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Quantum projective measurement: Stern-Gerlach experiment



How to measure spin: Stern-Gerlach experiment

4

• Magnetic field gradient along z-axis

• Induces the force proportional to the magnetic moment 𝐹𝑧 = 𝜇𝑧
𝜕𝐵𝑧

𝜕𝑧

• Particles deflect depending on the value of z-component of their magnetic moment

Uses neutral silver atoms (a good 

representation of a spin of an electron).  
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Assume that the magnetic

moments of the particles 

are fully unpolarized.

If colour represents the density of particles hitting the screen what kind of pattern will you expect to observe if particles 

were classical?

How to measure spin: Stern-Gerlach experiment

Z-component of magnetic moment 𝜇𝑧 takes only two values corresponding to 𝑆𝑧 = ±
ℏ

2
!
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Stern-Gerlach experiment: history

Gerlach, W. and O. Stern, 1922a. “Der 

experimentelle Nachweis der 

Richtungsquantelung”, Zeitschrift fur Physik, 9: 

349–352.Credit: Scientific American



Quantum projective measurement: postulates of QM
Consider a measurement of a physical quantity Λ:

Λ =෍

𝜆

𝜆 ෡Π𝜆

If 𝜆 is non-degenerate than ෡Π𝜆 = |𝜆⟩⟨𝜆| (von Neumann measurement).

The result of the measurement is one of the eigenvalues of 𝜆 with probability 

𝑝𝜆 = Tr[𝜌෡Π𝜆]

After measurement:

𝜌𝜆 = ෡Π𝜆𝜌෡Π𝜆/𝑝𝜆

Known as projection postulate, state collapse or state reduction.

If one makes the measurement but ignores the result then the state after the measurement is

𝜌𝑀 =෍

𝜆

෡Π𝜆𝜌෡Π𝜆



Quantum projective measurement: postulates of QM

Remarks:

• for a degenerate eigenvalue 𝑎𝑛 the system would be projected to a subspace with dimensionality 

equal to the multiplicity of the eigenvalue (more details the section about qutrit measurement).

• The postulate is not independent and can be derived from using other postulates and the detailed 

model of the system interacting with the measurement apparatus (see next section on dispersive 

readout)

• Note: from operational point of view it is often sufficient to think about it as an instant collapse (see 

next).
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Circuit-QED and dispersive measurement



Cavity and circuit QED: recap



Cavity Quantum Electrodynamics 

[D. Walls, G. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)]

Enclose atom and photon in a cavity 

Jaynes-Cummings Hamiltonian

strong coupling limit: 

Cavity QED:  light-matter interaction at single atom-photon level, interaction enhanced by 

placing atoms inside high quality photonic cavities

κ

𝛾
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James-Cumming Hamiltonian

൯𝐻 = ℏ𝜔0(𝑎
†𝑎 + Τ1 2 −

ℏ𝜔𝑞

2
𝜎𝑧

+ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

Switch on the interaction:

• Conserved the number of excitations

• Couples 𝑔, 𝑛 with |𝑒, 𝑛 − 1〉

The Hamiltonian decouples into matrices: 

𝐻(𝑛) = ℏ
0 𝑛 𝑔

𝑛𝑔 0
,

written in the basis of { 𝑔, 𝑛 , |𝑒, 𝑛 − 1〉}

-> can be solved exactly!

𝜔𝑟

|0⟩

|1⟩

|2⟩

|0⟩

|1⟩

|2⟩

𝜔𝑞

|𝑔⟩ |𝑒⟩

...

...



James-Cumming Hamiltonian

൯𝐻 = ℏ𝜔0(𝑎
†𝑎 + Τ1 2 −

ℏ𝜔𝑞

2
𝜎𝑧

+ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

The eigenstates are dressed states

± =
1

2
( 𝑔, 𝑛 ± |𝑒, 𝑛 − 1〉)

-> level spitting 𝜔𝑟

|0⟩

|1⟩

|2⟩

|0⟩

|1⟩

|2⟩

𝜔𝑞

|𝑔⟩ |𝑒⟩

...

...

Level splitting between 𝑔, 0 and 𝑒, 1 is called the vacuum Rabi splitting and is manifestation of 

coherent interaction at single quantum level -> strong coupling regime

2𝑔

2𝑔 2

Note: normal splitting of two oscillators is purely classical regime. Scaling of the splitting with  𝑛 is 

important to demonstrate quantum nature 



Signature of strong coupling for natural atoms

𝜔𝑟

|0⟩

|1⟩

|2⟩

|0⟩

|1⟩

|2⟩

𝜔𝑞

|𝑔⟩ |𝑒⟩

2𝑔

2𝑔 2

...

...൯𝐻 = ℏ𝜔0(𝑎
†𝑎 + Τ1 2 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

Jaynes-Cumming Ladder

Alkali atoms: R.J. Thompson, G. Rempe, and 

H.J. Kimble, Phys. Rev. Lett. 68, 1132 (1992) 

Rydberg Atoms: J. M. Raimond, M. Brune, and 

S. Haroche, Rev. Mod. Phys., 73, 565 (2004)

Highly demanding experiments!



Cavity vs. Circuit QED

A. Blais, et al. , PRA 69, 062320 (2004)

Coherent quantum mechanics with individual photons and 
atoms: Quantum photonics talk by Tsuyoshi Yamamoto

in superconducting circuits:

circuit quantum 

electrodynamics

Cavity  => 

microwave transmission 

line resonator

Mirrors => capacitors, or walls

Atoms  =>  superconducting qubit

Strong E-field confinement + Large qubit dipole

=> v. strong coupling



Typical parameters

𝜔𝑟

|0⟩

|1⟩

|2⟩

|0⟩

|1⟩

|2⟩

𝜔𝑞

|𝑔⟩ |𝑒⟩

2𝑔

2𝑔 2

...

...൯𝐻 = ℏ𝜔0(𝑎
†𝑎 + Τ1 2 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

Jaynes-Cumming Ladder

Typical coupling strength for 

superconducting circuits:

𝑔 ~ < 300 MHz

Decay rate of a photon and a qubit

𝜅, Γ ~ 10 kHz − 10 MHz

Strong-coupling regime 𝑔 ≫ 𝜅, Γ is easily achievable



Dispersive regime and measurement



James-Cumming Hamiltonian

𝜔𝑟

|0⟩

|1⟩

|2⟩

|0⟩

|1⟩

|2⟩

𝜔𝑞

|𝑔⟩ |𝑒⟩

2𝑔

2𝑔 2

...

...൯𝐻 = ℏ𝜔0(𝑎
†𝑎 + Τ1 2 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

Jaynes-Cumming Ladder

In the strong-coupling regime 𝑔 ≫ 𝜅, Γ

vacuum Rabi splitting for the resonant case

𝜔0 ≃ 𝜔𝑞

What happens if the qubit and the resonator are detuned

Δ = 𝜔𝑟 − 𝜔𝑞 ≫ 𝑔?



Dispersive regime

𝐻 = ℏ𝜔0 𝑎
†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

Transform the Hamiltonian itself: 𝐻′ = 𝑈𝐻𝑈† with 

𝑈 =
𝑔

Δ
(𝑎†𝜎− − 𝑎𝜎+) and keep the leading term in 

𝑔

Δ
:

𝐻′ = ℏ𝜔0 𝑎
†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝜒𝑎†𝑎𝜎𝑧,

where 𝜒 =
𝑔2

Δ
is called the dispersive shift.

Can combine the last term with the qubit  

𝐻′ = ℏ𝜔0 𝑎
†𝑎 +

ℏ(𝜔𝑞 + 𝜒𝑎†𝑎)

2
𝜎𝑧

Or with resonator 

𝐻′ = ℏ (𝜔0 + 𝜒𝜎𝑧)𝑎
†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧

qubit frequency depends 

on number of photons

State dependent resonator 

frequency

[Blais et al., PRA 69 (2004)]



Δ = 𝜔𝑟 −𝜔𝑞 ≪ 𝑔

[Blais et al., PRA 69 (2004)]

State-dependent frequency shift

Transmission measurement can be used to determine the qubit state!

Dispersive readout

𝐻 = ℏ (𝜔0 + 𝜒𝜎𝑧)𝑎
†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧



transmission measurement to determine qubit state:

qubit in ground state

Circuit QED – read out of qubit state



transmission measurement to determine qubit state:

qubit in excited state

Circuit QED – read out of qubit state



Dispersive read out in time domain

| ⟩0 | ⟩1Signal
7 GHz



Conventional data processing

Signal → ADC → DDC 
FIR → Sum
FIR → Sum

| ⟩1 | ⟩0

Assignment fidelity:



Single shot readout

Noise:

• Pure quantum noise for an ideal 

quantum-limited amplifier

• More noise will appear from losses and 

additional amplification stages

• Quantum noise can be in principle 

removed if using single quadrature and 

phase-sensitive quantum amplifier



Dispersive measurement in more detail. 

Effect on qubit and cavity



Dispersive readout: more details

Before the measurement:

• 𝐸𝑑 0 = 0 and 𝜓 0 = 𝑎 0 + 𝑏 1 ⊗ 0

After the start of the measurement:

• Switch on cavity drive at 𝑡 > 0, 𝐸𝑑 𝑡 > 0 = 𝐸𝑑

• The output field from the cavity is  𝑎𝑜𝑢𝑡 = 𝜅 𝑎 − 𝜂, where 𝜂 is the vacuum field.

Need to solve for the cavity field 𝑎

𝐻 = ℏ 𝜔0 + 𝜒𝜎𝑧 𝑎†𝑎 +
ℏ𝜔𝑞

2
𝜎𝑧 + ℏ(𝐸𝑑(𝑡)𝑒

−𝑖𝜔𝑑𝑡𝑎+ + ℎ. 𝑐. )

?𝜅



Dispersive readout: short-time evolution

𝐻′ is time-independent and 

𝜓 𝑡 = 𝑒−
𝑖𝐻′

ℏ
𝑡 𝜓 0

We then note that 𝐻′ is diagonal in the qubit basis and the initial state is factorised

𝜓 0 = 𝑎 0 + 𝑏 1 ⊗ 𝑣𝑎𝑐

Consider short time and neglect all dissipation (for both cavity and qubit). Evolution is unitary 

under the dispersive Hamiltonian:

𝐻 = ℏ 𝜔0 + 𝜒𝜎𝑧 𝑎†𝑎 +
ℏ𝜔𝑞

2
𝜎𝑧 + ℏ(𝐸𝑑𝑒

−𝑖𝜔𝑑𝑡𝑎+ + ℎ. 𝑐. )

It is convenient to move to the rotating frame and interaction picture for the qubit. Transform 

𝐻′ = 𝑈𝐻𝑈† with 𝑈 = ℏ𝜔0𝜎𝑧 + ℏ𝜔𝑑 𝑎
†𝑎 𝑡

𝐻′ = ℏ𝛿𝜔𝑎†𝑎 + ℏ𝜒𝜎𝑧𝑎
†𝑎 + ℏ(𝐸𝑑𝑎

+ + ℎ. 𝑐. ), where 𝛿𝜔 ≡ 𝜔𝑑 − 𝜔0



Dispersive readout: short-time evolution

In this case

𝜓 𝑡 = 𝑒−
𝑖𝐻′

ℏ
𝑡 𝑎 0 + 𝑏 1 ⊗ 𝑣𝑎𝑐 = 𝑎 0 ⊗ 𝜓0 + 𝑏 1 ⊗ 𝜓1 .

Here the cavity states

𝜓𝑛 = 𝑒−
𝑖 ⟨𝑛|𝐻′|𝑛⟩

ℏ
𝑡 𝑣𝑎𝑐 with 𝑛 = 0,1

The evolution leads to entanglement between the cavity and the qubit!

But what are these cavity states?



Dispersive readout: cavity states

For a more complete picture consider the Master equation:

ሶ𝜌 = −𝑖 𝐻, 𝜌 + 𝛾𝐷 𝜎− 𝜌 + 𝛾𝜙𝐷 𝜎𝑧 𝜌 + 𝜅𝐷 𝑎 𝜌 ≡ ℒ𝜌

Here:

• 𝛾 is the relaxation and 𝛾𝜙 is the pure dephasing rates for the qubit

• 𝜅 is cavity decay rate 

• 𝐷 𝐴 𝜌 = 𝐴𝜌𝐴+ −
1

2
(𝐴+𝐴𝜌 + 𝜌𝐴+𝐴)

Let‘s neglect qubit relaxation (and dephasing) -> regime relevant for strong projective 

measurement and QC



Dispersive readout: cavity states

If we neglect qubit relaxation the superoperator is unitary and diagonal for the qubit and the 

form of the final state is still the same: 

𝜓 𝑡 = 𝑎 0 ⊗ 𝜓0 + 𝑏 1 ⊗ 𝜓1

Here 𝜓0,1 are solutions of :

ሶ𝜌𝑐 = ±𝑖 𝜒𝑎†𝑎 + (𝐸𝑑𝑎
+ + ℎ. 𝑐. ), 𝜌𝑐 + 𝜅𝐷 𝑎 𝜌𝑐,

Here we took 𝛿𝜔 = 0 for convinience.

Investigate the nature the states by testing the master equation.



Dispersive readout: cavity states

Thus, starting from 𝜓𝑐 𝑡 = |𝑣𝑎𝑐⟩ which is the coherent state:

𝜌𝑐 𝑡 = |𝛼 𝑡 ⟩⟨𝛼(𝑡)|.

As an exercise one can prove that if we start from a coherent state we stay in the coherent state

under the given Master equation.

Here 𝛼 𝑡 is the solution for 𝛼 ≡ 𝑎 ≡ Tr[𝜌𝑐𝑎] which one can obtain from the Master equation as

ሶ𝛼 = ±𝑖𝜒𝛼 −
𝜅

2
𝛼 + 𝐸𝑑 ,

where we used the commutation relation 𝑎, 𝑎+ = 1.



Dispersive readout: cavity states

One can easily solve ሶ𝛼 = ±𝑖𝜒𝛼 −
𝜅

2
𝛼 + 𝐸𝑑

|0⟩

|1⟩

Experimental data for qutrit

Can use NN for better single shot readout fidelity

See e.g. R. Navarathna et.al. Appl. Phys. Lett. 119, 114003 (2021);



Consider a qubit coupled to a driven readout cavity

𝐻 = ℏ𝜔0 𝑎
†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝜒𝑎†𝑎𝜎𝑧 + 𝐸(𝑎 + 𝑎+)

ሶ𝜌 = −𝑖 𝐻, 𝜌 + 𝛾𝐷 𝜎− 𝜌 + 𝜅𝐷 𝑎 𝜌

Here:

• 𝛾 is qubit relaxation rate (neglect qubit dephasing for now)

• 𝜅 is cavity decay rate 

• 𝐷 𝐴 𝜌 = 𝐴𝜌𝐴+ −
1

2
(𝐴+𝐴𝜌 + 𝜌𝐴+𝐴)

Readout: qubit side



For typical experiments  𝜅 ≪ 𝛾 -> can use adiabatic elimination of the cavity to obtain dynamics for 

the qubit:

ሶ𝜌𝑄 = −𝑖 Δ𝜎𝑧 , 𝜌𝑄 + 𝛾𝐷 𝜎− 𝜌𝑄 + Γ𝐷 𝜎𝑧 𝜌𝑧

Here:

• assumed that cavity driven by coherent state with an amplitude 𝛼0 = −2𝑖𝐸/𝜅 (𝑛0 = 𝛼0
2).

• Δ = 𝜒𝑛0 - a/c Stark shift due to cavity driving

• Γ = 4
𝜒

𝜅

2
𝑛0 is dephasing due to measurement

Redout: qubit side

Γ describes the collapse of the wavefunction due to measurement

Consider a qubit coupled to a driven readout cavity: 𝐻 = ℏ𝛿𝜔𝑎†𝑎 + ℏ𝜒𝑎†𝑎𝜎𝑧 + 𝐸(𝑎 + 𝑎+)

ሶ𝜌 = −𝑖 𝐻, 𝜌 + 𝛾𝐷 𝜎− 𝜌 + 𝜅𝐷 𝑎 𝜌



State-dependent frequency shift

Dispersive readout: summary
𝐻 = ℏ 𝜔0 + 𝜒𝜎𝑧 𝑎†𝑎 +

ℏ𝜔𝑞

2
𝜎𝑧 + (𝐸0𝑒

−𝑖𝜔𝑡𝑎+ + ℎ. 𝑐. )

𝜓in = 𝑎 𝑔 + 𝑏 𝑒 ) |𝛼⟩ 𝜓out = 𝑎 𝑔 𝛽 + 𝑏 𝑒 𝛾 + 𝜂noise

Re[𝛼]

Im[𝛼]
𝛽

𝛾

𝑎 2𝛽 + 𝑏 2𝛾
If trace out qubit:

• 𝜌𝐶 ≡ Tr 𝜌 = 𝑎 2|𝛽⟩⟨𝛽| + 𝑏 2|𝛾⟩⟨𝛾|

• 𝑎 ≡ Tr 𝑎𝜌𝐶 = 𝑎 2𝛽 + 𝑏 2𝛾

If trace out  cavity:

• 𝜌𝑄 ≡ Tr 𝜌 = 𝑎 2|𝑔⟩⟨𝑔| + 𝑏 2|𝑒⟩⟨𝑒| if 𝛼 𝛽 = 0 -> strong 

projective measurement

• If 𝛼 𝛽 ≠ 0 – partial or weak measurement (some qubit 

coherence remain)
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Transmon qutrit measurement and protection from wave-

function collapse



Degenerate qutrit measurement



Superconducting qutrit in a cavity: measure transmission to determine  the state

Measurement always provides information 

about all states destroying the coherence 

between |1〉 and 2

𝜒12

Dispersive readout in time domain 



Superconducting qutrit in a cavity: measure transmission to determine  the state

Measurement always provides information about 

all states destroying the coherence between |1〉
and 2

{ 0 〈0|, 1 〈1|, 2 〈2|}

𝜒12

Dispersive readout in time domain 



Relative dispersive shift as function of qubit detuning

Sweet spot!

{ 0 〈0|, 1 〈1|, 2 〈2|}

𝜒12

Dispersive readout: sweet spot



Dispersive readout: sweet spot
Relative dispersive shift as function of qubit detuning

𝜒12 = 0

At sweet spot it is not possible to 

distinguish  |1〉 from 2 .

{ 0 〈0|, 1 〈1|, 2 〈2|}



Relative dispersive shift as function of qubit detuning
𝜒12 = 0

At sweet spot it is not possible to 

distinguish  |1〉 from 2 .

𝑀 0 = { 0 〈0|, 𝐼 − 0 〈0|}

Dispersive readout: sweet spot

Will the measurement retain coherence between |1〉 and 2 ?



Prepare 0 , 1 , 2 and measure transmission through the cavity.

Plot integrated signal as function of frequency

Measuring dispersive shifts 

Dispersive shifts for 1 and 2 are identical



Test coherence while measuring

0-1 transition

delay



1-2 transition

delay

Test coherence while measuring



0-1 transition

delay

Test coherence while measuring



1-2 transition

delay

Conclusion: coherence between |1〉 and 2 is not 

affected by the measurment

Test coherence while measuring



Measuring cavity response in time domain

Prepare 0 , 1 , 2 and measure 

transmission through the cavity at fixed 

frequency as function of time

Averaged: 16384 times

Need to distinguish states with certainty within 

first hundreds of nanosecond if we want to have 

a single shot readout



Prepare a superposition: 𝜓 = 𝑐0 0 + 𝑐1 1 + 𝑐2 2
Do tomography of a state (measure prepared state for 9 tomography 

pulses):

Testing readout on a state

Measure and do tomography 

again:

𝑅𝑒[𝜌]

𝑅𝑒[𝜌]

Jerger et al. Phys. Rev. Applied 6, 014014 (2016) 



Prepare 9 superpositions and do 

tomography for each -> reconstruct 𝜒-

matrix of the process

Process tomography of the readout

𝑅𝑒[𝜒]

Arbitrary 

quantum 

process:

decomposed into:

{ ෨𝐸𝑘} is an operator basis 
𝜒 is a positive semi definite Hermitian matrix 
characteristic for the process

F = 97% to the binary  projective 

measurement described {M 0 } =

{ 0 〈0|, 𝐼 − 0 〈0|}

Jerger et al. Phys. Rev. Applied 6, 014014 (2016) 



Testing KCBS inequality



Quantum mechanics and non-contextual
Local realism is a part of non-contextual realism: 

outcome of a measurement depends only on the current state of the system, and not on which other 

measurements, if any, are performed in conjunction with it (the measurement context).

1967 Kochen and Specker: proved that non-contextual realism is in contradictions with outcomes

of QM (proven for spin-1 no entanglement)

2008 Klyachko, Can, Binicioglu and Shumovsky (KCBS) found the simplest recipe to demonstrate

contextuality with a qutrit (no entanglement but state dependent)

〈𝑨𝟏𝑨𝟐〉 + 〈𝑨𝟐𝑨𝟑〉 + 〈𝑨𝟑𝑨𝟒〉 + 〈𝑨𝟒𝑨𝟓〉 + 〈𝑨𝟓𝑨𝟏〉 ≥ −3

2012 Yu and Oh, state independent test for a qutrit

- One of the most fundamental property of quantum mechanics not requiring composite 

systems, entanglement, non-locality and specific state

2014 Howard, Wallman, Veitch & Emerson: contextuality – responsible for exponential speedup

of a quantum computer



The outcomes are not predetermined: cannot be explained by any non-contextual hidden variable 

theory

No non-locality, composite system, or entanglement are involved

Requires compatibility test (the measurements have to be degenerate)

KCBS inequality

Define five sequentially pair-wise orthogonal measurement directions (not possible for a qubit)

〈𝑨𝟏𝑨𝟐〉 + 𝑨𝟐𝑨𝟑 + 𝑨𝟑𝑨𝟒 + 𝑨𝟒𝑨𝟓 + 𝑨𝟓𝑨𝟏 = −3.994 < -3

If we prepare the system in |0〉 the 

result of the five pairs of 

measurements give



Creating five pairs of compatible measurements
Dispersive read out at sweet 

spot: measurement along M 0

Needed: measurement along 

M 𝜓1
, M 𝜓2

, 𝑀 𝜓3
, 𝑀 𝜓4

, M 𝜓5

Solution: rotating a state not the measurement basis



Quantum projective measurement: rotation of the state

The result of the measurement is one of the eigenvalues of 𝜆 with probability 

𝑝𝜆 = Tr[𝜌෡Π𝜆]

After measurement:

𝜌𝜆 = ෡Π𝜆𝜌෡Π𝜆/𝑝𝜆

Known as projection postulate, state collapse or state reduction.

If we perform a unitary rotation before and after the measurement 𝜌′ = 𝑈𝜌𝑈+

then 𝑝𝜆 and 𝜌𝜆 will be formally the same as performing measurement with the rotated measurement 

operator ෡Π𝜆′ = 𝑈+෡Π𝜆𝑈



|0〉

|1〉

|2〉

𝑅𝑦
01(𝛼)

𝑅𝑦
01(β)

How to generate 𝜓1 , 𝜓2 , 𝜓3 , |𝜓4〉, 𝜓5 ?

Apply rotation for 0-1 transition to all other 

states 𝜓2 , 𝜓3 , |𝜓4〉, 𝜓5

State Rotations U F

𝜓1 𝑅𝑦
01(0.53𝜋) 𝑈1 ~0.99

𝜓2 𝑅𝑦
01(0.53𝜋) 𝑅𝑦

02(1.6 𝜋) 𝑈2 ~0.99

𝜓3 𝑅𝑦
01(−0.53𝜋) 𝑅𝑦

02(1.2 𝜋) 𝑈3 ~0.99

𝜓4 𝑅𝑦
01(0.53𝜋) 𝑅𝑦

02(0.8 𝜋) 𝑈4 ~0.99

𝜓5 𝑅𝑦
01(−0.53𝜋) 𝑅𝑦

02(0.4 𝜋) 𝑈5 ~0.99

Generating KCBS states

𝑈5

〉|0

〉|2

〉|1

𝜓5



|0〉

|1〉

|2〉

Measuring correlations 𝐴𝑖𝐴𝑖+1

𝑈𝑖
−1 𝑈𝑖+1

−1 𝑈𝑖+1𝑈𝑖 𝑀|0〉𝑀|0〉

𝐴𝑖𝐴𝑖+1 , 𝐴𝑖 , 𝐴𝑖+1

𝐴𝑖+1𝐴𝑖



Violation of the KCBS Inequality

(i, j) 〈𝑨𝒊𝑨𝒊〉 〈𝑨𝒋〉 (1st) 〈𝑨𝒋〉 (2nd) 𝜀𝒊𝒋

(1, 2) -0.70(3) 0.10(0) 0.18(5) 0.08(5)

(2, 3) -0.70(2) 0.10(8) 0.17(8) 0.07(0)

(3, 4) -0.69(5) 0.10(8) 0.18(5) 0.07(8)

(4, 5) -0.70(5) 0.10(6) 0.18(3) 0.07(8)

(5, 1) -0.70(9) 0.10(3) 0.17(9) 0.07(6)

∑ -3.51(2) 0.38(7)

Measured correlations:

〈𝑨𝟏𝑨𝟐〉 + 𝑨𝟐𝑨𝟑 + 𝑨𝟑𝑨𝟒 + 𝑨𝟒𝑨𝟓 + 𝑨𝟓𝑨𝟏 = −3.51 2

Adjusted threshold:

-(3 + |𝜀12| + |𝜀32| + |𝜀34| +|𝜀54|+|𝜀51|) = −3.38(7)

KCBS inequality violated (by more than 49 standard deviations).

M. Jerger et al., Nature Comm. 7, 12930 (2016)

The most comprehensive experimental evidence in a 

scenario without entanglement.
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Quantum rifling and protection from collapse on demand using 

qubit manipulation



Continuous measurement



Quantum projective measurement: recap

Quantum
state preparation

Measurement Detection

Projective quantum measurement:

• Outcomes are discrete

• Quantum wave-function collapses after measurement

Before:

+ = (|0〉 + |1〉)/√2

After: 

50% |0〉 and 50% |1〉



N

S

What happens if the state is evolving during measurement?

• What will be the outcomes?

• What will happen to the quantum state?

Conventional projective measurement Continuous measurement

?

N

S

Quantum projective measurement: recap



Continuous quantum measurement
Extensively studied theoretically and experimentally

• Theoretically studied as early as 1988 (G. J. Milburn, JOSA B 5, 1317 (1988)).

• Studied extensively in the context of an electron transport in a double-dot and a point contact in 

2000s (A.N. Korotkov, Phys. Rev. B 60, 5737 (1999), 

A. N. Korotkov and D. V. Averin, Phys. Rev. B 64, 165310 (2001), and many others).

• Has been studied with superconducting qubits since the late 2000s (J. Gambetta et. al. Phys. Rev. A 77

012112 (2008) and many others).

Figure by A. N. Jordan



Continuous measurement of a driven qubit

Driving and projecting compete with each other

The spin trajectory will depend on three parameters: 𝛿𝜔, Ω𝑅 , Γ𝑚

Induce Rabi oscillation of the spin and send the spin through the apparatus

?

Γ𝑚

𝛿𝜔

Ω𝑅



Numerical simulation of the qubit population using quantum trajectories 

A.N. Korotkov, Phys. Rev. B 60, 5737 (1999)

Ω𝑅 ≪ Γ𝑚 → Quantum Zeno regime: 

quantum jumps

Ω𝑅~ Γ𝑚 → diffusive trajectory

Ω𝑅 ≫ Γ𝑚 → sub-Zeno regime: 

emergence of Rabi oscillations

Ω𝑅 and Γ𝑚 are always less than 𝛿𝜔.

Regime of strong driving Ω𝑅 ≫ Γ𝑚, 𝛿𝜔 has never been explored! 

Continuous measurement of a driven qubit

See next section



Probing cavity for driven qubit



Welcome to Twin Peaks

W

|𝑔⟩ |𝑒⟩



W

|𝑔⟩ |𝑒⟩

Welcome to Twin Peaks

What happens if we increase qubit driving?



|𝑔⟩ |𝑒⟩

W

Welcome to Twin Peaks

What happens if we increase qubit driving?



“Quantum rifling” regime

W



𝜒2

Ω𝑅

It’s All About Dressed States
Analytical solution of driven system:

+c

-c

WR

2c

0 ± ~ 𝑔, 0 ± |𝑒, 0⟩

1 ± ~
2𝜒 ± 4𝜒2 + Ω𝑅

2

Ω𝑅
𝑔, 1 ± 𝑒, 1

𝐸0± = ±Ω𝑅

𝐸1± = ±
1

2
4𝜒2 + Ω𝑅

2

lim
Ω𝑅

𝜒
→ 0 lim

Ω𝑅

𝜒
→ ∞

𝐸0±

𝐸1−

𝐸1+ 𝐸0/1+

𝐸0/1−

𝜒2

Ω𝑅



W

WC

Conditions for single peak: Ω𝑅 >
𝜒2

𝜅

“Quantum rifling” regime



Incoherent dynamics

+7.645 GHz

Akin motional narrowing of a qubit line (see J. Li et. al. 

Nature Comm.  ) 



Incoherent dynamics

Classical measurement:

• Returns 〈𝜎𝑧(𝑡)〉. Any number between ±1

• No state collapse

Simulate asymmetric excitation and relaxation rates

Γ↑ = Γ↓, 〈𝜎𝑧(𝑡)〉=0 Γ↑ < Γ↓, 〈𝜎𝑧(𝑡)〉<0 Γ↑ > Γ↓, 〈𝜎𝑧(𝑡)〉 >0



Protecting from collapse on demand



Why useful?

qubit photon qubit photon

It does not give any information  about the quantum state. Will the qubit 

experience measurement back action?



Qubit Protected From Measurement

Standard Rabi drive Rifling (Rabi + read out)

Low drive power

W < WC

High drive power

W > WC

Protocol



Joint dispersive readout

Many qubits coupled to one detector is a common (some times the only possible) 

design in circuit-QED

|𝑔𝑔⟩ |𝑔𝑒⟩ |𝑒𝑔⟩ |𝑒𝑒⟩

2|𝜒1 − 𝜒2|

2(𝜒1 + 𝜒2)

Dispersive shifts are different:

• Reconstruction of a joint qubits 

state is possible



Two-qubit tomography

Apply different tomography pulses to rotate measurement basis and collect enough statistics 

to reconstruct the density matrix

|𝑔𝑔⟩ |𝑔𝑒⟩ |𝑒𝑔⟩ |𝑒𝑒⟩

2|𝜒1 − 𝜒2|

2(𝜒1 + 𝜒2)

Preparation Tomography

Example: 

density matrix of a complete superposition after waiting 

time



Two-qubit tomography

Apply different tomography pulses to rotate measurement basis and collect enough statistics 

to reconstruct the density matrix

|𝑔𝑔⟩ |𝑔𝑒⟩ |𝑒𝑔⟩ |𝑒𝑒⟩

2|𝜒1 − 𝜒2|

2(𝜒1 + 𝜒2)

Preparation Tomography

Example: 

density matrix of a complete superposition after 

measurement



Joint dispersive readout

Many qubits coupled to one detector is a common (some times the only possible) 

design in circuit-QED

Dispersive shifts are different:

• Reconstruction of a joint qubits 

state is possible

• Quantum states of both qubits 

collapses due to measurement.

What if we want to measure a state of one qubit not affecting another qubit?

|𝑔𝑔⟩ |𝑔𝑒⟩ |𝑒𝑔⟩ |𝑒𝑒⟩

2|𝜒1 − 𝜒2|

2(𝜒1 + 𝜒2)



Arbitrary Multi-Qubit Multiplexing

Applying rifling pulse to the first qubit eliminates its dispersive shifts onto the 

resonator 

𝑔𝑔 , 𝑒𝑔

2𝜒2

𝑔𝑒 , 𝑒𝑒

Multiplex readout

• Measurement of the second qubit works like there is no first one

• The state of the first qubit is also protected from the measurement! 

D. Szombati et. al. ,Phys. Rev. Lett. 124, 070401 (2020)



Arbitrary Multi-Qubit Multiplexing

Measuring the second qubit with and without riffling of the first. After that 

measuring the first qubit to observe the effect of the measurement

• Perfect reconstruction of the second qubit state (F~98%)

• The state of the first qubit is protected (F~ 97% compensated for decay)

• The state of the first qubit collapses without rifling pulse (F~ 98% compensated for decay)

D. Szombati et. al. ,Phys. Rev. Lett. 124, 070401 (2020)



Some remarks about quantum rifling 



Perspective on our results

Qubit Resonator

Continuous measurement of qubit: where is the system of interest and the bath?



Focus on the resonator: motion averaging

Qubit Resonator

SystemBath

Perspective on our results



Perspective on our results

Focus on the qubit: dynamical decoupling or spin-locking  

Qubit Resonator

System Bath



Time-average Hamiltonian theory for quantum measurement

Qubit Resonator

Opens new experimental control without additional hardware requirements:

• Decoupling of a quantum system (or subspace of a quantum system) from a detector on demand

• Multiplex readout of qubits coupled to the same detector

• May be also applied for controlling coherent coupling between qubits (future direction)

System

Perspective on our results



Continuous measurement of superconducting 
qubit: quantum trajectories



Stochastic master equations
Master equation for the qubit:

ሶ𝜌𝑄 = −𝑖Ω𝑅 𝜎𝑥, 𝜌𝑄 − 𝑖Δ 𝜎𝑧, 𝜌𝑄 + 𝛾𝐷 𝜎− 𝜌𝑄 + Γ𝐷 𝜎𝑧 𝜌𝑧

Does not provide information on a particular measurement outcome!

Need to consider conditional master equation:

ሶ𝑑𝜌𝑄 = −𝑖Ω𝑅 𝜎𝑥, 𝜌𝑄 𝑑𝑡 − 𝑖Δ 𝜎𝑧, 𝜌𝑄 𝑑𝑡 + 𝛾𝐷 𝜎− 𝜌𝑄𝑑𝑡 + Γ𝐷 𝜎𝑧 𝜌𝑧𝑑𝑡 − 𝜂𝜅𝐻 𝜎𝑧 𝜌𝑄𝑑𝑊 𝑡

Here:

- 𝐻 𝑎 𝜌 = 𝐴𝜌 + 𝜌𝐴+ − Tr 𝐴𝜌 + 𝜌𝐴+ 𝜌

- 𝜂 is the efficiency of the photodetector

- 𝑑𝑊(𝑡) is a Wiener process

- Assumed homodyne detection scheme for simplicity

Every trajectory is different due to quantum noise

Measurement signal is different depending on the measurement regime



Weak measurement regime 
Case: Finite qubit drive, small readout power Γ < Ω𝑅

Persistent noise oscillations
RF IN

RF IN

Output 

Readout 

signal𝜔01

𝜔𝑟𝑒𝑠



A
m

p
lit

u
d
e
 (

a
.u

.)

Time (μs)

Drive Amplitude

560kHz

442kHz

357kHz

267kHz

173kHz

Weak measurement regime – period statistics

Although ‘ordinary’ Rabi oscillations decay these oscillations are persistent

Simulation of conditional master equation Measured trajectories



Weak measurement regime – Power Spectra

Frequency (kHz)

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

a
.u

.) Drive Amplitude: 

173kHz

Drive Amplitude: 

267kHz

Drive Amplitude: 

357kHz

Drive Amplitude: 

442kHz

Drive Amplitude: 

560kHz

Readout 

amplitude:

0.28 photons

Noise background subtracted



Weak measurement regime – Power Spectra
Noise background not subtracted

Theory: A.N. Korotokov and D. V. Averin ,Phys. Rev. B 64, 165310 (2001)

First expérimental test: A. Palacios-Laloy et. al. Nature Physics 6, 442-447 (2010)

Interplay between measurement and backaction



Strong measurement regime
Case: Finite qubit drive, large readout power Γ > Ω𝑅

Random telegraph signal between states ⟩|0 and ⟩|1
RF IN

RF IN

Output 

Readout 

signal𝜔01

𝜔𝑟𝑒𝑠



Drive Amplitude

323.4kHz

263.6kHz

163.9kHz

No Drive

A
m

p
lit

u
d
e
 (

a
.u

.)

Time (μs)

Strong measurement regime

High voltage level→e state

Low voltage level → g state

Zero drive → thermal noise

Upward jump as a tick, the qubit in this strong measurement regime acts as a non-

oscillatory clock.

First measurement of quantum 

jumps: K. W. Murch, S. J. 

Weber, C. Macklin & I. Siddiqi, 

Nature 502, 211–214 (2013).



Requirements for time-keeping

A good time-keeper:

• Counts forwards → irreversible process

• Requires energy to compensate for the dissipation

• Counts ticks indefinitely → typically nonlinear limit-cycle process

The thermodynamics of clocks – G.M. Milburn, Contemporary Physics 2020



Requirements for time-keeping – Example

Erik Mahieu “The Graham Clock Escapement”, Wolfram Demonstrations Project (2013)

✓Frictional forces provide dissipation

✓Weight provides energy to 
compensate dissipation

✓Anchor and escape wheel provide 
nonlinearity



• Dissipation means that the clock is necessarily subject to noise

• This leads to the trade-off between dissipation and clock accuracy

Thermodynamics and kinetic constraints

𝑁 (clock precision) ∝ Δ𝑆tick (entropy generation per tick)

Autonomous quantum clocks: Does thermodynamics limit our ability to measure time? Physical Review X, 

7(3), 031022 (2017).

Measuring the Thermodynamic Cost of Timekeeping: Phys. Rev. X, 11(2), 21029  (2021). 

Quantum Clock: quantum measurement plays an exclusive role

Fundamental limit for the clock precision due to measurement   is currently  absent!



Classical clock: Thermodynamic Uncertainty Relation (TUR) relates the mean 

and fluctuations of any current to the overall entropy production in a non-

equilibrium steady state.

Quantum clock: TURs are not applicable as there is no energy exchange for 

quantum measurement (information extraction).

Need to use Kinetic Uncertainty Relation (KUR) which puts a bound on the 

precision, but in terms of the dynamical activity, instead of the entropy 

production.

Kinetic uncertainty relation (KUR)

Arguably more generic than TUR



Clock precision bounded by measurement-
induced uncertainty
Simplest quantum clock: a qubit driven to induce Rabi osillations

Ω Γ

A
m

p
lit

u
d
e
 (

a
.u

.)

⟩|1

⟩|0



ℕ = Γ: dynamical activity, a measure of the kinetic activity of the system

ℚ =
4 Γ2Δ2+ Ω2+Δ2

2 2

ΓΩ2 : related to the coherent dynamics of the system

Clock precision bounded by measurement-
induced uncertainty
Simplest quantum clock: a qubit driven to induce Rabi osillations

𝑁 ≡
𝐸 𝑇 2

Var[𝑇]
≤ 𝐸[𝑇](ℕ + ℚ)

⟩|1

⟩|0
Ω Γ



- First experimental test of KUR due to 

measurement

- Applicable generally to all clocks including 

“practical” clocks such as atomic clocks

KUT: 𝑁 ≤ 𝐸[𝑇](ℕ + ℚ)

ℕ = Γ – dynamical activity

ℚ =
4 Γ2Δ2 + Ω2 + Δ2 2 2

ΓΩ2

Clock precision bounded by measurement-
induced uncertainty

RF IN

RF IN

Output 

Readout 

signal𝜔01

𝜔𝑟𝑒𝑠



Continuously measured driven qubit:

- Weak measurement yields indefinite Rabi-like oscillations

- Strong measurement yields random telegraph signals

Quantum measurement adds additional constraints to the clock precision 

Summary



Final remarks: interaction free measurement



Elitzur–Vaidman bomb tester

Assume we have a collection of live bombs and dud bombs. The bomb has a sensor such that each silver atom will 

trigger the bomb. The dud does not have a sensor and will just let the particle pass it without interacting with it.

Consider the following experiment where the black box contains either a bomb or a dud. We send a silver atom from the 

left: 

dud or live

zz x

Elitzur–Vaidman bomb-testing problem is a thought experiment in quantum mechanics, first proposed by Avshalom Elitzur

and Lev Vaidman in 1993.



Elitzur–Vaidman bomb tester

Let’s consider the case when there is a dud bomb in the box

dud

zz x

How many particle will exit the device?

That means that if we have particle exiting the device the box has bomb inside.



Elitzur–Vaidman bomb tester

Let’s consider the case when there is a live bomb in the box

live

zz x



Elitzur–Vaidman bomb tester

Let’s consider the case when there is a live bomb in the box

• The bomb is only triggered if particles follow lower path. What is the probability to trigger 

the bomb?

• If the particles follow the upper path the bomb will not be triggered. What is the 

probability to exit the whole device?  

live

zz x

zz x

What do you conclude if you have particles exiting the device?



Elitzur–Vaidman bomb tester

Elitzur–Vaidman bomb-testing problem is a thought experiment in quantum mechanics, first proposed by Avshalom Elitzur

and Lev Vaidman in 1993.

In 1994, Anton Zeilinger, Paul Kwiat, Harald Weinfurter, and Thomas Herzog performed an equivalent of the above 

experiment using Mach –Zehnder interferometer.

In 1996, Kwiat et al. devised a method, using a sequence of polarising devices, that efficiently increases the yield rate to 

a level arbitrarily close to one!!!  (See homework problem)



Testing with superconducting qutrit

Interaction free measurement tested with transmon qutrit

Consider 𝑁 = 2:

With B:

𝜓𝑓 = sin2
𝜃

4
0 + cos2

𝜃

4
1 +

1

2
sin

𝜃

2
2

Without B:

𝜓𝑓 = 1

Can detect the presence of B pulses without interacting with it

Can be extended to 100% efficiency



Take home message

116

• Quantum measurement is a key element of QM with no classical 

counterpart due to back-action

• Wave-function collapse is not mysterious and can be avoided by 

different techniques

• Although there is always measurement back-action, in principle, 

one can “interaction-free” measurement



Thank you
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