements using 

inductive and capacitive couplings 

between flux qubits.

- We can galvanically couple circuit 

elements for enhanced strength.

- Not limited to perturbative 

interactions.

- Different couplings may appear

H𝑖𝑛𝑡 =෍

𝛼

𝐽𝑖𝑗
𝛼𝜎𝑖

𝛼𝜎𝑗
𝛼

Not yet tunable!
M. Hita et al, PRAppl. 17, 014028 (2022)

M. Hita et al, Appl. Phys. Lett. (2021) 



Change in paradigm

Before: interaction term can be 

separated and explained in the 

basis of the constituents

𝐻 ≃ 𝐻𝐴 + 𝐻𝐵 + 𝛾𝐻𝐴𝐵

Now: interaction is very strong and 

changes both systems. We need to 

find an effective basis where 

coupling is explained, typically 

within a subspace

𝑒−𝑖𝑆𝐻𝑒𝑖𝑆 = 𝐻eff + 𝐻𝑒𝑥𝑡𝑟𝑎

𝐻eff = 𝐻𝐴(𝛾) + 𝐻𝐵(𝛾) + 𝛾𝐻𝐴𝐵

𝐻eff



Schrieffer-Wolff

The unitary transformation is 

designed to “reinterpret” the 

computational basis in presence of 

the interaction

𝑃 𝛾 =෍

𝑛

𝑛𝛾 𝑛𝛾 = 𝑒𝑖𝑆𝑃0𝑒
−𝑖𝑆

Here 𝑃0 is the projector onto the 

original computational subspace. 𝐻eff

𝑃0 𝑃𝛾



Schrieffer-Wolff

The transformed Hamiltonian is usually 

studied perturbatively

𝑒𝛾𝑆𝐻𝑒−𝛾𝑆

= 𝐻0 + 𝛾𝑉 + 𝛾𝑆,𝐻0 + 𝛾2 𝑆, 𝑉

+
𝛾2

2
𝑆, 𝑆, 𝐻0 + 𝑂(𝛾3)

Generator “S” chosen to cancel terms that 

take us outside computational subspace.

To second order:

𝑄0 𝛾𝑆, 𝐻0 𝑃0 = −𝛾𝑄0𝑉𝑃0

𝑆 = ෍

𝑖𝑗∈𝑃0

෍

𝑒∈𝑄0

𝑖 𝑖 𝑉 𝑒 ⟨𝑒|

𝐸𝑖 − 𝐸𝑒
− H. c.

𝑃0 𝑃𝛾

𝑄0



Schrieffer-Wolff

A non-perturbative study of SW by 

Bravy et al. establishes, through exact 

analytical continuation

𝑈 𝛾 = 1 − 𝑃0 (1 − 𝑃𝛾)

𝐻eff = 𝑃0𝑈 𝛾 +𝐻𝑈 𝛾 𝑃0

If we can estimate 𝑃𝛾 somehow, we 

can get the effective model including 

all interactions.

Problem: How do we compute this 

square root in an infinite-dimensional 

space?

𝑃0 𝑃𝛾

𝑄0

S. Bravyi et al, Annals of Physics (2011)
G. Consani, P. Warburton, NJP  (2020)



Non-perturbative Schrieffer-Wolff

The Schrieffer-Wolff transformation connects states from different 

Hamiltonians in the computational subspace

𝑃0𝑈𝑃𝛾 =෍

𝑖𝑗

𝑎𝑖𝑗|𝑖0⟩⟨𝑗𝛾| : = መ𝐴

We could use this to compute the effective Hamiltonian formally

𝐻eff =෍

𝑖𝑗𝑘

𝑖0 𝑎𝑖𝑗 𝑗𝛾 𝐻 𝑗𝛾 𝑎𝑘𝑗
∗ ⟨𝑘0|

But what are the elements of “A”?



Non-perturbative Schrieffer-Wolff

We can deduce “A” from a different operator

෠𝐵 = 𝑃𝛾𝑃0 =෍

𝑖𝑗

|𝑖𝛾⟩⟨𝑖𝛾|𝑗0⟩⟨𝑗0| =෍

𝑖𝑗

𝑖𝛾 𝑏𝑖𝑗⟨𝑗0|

Such that መ𝐴 ෠𝐵 መ𝐴 = 𝑃0𝑃𝛾 = 𝐵+

But what are the elements of “A”? We can find them through

𝑎𝑏𝑎 = 𝑏+

If the SVD of 𝑏 = wΣ𝑣+, then 𝑏+ = vΣ𝑤+, and 𝑎 = 𝑣𝑤+ satisfies the 

equation.



3JJ-qb coupling

Nonperturbative study of inductive 

and capacitive couplings.

Three types of interaction

- 𝑌𝑌 direct capacitive interaction

𝑔𝑍𝑍
Δ

∼
𝐶𝑞𝜑⋆

2

𝐶𝑂𝐷

Δ

8𝐸𝐶

- ZZ capacitively mediated by 

excited states (or inductive).

- XX third order combination of 

both processes.
M. Hita et al, PRAppl. 17, 014028 (2022)

M. Hita et al, Appl. Phys. Lett. (2021) 
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3JJ-qb coupling

Nonperturbative study of inductive 

and capacitive couplings.

Three types of interaction

- 𝑌𝑌 direct capacitive interaction

𝑔𝑌𝑌
Δ

∼
𝐶𝑞𝜑⋆

2

𝐶𝑂𝐷

Δ
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- ZZ capacitively mediated by 

excited states (or inductive).

- XX third order combination of 

both processes.
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M. Hita et al, Appl. Phys. Lett. (2021) 



3JJ-qb + cavity

Same analysis can be performed 

using a qubit and a cavity.

The study is simpler, because the 

resonator is harmonic

𝐻 = 𝐻𝑞𝑏 +𝐻𝑐𝑎𝑣 + 𝑔𝑌𝜎
𝑦 ො𝑎+ + ො𝑎

with coupling strength

𝑔𝑌 ∝
𝜑⋆

𝑍

Higher order terms suppressed by 

resonator.



Coupling tunability

Not always obvious how to “tune” 

and not only “design” the coupling

- In the capacitive case, we could 

use “voltage” dividers (-> 

Martinis X-mons)

- In the inductive case, we can 

replace the junction by a SQUID

𝐸𝐽 = 𝐸𝐽 cos
2𝜋Φ

Φ0

M. Hita et al, PRAppl. 17, 014028 (2022)
M. Hita et al, Appl. Phys. Lett. (2021) 

X

X
Φ



Application: quantum simulation

Δ

𝛾

𝑔Ω 𝜅 Δ𝛾

𝛾𝑙

Cavity-QED Open systems

Rabi frequency comparable to light 
and matter timescales

𝑔 ≃ Δ,𝜔 ≫ 𝜅, 𝛾

Emission rate comparable to light and 
matter timescales

𝛾𝑙 ≃ Δ,𝜔 ≫ 𝛾



USC vs RWA

Δ

𝛾

𝑔Ω 𝜅

In both models, this limit questions the usual
rotating wave approximation:

𝐻 =
Δ

2
𝜎𝑧 +𝜔ො𝑎+ ො𝑎 + ൝

𝑔𝜎𝑥 ො𝑎 + ො𝑎+

𝑔(𝜎+ ො𝑎 + 𝜎− ො𝑎)



Ultrastrongly coupled circuit-QED

P. Forn-Díaz et al PRL 105 237001 (2010)T. Niemczyk et al, Nature Physics 6,772–776 (2010)



Very large Bloch-Siegert shift

P. Forn-Díaz et al PRL 105 237001 (2010)



Non-RWA spectra

T. Niemczyk et al, Nature Physics 6,772–776 (2010)

RWA

Rabi

“Forbidden”
transitions



Ultrastrong coupling in open lines

P. Forn Díaz et al, Nat. Phys. 13, 39 (2017)



Ultrastrong coupling in open lines

P. Forn Díaz et al, Nat. Phys. 13, 39 (2017)



Hybridization



Mediated interactions

So far, coupling elements had no 

intrinsic dynamics.

Let’s now try connecting qubit with 

resonators

𝐻 =෍

𝑖

𝜔0

2
𝜎𝑖
𝑧 +෍

𝑛

𝜔ො𝑎𝑛
+ ො𝑎𝑛

+෍

𝑖𝑛

𝑔𝑖𝑛𝜎𝑖
𝑥( ො𝑎𝑛

+ + ො𝑎)

Because of USC, we can afford 

large “g”, comparable to 𝜔0
A. Kurcz et al, PRL 112, 180405 (2014)

M. Pino & JJGR NJP (2018); PRA (2020) 



USC Quantum Ising

When doing so, the many-qubit 

system exhibits an Ising-type second 

order quantum phase transition

- Both qubit and cavity polarize in 

the magnetic phase.

- Energy and magnetization are not 

differentiable.

- The critical exponents are Ising.

- The low-energy excitation sector 

reproduces spin waves.

A. Kurcz et al, PRL 112, 180405 (2014)
M. Pino & JJGR NJP (2018); PRA (2020) 



USC Quantum Ising

When doing so, the many-qubit 

system exhibits an Ising-type second 

order quantum phase transition

- Both qubit and cavity polarize in 

the magnetic phase.

- Energy and magnetization are not 

differentiable.

- The critical exponents are Ising.

- The low-energy excitation sector 

reproduces spin waves.

A. Kurcz et al, PRL 112, 180405 (2014)
M. Pino & JJGR NJP (2018); PRA (2020) 



Polaron transformation

Initial Hamiltonian

𝐻 =෍

𝑖

𝜔0

2
𝜎𝑖
𝑧 +෍

𝑛

𝜔ො𝑎𝑛
+ ො𝑎𝑛

+෍

𝑖𝑛

𝑔𝑖𝑛𝜎𝑖
𝑥( ො𝑎𝑛

+ + ො𝑎)

Collective displacement

𝑈 = exp −෍

𝑖𝑛

𝑔𝑖𝑛
𝜔𝑛

𝜎𝑖
𝑥 ො𝑎𝑛

+ + 𝐻. 𝑐.

Effective model

𝐻eff = 𝑈+𝐻𝑈 ≃෍

𝑖

𝜔0

2
𝜎𝑖
𝑧 +෍

𝑖𝑛

𝑔𝑖𝑛𝑔𝑗𝑛

𝜔𝑛
𝜎𝑖
𝑥𝜎𝑗

𝑥 +⋯

Good variational ground state

𝐺𝑆 ≃ 𝑈+ ↓ ⊗𝑁 𝑣𝑎𝑐 ⊗𝑁

The observables hybridize

ො𝑎𝑛 ≃ ො𝑎𝑛 −෍
𝑔𝑖𝑛
𝜔𝑛

𝜎𝑖
𝑥

When the qubits experience a magnetic 

polarization, the cavity also shows it

𝜎𝑥 ≠ 0 ⇒ ො𝑎𝑛 ≠ 0

The cavities act as a reservoir for “cooling” the 
magnetic system during adiabatic passages.



Adiabatic approxim.

A composite system, made of slow 

and rapidly evolving d.o.f.

𝐻1 𝑅1 +𝐻2 𝑅2 +𝐻fast(𝑟, 𝑅1, 𝑅2)

The fast subsystem rapidly adapts 

to the lowest energy configuration 

allowed by the slow d.o.f.

𝐻 = 𝐻1 𝑅1 + 𝐻2 𝑅2 + 𝑉(𝑅1, 𝑅2)

𝑉 = min
𝑟

𝐻fast(𝑟, 𝑅1, 𝑅2)

This is the Born-Oppenheimer or 

adiabatic approximation.



Example: dc-SQUID

Two flux qubits couple inductively 

through a superconducting loop.



Example: dc-SQUID

The SQUID has an effective 

ground-state energy



Example: dc-SQUID

Two flux qubits couple inductively 

through a superconducting loop.

The SQUID’s dynamics is like a 

Josephson junction with tunable 

critical current

𝐿 ∼
1

2
2𝐶𝐽 ሷ𝜙2 + 𝐸𝐽 Φ cos

2𝜋𝜙

Φ0

Alternatively

𝐻 =
1

2(2𝐶𝐽)
ො𝑞2 − 𝐸𝐽 Φ cos

2𝜋𝜙

Φ0



Example: dc-SQUID

Two flux qubits couple inductively 

through a superconducting loop.

The SQUID’s dynamics is like a 

Josephson junction with tunable 

critical current

𝐿 ∼
1

2
2𝐶𝐽 ሷ𝜙2 + 𝐸𝐽 Φ cos

2𝜋𝜙

Φ0

Alternatively

𝐻 =
1

2(2𝐶𝐽)
ො𝑞2 − 𝐸𝐽 Φ cos

2𝜋𝜙

Φ0



Example: dc-SQUID

The SQUID has an effective ground 

state energy, which in the harmonic 

limit

𝐻 ≃
1

2 2𝐶𝐽
ො𝑞2 + 𝐸𝐽 Φ

2𝜋

Φ0

2

𝜙2

Is approximately

𝐸𝐺𝑆(Φ) ≃ ℏ𝜔 Φ 0 +
1

2

𝜔 Φ = 2𝐶𝐽𝐿𝐽 Φ
1/2

=
2𝐶𝐽Φ0

2𝜋𝐼𝑐(Φ)

1/2



Example: dc-SQUID

Now, the two qubits contribute to 

the magnetic flux inside the 

SQUID, via their mutual 

inductance:

Φ = Φext +M1𝜎1
𝑧 +𝑀2𝜎2

𝑧

We can therefore expand

𝐻eff ≃
Δ1

2
𝜎1
𝑧 +

Δ2

2
𝜎2
𝑧 +

+𝜕Φ𝐸𝐺𝑆 Φ 𝑀1𝜎1
𝑧 +𝑀2𝜎2

𝑧

+𝜕Φ
2𝐸𝐺𝑆 Φ × 𝑀1𝑀2 × 𝜎1

𝑧𝜎2
𝑧
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the magnetic flux inside the 

SQUID, via their mutual 

inductance:

Φ = Φext +M1𝜎1
𝑧 +𝑀2𝜎2

𝑧

We can therefore expand

𝐻eff ≃
Δ1

2
𝜎1
𝑧 +

Δ2

2
𝜎2
𝑧 +

+𝜕Φ𝐸𝐺𝑆 Φ 𝑀1𝜎1
𝑧 +𝑀2𝜎2

𝑧

+𝜕Φ
2𝐸𝐺𝑆 Φ × 𝑀1𝑀2 × 𝜎1

𝑧𝜎2
𝑧

T. Hime et al, Science 314 (2006)



T. Hime et al, Science 314 (2006)R. Harris et al PRB, 80(5), 052506 (2009)



Excited state mediation

We can engineer a method of 

mediation to carry excitations via an 

off-resonant system.

- A and B are coupled to C

- A photon in A/B has not enough 

energy to excite C.

- Perturbation theory enables a 

coupling A <> B mediated by virtual 

excitations of C

It is a different type of “adiabatic” 

approximation, described by 

Schrieffer-Wolff transformations.

Fei Yan et al, PRAppl 10, 054062 (2018)



Excited state mediation

Original model

𝐻eff ≃
𝜔1

2
𝜎1
𝑧 +

𝜔2

2
𝜎2
𝑧 +

𝜔𝑐

2
𝜎𝑐
𝑧

+σ𝑖 𝑔𝑖𝜎𝑖
+𝜎𝑐

− + 𝑔12𝜎2
+𝜎1

− + H. c.

Perturbative parameter:

𝑔1, 𝑔2 ≪ 𝜔𝑐 − 𝜔1,2 = 𝛿1,2

We expect

𝐻eff ≃ 𝐻1 + 𝐻2 + 𝑔eff(𝜎1
+𝜎2

− + 𝜎2
+𝜎1)

with an effective exchange 𝑔eff

Fei Yan et al, PRAppl 10, 054062 (2018)



Perturbative calculation

The transformed Hamiltonian is usually studied perturbatively

𝐻tot ≃
𝜔1

2
𝜎1
𝑧 +

𝜔2

2
𝜎2
𝑧 +

𝜔𝑐

2
𝜎𝑐
𝑧 +෍

𝑖

𝑔𝑖𝜎𝑖
+𝜎𝑐

− + H. c. + (𝑔12𝜎2
+𝜎1

− + H. c. )

Generator “S” chosen to cancel terms that take outside computational 

subspace. 

𝑆, 𝐻0 = −𝑉𝑜𝑑

𝜎±, 𝜎𝑧 = ∓2 ⇒ 𝑆 =෍

𝑖

𝑔𝑖
𝜔𝑖 − 𝜔𝑐

(𝜎𝑖
+𝜎𝑐

− − 𝜎𝑖
−𝜎𝑐

+)

𝑉𝑜𝑑 𝑉𝑑𝐻0



Perturbative calculation

The transformed Hamiltonian is usually studied perturbatively

𝐻eff ≃ 𝐻0 + 𝑉𝑑 +
1

2
[𝑆, 𝑉]

Final model

𝐻eff ≃
1

2
෍

𝑖

𝜔𝑖 +
𝑔𝑖
2

𝛿𝑖
𝜎𝑖
𝑧 +

1

2

𝑔1𝑔2
𝛿1

+
1

2

𝑔1𝑔2
𝛿2

+ 𝑔12 (𝜎2
+𝜎1

− + 𝜎1
+𝜎2

−)

With the detuning

𝛿𝑖 = 𝜔𝑐 − 𝜔𝑖



With transmons

For transmons we know the couplings

𝑔𝑖 ≃
1

2

𝐶𝑗𝑐

𝐶𝑗𝐶𝑐
𝜔1𝜔𝑐 ,

𝑔12 ≃
1

2

𝐶12

𝐶1𝐶2
+
𝑔1𝑔2
𝜔𝑐

Interactions can be mediated by the 010 and 

111 states

𝑔eff ≃ 1 + 𝜂 1 + 𝜔𝑐

1

2Δ
−

1

2Σ

1

2

𝐶12

𝐶1𝐶2
,

1

Δ
=
1

2
෍

𝑖

1

𝜔𝑐 − 𝜔1
,
1

Σ
=
1

2
෍

𝑖

1

𝜔𝑐 +𝜔𝑖

Fei Yan et al, PRAppl 10, 054062 (2018)



With transmons

For transmons we know the couplings

𝑔𝑖 ≃
1

2

𝐶𝑗𝑐

𝐶𝑗𝐶𝑐
𝜔1𝜔𝑐 ,

𝑔12 ≃
1

2

𝐶12

𝐶1𝐶2
+
𝑔1𝑔2
𝜔𝑐

Interactions can be mediated by the 010 and 

111 states

𝑔eff ≃ 1 + 𝜂 1 + 𝜔𝑐

1

2Δ
−

1

2Σ

1

2

𝐶12

𝐶1𝐶2
,

1

Δ
=
1

2
෍

𝑖

1

𝜔𝑐 − 𝜔1
,
1

Σ
=
1

2
෍

𝑖

1

𝜔𝑐 +𝜔𝑖

Fei Yan et al, PRAppl 10, 054062 (2018)



With transmons

Actually, also excited states 200 

and similar must be considered

𝐻 = 𝑔12 𝑡 𝜎1
+𝜎2

− + 𝜎2
+𝜎1

− +

+
𝑔12 𝑡 2

𝛼
𝜎1
𝑧𝜎2

𝑧

This is a “fermionic”-like interaction 

that enables a broader family of 

quantum gates.

F. Arute et al Nature, 574 (2019)



Φ

𝐶𝑔
𝜔𝑏𝜔𝑎

Interaction



Φ

𝐶𝑔

|0,0⟩

|0,1⟩

|1,0⟩

|1,1⟩

|0,2⟩

|2,0⟩

𝜔𝑎 = 𝜔𝑏 + 𝛼

𝜔0𝑛



Φ

𝐶𝑔

|0,0⟩

|0,1⟩

|1,0⟩

|1,1⟩

|0,2⟩

|2,0⟩

𝜔𝑎 = 𝜔𝑏 + 𝛼

𝜔0𝑛

Swap
gate

CZ gate



𝜔0𝑛

CZ gate
𝜔𝑎(𝑡)

𝑡𝑖
𝑚
𝑒

L. DiCarlo et al., Nature 460, 240–244 (2009);

R. Barends et al., Nature 508, 500–503 (2014);

M. Rol et al., PRL 123, 120502 (2019);

C. K. Andersen et al, arXiv:1912.09410v1

|0,0⟩

|0,1⟩

|1,0⟩

|1,1⟩

11 → 11 𝑒𝑖𝜙12



Active coupling

So far, all coupling elements were 

passive: no external “drive” to 

activate them.

We will now study couplers that 

use microwaves to activate

energetically forbidden transitions.

The goal will be to establish a link 

between the qubit and the 

resonator, for extracting qubits as 

photons.
|g⟩

|e⟩

|f⟩

𝜔𝑞

𝜔𝑞 + 𝛼

𝜔𝑟

𝜔𝑟

⊗

|0⟩

|1⟩

|2⟩

Ω(𝑡)

M. Pechal PRX 4, 041010 (2014)



The model

We model the qubit as an anharmonic 

oscillator

𝐻 = 𝜔𝑟 ො𝑎
+ ො𝑎 + 𝜔𝑞

෠𝑏+ ෠𝑏 +
1

2
𝛼෠𝑏+ ෠𝑏+ ෠𝑏෠𝑏

+𝑔(෠𝑏+ + ෠𝑏)(ො𝑎 + ො𝑎+)

+Ω0 cos 𝜔𝑑𝑡 + 𝜙 ෠𝑏+ + ෠𝑏

We can apply a RWA and move to a 

rotating frame which oscillates with 

frequency

𝜔𝑑 = 2𝜔𝑞 + 𝛼 − 𝜔𝑟

This energy bridges the gap between 

the “f” and “1” states.
|g⟩

|e⟩

|f⟩

2𝜔𝑞 + 𝛼

𝜔𝑟

Δ = 𝜔𝑞 − 𝜔𝑟

⊗

|0⟩

|1⟩

|2⟩

Ω(𝑡)

M. Pechal PRX 4, 041010 (2014)

𝜔𝑑



RWA

After RWA

𝐻 = (2𝛿 + 𝛼)ො𝑎+ ො𝑎 + 𝛿෠𝑏+ ෠𝑏 +
1

2
𝛼෠𝑏+ ෠𝑏+ ෠𝑏෠𝑏

+𝑔(෠𝑏+ + ෠𝑏)(ො𝑎 + ො𝑎+)

+Ω0 𝑒−𝑖𝜙 ෠𝑏+ + 𝑒𝑖𝜙 ෠𝑏

with

𝛿 = 𝜔𝑟 − 𝜔𝑞 − 𝛼

The states |f, 0⟩ and |𝑔, 1⟩ are resonant 

and we expect them to be coupled by 2nd

order processes

𝑓, 0 → 𝑒, 0 → |𝑔, 1⟩

𝑓, 0 → 𝑒, 1 → |𝑔, 1⟩

All other states experience Stark shifts.

M. Pechal PRX 4, 041010 (2014)

|g, 0⟩

|e, 0⟩

|f, 0⟩
3𝛿 + 3𝛼

𝛿

𝛿 + 𝛼

𝛿

|g, 1⟩

|e, 1⟩

|f, 1⟩

𝛿 + 𝛼

|h, 0⟩
⋮

⋮



RWA

After RWA

𝐻 = (2𝛿 + 𝛼)ො𝑎+ ො𝑎 + 𝛿෠𝑏+ ෠𝑏 +
1

2
𝛼෠𝑏+ ෠𝑏+ ෠𝑏෠𝑏

+𝑔(෠𝑏+ + ෠𝑏)(ො𝑎 + ො𝑎+)

+Ω0 𝑒−𝑖𝜙 ෠𝑏+ + 𝑒𝑖𝜙 ෠𝑏

with

𝛿 = −Δ − 𝛼

The states |f, 0⟩ and |𝑔, 1⟩ are resonant 

and we expect them to be coupled by 2nd

order processes

𝑓, 0 → 𝑒, 0 → |𝑔, 1⟩

𝑓, 0 → 𝑒, 1 → |𝑔, 1⟩

All other states experience Stark shifts.

M. Pechal PRX 4, 041010 (2014)

|g, 0⟩

|e, 0⟩

|f, 0⟩ |g, 1⟩

|e, 1⟩

|f, 1⟩

|h, 0⟩

∼ Ω0𝑒
𝑖𝜙

∼ 𝑔

⋮

⋮



Final result

To 2nd order perturbation theory

𝐻eff = 𝜔𝑓|𝑓, 0⟩⟨𝑓, 0 + ෤𝑔 𝑡 𝑓, 0⟩⟨𝑔, 1| + H. c.

with

෤𝑔 𝑡 =
1

2

𝑔𝛼

𝛿(𝛿 + 𝛼)
Ω0𝑒

𝑖𝜙

This coupling can be used to transfer the 

𝑓, 0 state to a single-photon state 𝑔, 1 .

This photon is released with amplitude ∝

Ω0(𝑡) and phase ∝ 𝑒𝑖𝜙 if these are slowly 

varying.

Placing a similar control at the other end 

of a waveguide, we can engineer perfect 

state transfer.
M. Pechal PRX 4, 041010 (2014)

|g, 0⟩

|e, 0⟩

|f, 0⟩ |g, 1⟩

|e, 1⟩

|f, 1⟩

|h, 0⟩

∼ Ω0𝑒
𝑖𝜙

∼ 𝑔

⋮

⋮

∼ ෤𝑔(𝑡)



Final result

To 2nd order perturbation theory

𝐻eff = 𝜔𝑓|𝑓, 0⟩⟨𝑓, 0 + ෤𝑔 𝑡 𝑓, 0⟩⟨𝑔, 1| + H. c.

with

෤𝑔 𝑡 =
1

2

𝑔𝛼

𝛿(𝛿 + 𝛼)
Ω0𝑒

𝑖𝜙

This coupling can be used to transfer the 

𝑓, 0 state to a single-photon state 𝑔, 1 .

This photon is released with amplitude ∝

Ω0(𝑡) and phase ∝ 𝑒𝑖𝜙 if these are slowly 

varying.

Placing a similar control at the other end 

of a waveguide, we can engineer perfect 

state transfer.

෤𝑔(t)

|𝑓⟩

M. Pechal PRX 4, 041010 (2014)



Final result

To 2nd order perturbation theory

𝐻eff = 𝜔𝑓|𝑓, 0⟩⟨𝑓, 0 + ෤𝑔 𝑡 𝑓, 0⟩⟨𝑔, 1| + H. c.

with

෤𝑔 𝑡 =
1

2

𝑔𝛼

𝛿(𝛿 + 𝛼)
Ω0𝑒

𝑖𝜙

This coupling can be used to transfer the 

𝑓, 0 state to a single-photon state 𝑔, 1 .

This photon is released with amplitude ∝

Ω0(𝑡) and phase ∝ 𝑒𝑖𝜙 if these are slowly 

varying.

Placing a similar control at the other end 

of a waveguide, we can engineer perfect 

state transfer. K. Reuer et al arXiv:2106.03481
P. Magnar et al PRL 125, 260502 (2020

gin(t)

|𝜓⟩

gout(t)

𝜓 𝑔 𝑣𝑎𝑐 → 𝑔 𝜓 |𝑣𝑎𝑐⟩



Quantum links



Parametric driving

Microwave drives are not the only 

approach to supply energy.

We can also induce parametric 

resonances by “shaking” the 

intrinsic energies of one system

𝜔𝑞 𝑡 = 𝜔𝑞 + 𝜖 cos 𝜔𝑑𝑡 + 𝜙

In the usual model

𝐻 = 𝜔𝑞 𝑡 ො𝑎+ ො𝑎 + 𝜔𝑟
෠𝑏+ ෠𝑏

+𝑔 ො𝑎 + ො𝑎+ ෠𝑏+ + ෠𝑏 +⋯ |g⟩

|e⟩

|f⟩

𝜔𝑞

𝜔𝑞 + 𝛼

𝜔𝑟

𝜔𝑟

⊗

|0⟩

|1⟩

|2⟩

𝐸J(𝑡)



Change of frame

Starting point

𝐻 = 𝜔0 + 𝜖 cos 𝜔𝑑𝑡 + 𝜃 ො𝑎+ ො𝑎 + 𝜔𝑟
෠𝑏+ ෠𝑏 + 𝑔 ො𝑎 + ො𝑎+ ෠𝑏+ + ෠𝑏 +

1

2
ො𝑎+ ො𝑎+ ො𝑎 ො𝑎

Rotating frame

𝑈 𝑡 = exp 𝑖𝜙 𝑡 ො𝑎+ ො𝑎

Effective dynamics

𝑖𝜕𝑡𝜓 = 𝑈 𝑡 +𝐻𝑈(𝑡) − 𝑖𝑈 𝑡 +𝜕𝑡𝑈 𝑡 𝜓

We choose

𝑈 𝑡 = exp 𝑖𝜀 sin 𝜔𝑑𝑡 + 𝜃 /𝜔𝑑



Change of frame

Effective model

𝐻 = 𝜔0 ො𝑎
+ ො𝑎 + 𝜔𝑟

෠𝑏+ ෠𝑏 + 𝑔 𝑒−𝑖𝜙 ො𝑎 + 𝑒𝑖𝜙 ො𝑎+ ෠𝑏+ + ෠𝑏 +
1

2
ො𝑎+ ො𝑎+ ො𝑎 ො𝑎

exp 𝑖𝜙 𝑡 =෍

𝑛

𝑒𝑖𝑛𝜔𝑑𝑡+𝑖𝜃𝐽𝑛
𝜀

𝜔𝑑
𝑈 𝑡 = exp 𝑖𝜙 𝑡 ො𝑎+ ො𝑎

When 𝜔0 −𝜔𝑟 ≫ 𝑔 , we can enhance selected non-rotating terms

𝜔𝑑 +𝜔0 −𝜔𝑟 = 0 ⇒ 𝑔𝑒−𝑖𝜃𝐽−1
𝜀

𝜔𝑑
ො𝑎+ ෠𝑏,

−𝜔𝑑 +𝜔0 +𝜔𝑟 = 0 ⇒ 𝑔𝑒𝑖𝜃𝐽1
𝜀

𝜔𝑑
ො𝑎+ ෠𝑏+, etc



Main ideas

• Interest in engineering couplers

o Change form, change intensity.

• Two big families of approaches

- Passive couplers

• Adiabatic principles

• Perturbative approaches

- Active couplers

• Parametric driving

• Energy compensation

• Other considerations: dephasing & 

decoherence



https://qtep.csic.es



https://qtep.csic.es



© Google Maps







quinfog.hbar.es

@jjgarciaripoll

qtep.csic.es

Horizon 2020

FET-Open

Programme

Unión Europea 

Next 

Generation EU

superqulan.eu



Thanks!

????


	Default Section
	Slide 1: Superconducting Quantum Circuits  Interaction engineering
	Slide 2: Outline
	Slide 3: Coupling quantum systems
	Slide 4: Material

	Building blocks
	Slide 5: Surface plasmons
	Slide 6: Quantum circuits
	Slide 7: Charge-like qubits
	Slide 8: Flux-like qubits
	Slide 9: Flux-like qubits
	Slide 10: Flux-like qubits
	Slide 11: LC resonator

	Dipolar interactions
	Slide 12: Dipolar coupling
	Slide 13: Dipolar coupling
	Slide 14: Dipolar coupling
	Slide 15: Long-range cross-talk
	Slide 16: Challenges

	Non-perturbative couplings
	Slide 17
	Slide 18: Quantum annealer
	Slide 19: Enhancing couplings
	Slide 20: Change in paradigm
	Slide 21: Schrieffer-Wolff
	Slide 22: Schrieffer-Wolff
	Slide 23: Schrieffer-Wolff
	Slide 24: Non-perturbative Schrieffer-Wolff
	Slide 25: Non-perturbative Schrieffer-Wolff
	Slide 26: 3JJ-qb coupling
	Slide 27: 3JJ-qb coupling
	Slide 28: 3JJ-qb coupling
	Slide 29: 3JJ-qb + cavity
	Slide 30: Coupling tunability

	Ulrastrong coupling
	Slide 34: Application: quantum simulation
	Slide 35: USC vs RWA
	Slide 36: Ultrastrongly coupled circuit-QED
	Slide 37: Very large Bloch-Siegert shift
	Slide 38: Non-RWA spectra
	Slide 39: Ultrastrong coupling in open lines
	Slide 40: Ultrastrong coupling in open lines
	Slide 41: Hybridization

	Mediated interactions
	Slide 42: Mediated interactions
	Slide 43: USC Quantum Ising
	Slide 44: USC Quantum Ising
	Slide 45: Polaron transformation

	Adiabatic theory
	Slide 46: Adiabatic approxim.
	Slide 47: Example: dc-SQUID
	Slide 48: Example: dc-SQUID
	Slide 49: Example: dc-SQUID
	Slide 50: Example: dc-SQUID
	Slide 51: Example: dc-SQUID
	Slide 52: Example: dc-SQUID
	Slide 53: Example: dc-SQUID
	Slide 54

	Mediation by excited states
	Slide 55: Excited state mediation
	Slide 56: Excited state mediation
	Slide 57: Perturbative calculation
	Slide 58: Perturbative calculation
	Slide 59: With transmons
	Slide 60: With transmons
	Slide 61: With transmons
	Slide 62
	Slide 63
	Slide 64
	Slide 65

	Active control
	Slide 66: Active coupling
	Slide 67: The model
	Slide 68: RWA
	Slide 69: RWA
	Slide 70: Final result
	Slide 71: Final result
	Slide 72: Final result
	Slide 73: Quantum links

	Parametric coupling
	Slide 74: Parametric driving
	Slide 75: Change of frame
	Slide 76: Change of frame

	End
	Slide 77: Main ideas
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84


