

Quantum Engineering Univ. Grenoble Alpes

European Research Council Established by the European Commissio

Introduction to Traveling Wave Parametric Amplifiers (TWPA)

Nicolas Roch QuantECA Team Institut Néel, Grenoble, France

European Research Council Established by the European Commission

Luca Planat

Martina Esposito

Collaborations

D. Basko (LPPMC, Grenoble), A. Metelmann (KIT, Germany), T. Meunier/ M. Urdampilleta (Inst. Néel, Grenoble), E. Collin (Inst. Néel, Grenoble), I. Pop (KIT, Germany), P. Forn Diaz (Barcelona), R. Vijay (TIFR, India), K. Murch (Washington University, USA), P. Leek (Oxford, UK), M. Stern (Bar Ilan, Israël), Joe Aumentado/Florent Lecocq (NIST, USA), MADMAX Collaboration, GraHal Collaboration, QUAX Collaboration, ARPEJ Collaboration (ESPCI, TRT, C2N)

The "TWPA team"

Arpit Ranadive

Gwenael Le Gal

Giulio Cappelli

Outline

- Introduction
- TWPA: microscopic derivation
- TWPA: gain and phase matching
 - TWPA: noise performances
 - **TWPA** Fabrication

Use-case: ultra low noise amplification

Probe out

Very low energy (quantum) systems

Probe: few photons

Use-case: ultra low noise amplification

Very low energy (quantum) systems

Probe: few photons

Several quantum systems or frequency difficult to predict

Need high amplification, low noise AND large bandwidth

Ultra low noise amplification: applications

Superconducting Qubits

Dark matter detection

Spin Qubits

Electromechanical Circuits

Q-limited ESR

Astrophysics detectors

Four wave mixing

Traveling wave parametric amplification

Medium length Interaction time \propto Wave velocity

Dissipationless Nonlinear Medium (DNM)

 A_{in}^{p}

Resonant vs Traveling-wave

✓ Low Noise x Narrow bandwidth

Outline

- Introduction
- TWPA: microscopic derivation
- TWPA: gain and phase matching
 - TWPA: noise performances
 - **TWPA** Fabrication

TWPA: gain and phase matching

Poor phase matching: limited gain

TWPA: gain and phase matching

Phase matching using band engineering

TWPA: gain and phase matching

Phase matching using engineered non-linearity: SNAIL TWPA

Outline

- Introduction
- TWPA: microscopic derivation
- TWPA: gain and phase matching
 - TWPA: noise performances
 - **TWPA** Fabrication

Quantum limited amplifiers: noise performances

Standard Quantum Limit (SQL)

$$T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$$

C. M. Caves, Phys. Rev. D (1982)

Quantum limited amplifiers: noise performances

Standard Quantum Limit (SQL)

$$T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$$

C. M. Caves, Phys. Rev. D (1982)

Outline

- Introduction
- TWPA: microscopic derivation
- TWPA: gain and phase matching
 - TWPA: noise performances
 - **TWPA** Fabrication

Josephson transmission line: challenge

Wafer thickness: 275 µm

Dielectric thickness: 30 nm Wafer thickness: 275 µm

Top-ground: 400 nm Dielectric: 30 nm

Wafer: 275 µm

Z_c 1kOhms to 50 Ohms

Superconducting Quantum Circuits Olivier Buisson Quentin Ficheux Wiebke Hasch Cécile Naud Arpit Ranadive Thibault Charpentier Dorian Fraudet Samuel Cailleaux Giulio Cappelli Cyril Mori Wael Ardati Nicolo Crescini Gwenael Le-Gal Shelender Kumar Erika Borsje Hekking Vishnu Suresh Francesca Desposito

Joint Us! nicolas.roch@neel.cnrs.fr

