Spring School on Superconducting Qubit Technology 2023/4/19, 9:30-11:00

Centro de Ciencias de Benasque Pedro Pascual

Physics and Applications of Kerr Parametric Oscillators

¹Secure System Platform Research Laboratories, NEC Corporation ²NEC-AIST Quantum Technology Cooperative Research Laboratory, The National Institute of Advanced Industrial Science and Technology Tsuyoshi Yamamoto

Slide courtesy

Table of Contents

- 1. Brief overview
- 2. Introduction of KPO
 - theoretical description
- 3. Application of KPO in FTQC
- 4. Application of KPO in quantum annealing
- 5. Summary

Shumpei Masuda Ryoji Miyazaki

Table of Contents

- 1. Brief overview
- 2. Introduction of KPO
 - theoretical description
- 3. Application of KPO in FTQC
- 4. Application of KPO in quantum annealing
- 5. Summary

Parametric resonance

 Modulation of a parameter of an oscillating system at twice the resonant frequency leads to the amplification of the oscillation.

Parametric amplifier

Superconducting QUantum Interference Device (SQUID)

T. Yamamoto *et al.*, Appl. Phys. Lett. **93**, 042510 (2008). Flux-driven Josephson Parametric Amplifier (JPA)

Josephson parametric oscillator

Josephson parametric oscillator

- 0π state and 1π state are generated randomly.
- Injecting external signal at ω_0 biases the probability.

(Classical) Josephson parametric oscillator

qubit readout using JPO

Quantum annealing with JPO (theory)

Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

Sci. Rep. 6, 21686 (2016). Hayato Goto

SCIENCE ADVANCES | RESEARCH ARTICLE Sci. Adv. 3, e1602273 (2017).

QUANTUM INFORMATION

Robust quantum optimizer with full connectivity

Simon E. Nigg,* Niels Lörch, Rakesh P. Tiwari

ARTICLE

Received 1 Nov 2016 | Accepted 28 Apr 2017 | Published 8 Jun 2017

OPEN DOI: 10.1038/ncomms15785

Quantum annealing with all-to-all connected nonlinear oscillators Nature Commun. 8, 15785 (2017).

Shruti Puri¹, Christian Kraglund Andersen², Arne L. Grimsmo¹ & Alexandre Blais^{1,3}

Quantum annealing with JPO (intuitive)

Recent theories on JPO (KPO) annealing

- Boltzmann sampling
 - H. Goto et al., Sci. Rep. **8**, 7154 (2018).
- 3D cQED implementation
 - P. Zhao et al., Phys. Rev. Appl. **10**, 024019 (2018).
- Quantum annealing started with stable excited state
 - H. Goto and T. Kanao, Commun. Phys. **3**, 235 (2020).
- Comparison between quantum and classical models
 M. J. Kewming et al., New J. Phys. 22, 053042 (2020).
- All-to-all coupling via Floquet engineering
 - T. Onodera et al., npj Quantum Info. 6, 48 (2020).
- Photon-number inhomogeneity and its mitigation in LHZ architecture
 - T. Kanao and H. Goto, npj Quantum Info. 7, 1 (2021).
- Effective spin model of (bosonic) KPO
 - R. Miyazaki, Phys. Rev. A **105**, 062457 (2022).
- Controllable coupling between KPOs
 - S. Masuda et al., Phys. Rev. Appl. 18, 034076 (2022).
- Effect of Nonstoquastic catalyst
 - Y. Susa et al., arXiv:2209.01737.

Proposals for hardware-efficient FTQC using Kerr cat qubit

- Theory of Kerr cat qubit
 - P. T. Cochrane et al., Phys. Rev. A **59**, 2631 (1999).
 - H. Goto, Phys. Rev. A 93, 050301 (2016).
 - S. Puri et al., npj Quantum Info. **3**, 18 (2017).
- High-fidelity gate operation
 - T. Kanao et al., Phys. Rev. Appl. **18**, 014019 (2022).
 - H. Chono et al., Phys. Rev. Res. **4**, 043054 (2022).
- Proposal of bias preserving gate
 - S. Puri et al., Sci. Adv. 6, eaay5901 (2020).
- Error-correction code with high error threshold
 - A. S. Darmawan et al., PRX Quantum 2, 030345 (2021).

Table of Contents

- 1. Brief overview
- 2. Introduction of KPO
 - theoretical description
- **3.** Application of KPO in FTQC
- 4. Application of KPO in quantum annealing
- 5. Summary

Hamiltonian of KPO

$$\hat{Q} = \hat{Q}^{2}_{ex}(t) + \hat{\phi}^{E_{J}} \qquad \mathcal{H}_{KPO} = \frac{\hat{Q}^{2}}{2C} - E_{J}(t)\cos\hat{\phi}$$

$$\simeq \frac{\hat{Q}^{2}}{2C} - E_{J}(t)\left(1 - \frac{1}{2}\hat{\phi}^{2} + \frac{1}{24}\hat{\phi}^{4}\right)$$

$$E_{J}(t) = E_{J} + \delta E_{J}\cos\omega_{p}t$$

$$\hat{h}\omega_{0} = \sqrt{8E_{c}E_{J}}$$

$$\hat{\phi} = \left(\frac{2E_{c}}{E_{J}}\right)^{1/4}(a^{\dagger} + a)$$

$$\hat{Q} = i\left(\frac{E_{J}}{2E_{c}}\right)^{1/4}(a^{\dagger} - a)$$

$$\mathcal{H}_{\rm KPO} \simeq \hbar\omega_0 \left(a^{\dagger}a + \frac{1}{2} \right) - \frac{E_{\rm c}}{12} (a^{\dagger} + a)^4 + \frac{\hbar\omega_0}{4} \frac{\delta E_{\rm J}}{E_{\rm J}} (a^{\dagger} + a)^2 \cos \omega_{\rm p} t$$

Hamiltonian of KPO

$$\mathcal{H}_{\rm KPO} = \hbar\omega_0 \left(a^{\dagger}a + \frac{1}{2}\right) - \frac{E_{\rm c}}{12}(a^{\dagger} + a)^4 + \frac{\hbar\omega_0}{4}\frac{\delta E_{\rm J}}{E_{\rm J}}(a^{\dagger} + a)^2 \cos \omega_{\rm p} t$$

rotating frame at $\omega_{\rm p}/2$, and RWA
$$\mathcal{H}_{\rm KPO}'/\hbar = \Delta a^{\dagger}a - \frac{K}{2}a^{\dagger}a^{\dagger}aa + \frac{\beta}{2}(a^{\dagger}^2 + a^2)$$

detuning Kerr nonlinearity parametric drive
$$\Delta = \omega_0 - K - \omega_{\rm p}/2$$

$$\Delta = \omega_0 - K - \omega_p / K$$
$$K = E_c$$
$$\beta = \frac{\omega_0}{4} \frac{\delta E_J}{E_J}$$

Generation of Schrodinger's cat state

$$\mathcal{H}_{\rm KPO}/\hbar = -\frac{K}{2}a^{\dagger}a^{\dagger}aa + \frac{\beta}{2}(a^{\dagger^2} + a^2)$$
$$= -K\left(a^{\dagger^2} - \frac{\beta}{K}\right)\left(a^2 - \frac{\beta}{K}\right) + \frac{\beta^2}{K}$$

P. T. Cochrane et al., Phys. Rev. A 59, 2631 (1999).
H. Goto, Sci. Rep. 6, 21686 (2016).
S. Puri et al., npj Quantum Info. 3, 18 (2017).

Coherent state is an eigenstate of annihilation operator a, $a|\alpha\rangle = \alpha |\alpha\rangle$

$$H_{
m KPO}$$
 has degenerate eigenstates of $|\pm lpha
angle$, where $\ lpha=\sqrt{rac{eta}{K}}$

pitchfork bifurcation

M. I. Dykman, Phys. Rev. E 57, 5202 (1998).

H. Goto, Sci. Rep. **6**, 21686 (2016). <u>https://www.nature.com/articles/srep21686</u> Fig. 1

$$\dot{x} = y[\Delta + p + K(x^2 + y^2)] = 0$$

$$\dot{y} = x[-\Delta + p - K(x^2 + y^2)] = 0$$

solid lines: classically stable points

 $x = \pm \sqrt{(p - \Delta)/K}$

Wigner function below and above the threshold

$$H_1 = \hbar \Delta a^{\dagger} a + \hbar \frac{K}{2} a^{\dagger 2} a^2 - \hbar \frac{p}{2} (a^2 + a^{\dagger 2})$$

Schrodinger's cat state

$$egin{array}{lll} \displaystyle rac{da}{dt} &= \displaystyle rac{\mathrm{i}}{\hbar}[H_{1},a]\ a &= & x + \mathrm{i}y\ a^{\dagger} &= & x - \mathrm{i}y \end{array}$$

KPO coupled to environment

Input-output formalism \sim \sim

$$b_{\rm in}(t) \equiv b_{-0}(t) = b_{-vt}(0),$$

$$b_{\text{out}}(t) \equiv \widetilde{b}_{+0}(t) = b_{\text{in}}(t) - i\sqrt{\frac{\kappa_1}{v}}a(t).$$

M. J. Collett and C. W. Gardiner, Phys. Rev. A **30**, 1386 (1984).

derived from Heisenberg's EOM for $b_{\rm k}$

$$\begin{aligned} \mathcal{H}(t) &= \mathcal{H}_{\rm sys}(t) + \mathcal{H}_{\rm sig} + \mathcal{H}_{\rm loss} + \mathcal{H}_{\rm dep}, \\ \mathcal{H}_{\rm sys}(t)/\hbar &= \Omega_0 a^{\dagger} a + \frac{K}{2} a^{\dagger} a^{\dagger} a a, \quad \text{w/o parametric drive} \\ \mathcal{H}_{\rm sig}/\hbar &= \int dk \Big[v_b k b_k^{\dagger} b_k + \sqrt{\frac{v_b \kappa_1}{2\pi}} \Big(a^{\dagger} b_k + b_k^{\dagger} a \Big) \Big], \\ \mathcal{H}_{\rm loss}/\hbar &= \int dk \Big[v_c k c_k^{\dagger} c_k + \sqrt{\frac{v_c \kappa_2}{2\pi}} \Big(a^{\dagger} c_k + c_k^{\dagger} a \Big) \Big], \\ \mathcal{H}_{\rm dep}/\hbar &= \int dk \Big[v_d k d_k^{\dagger} d_k + \sqrt{\frac{v_d \gamma_p}{\pi}} a^{\dagger} a \Big(d_k + d_k^{\dagger} \Big) \Big], \end{aligned}$$

Input-output formalism

By solving Heisenberg's equation of motion for appropriate operator, e.g., a, a⁺a, and |m><n|, we can calculate various physical quantities such as reflection coefficient, fluorescence spectra, amplifier's gain.

Example 1: Reflection coefficient

Heisenberg's equation of motion for a

$$b_{\text{out}}(t) \equiv \widetilde{b}_{+0}(t) = b_{\text{in}}(t) - i\sqrt{\frac{\kappa_1}{v}}a(t).$$

$$\begin{aligned} \frac{da}{dt} &= \mathrm{i}[\mathcal{H}(t)/\hbar, a] \\ &= \mathrm{i}[\mathcal{H}_{\mathrm{sys}}(t)/\hbar, a] - \frac{\kappa_1 + \kappa_2}{2}a + \gamma_p[a^{\dagger}a, a] \\ &- \mathrm{i}\sqrt{v\kappa_1}b_{\mathrm{in}}(t) - \mathrm{i}\sqrt{v\kappa_2}c_{\mathrm{in}}(t) - \mathrm{i}\sqrt{2v\gamma_p}[ad_{\mathrm{in}}(t) + d_{\mathrm{in}}^{\dagger}(t)a] \\ &= -\left(\mathrm{i}\Omega_0 + \mathrm{i}Ka^{\dagger}a + \frac{\kappa}{2}\right)a - \mathrm{i}\sqrt{v\kappa_1}b_{\mathrm{in}}(t) - \mathrm{i}\sqrt{v\kappa_2}c_{\mathrm{in}}(t) - \mathrm{i}\sqrt{2v\gamma_p}[ad_{\mathrm{in}}(t) + d_{\mathrm{in}}^{\dagger}(t)a] \end{aligned}$$

$$\kappa = \kappa_1 + \kappa_2 + 2\gamma_p$$

Reflection coefficient

Take the expectation value by initial state of the system and neglect the nonlinear term <a+aa> to consider weak probe power limit.

$$\frac{d\langle a\rangle}{dt} = -\left(i\Omega_{0} + \frac{\kappa}{2}\right)\langle a\rangle$$
 no signal on the fictitious ports

$$-i\sqrt{v\kappa_{1}}\langle b_{in}(t)\rangle - i\sqrt{v\kappa_{2}}\langle c_{in}(t)\rangle - i\sqrt{2v\gamma_{p}}[\langle ad_{n}(t)\rangle + \langle d_{in}^{\dagger}(t)a\rangle]$$

$$\downarrow \qquad d/dt \rightarrow -i\omega_{in}$$

$$\langle a\rangle = \frac{-i\sqrt{v\kappa_{1}}}{-i(\omega_{in} - \Omega_{0}) + \kappa/2}\langle b_{in}\rangle$$

$$\langle b_{out}\rangle = \langle b_{in}\rangle - i\sqrt{\frac{\kappa_{1}}{v}}\langle a\rangle$$
 reflection coefficient Γ

$$= \left[1 - \frac{\kappa_{1}}{-i(\omega_{in} - \Omega_{0}) + \kappa/2}\right]\langle b_{in}\rangle.$$

$$\kappa = \kappa_{1} + \kappa_{2} + 2\gamma_{p}$$
 note: Γ does not tell κ_{2} from γ_{p} . event NEC

Input-output formalism

Example 2: Master equation

T. Yamamoto, in Springer Lecture Notes in Physics

"Quantum Computing, Quantum Communication and Quantum Metrology" edited by Y. Yamamoto and K. Semba

$$b_{\rm in}(t) \equiv \widetilde{b}_{-0}(t) = \widetilde{b}_{-vt}(0),$$

$$b_{\rm out}(t) \equiv \widetilde{b}_{+0}(t) = b_{\rm in}(t) - i\sqrt{\frac{\kappa_1}{v}}a(t).$$

derived from Heisenberg's EOM for $b_{\rm k}$

$$\begin{aligned} \mathcal{H}(t) &= \mathcal{H}_{\rm sys}(t) + \mathcal{H}_{\rm sig} + \mathcal{H}_{\rm loss}, \\ \mathcal{H}_{\rm sys}(t)/\hbar &= \Omega_0 a^{\dagger} a + \frac{K}{2} a^{\dagger} a^{\dagger} a a + \beta (a^{\dagger} + a)^2 \cos \omega_{\rm p} t \\ \mathcal{H}_{\rm sig}/\hbar &= \int dk \Big[v_b k b_k^{\dagger} b_k + \sqrt{\frac{v_b \kappa_1}{2\pi}} \Big(a^{\dagger} b_k + b_k^{\dagger} a \Big) \Big] \\ \mathcal{H}_{\rm loss}/\hbar &= \int dk \Big[v_c k c_k^{\dagger} c_k + \sqrt{\frac{v_c \kappa_2}{2\pi}} \Big(a^{\dagger} c_k + c_k^{\dagger} a \Big) \Big] \end{aligned}$$

forget about dephasing for the moment

Master equation

Heisenberg's equation of motion for $s_{mn}(t)\equiv |m
angle\langle n|$

$$\frac{d}{dt}s_{mn}(t) = -i[s_{mn}(t), \mathcal{H}/\hbar]$$

Using

$$\begin{bmatrix} s_{mn}, \frac{1}{\sqrt{2}} \int dk a^{\dagger} b_k \end{bmatrix} = [s_{mn}, a^{\dagger}] b_{in} + \frac{1}{2} \sqrt{\frac{\kappa_1}{v}} (a^{\dagger} s_{mn} a - s_{mn} a^{\dagger} a),$$
$$\begin{bmatrix} s_{mn}, \frac{1}{\sqrt{2}} \int dk b_k^{\dagger} a \end{bmatrix} = b_{in}^{\dagger} [s_{mn}, a] - \frac{1}{2} \sqrt{\frac{\kappa_1}{v}} (a^{\dagger} s_{mn} a - a^{\dagger} a s_{mn})$$

$$\frac{d}{dt}s_{mn} = \frac{-\mathrm{i}}{\hbar}[s_{mn}, \mathcal{H}_{\mathrm{sys}}(t)] + \frac{\kappa}{2}(2a^{\dagger}s_{mn}a - s_{mn}a^{\dagger}a - a^{\dagger}as_{mn}) \\ + \sqrt{v\kappa_1}[s_{mn}, a^{\dagger}]b_{\mathrm{in}}(t) - \sqrt{v\kappa_1}b_{\mathrm{in}}^{\dagger}(t)[s_{mn}, a] \\ + \sqrt{v\kappa_2}[s_{mn}, a^{\dagger}]c_{\mathrm{in}}(t) - \sqrt{v\kappa_2}c_{\mathrm{in}}^{\dagger}(t)[s_{mn}, a].$$

Master equation

$$\frac{d}{dt}s_{mn} = \frac{-i}{\hbar}[s_{mn}, \mathcal{H}_{sys}(t)] + \frac{\kappa}{2}(2a^{\dagger}s_{mn}a - s_{mn}a^{\dagger}a - a^{\dagger}as_{mn}) \\
+ \sqrt{v\kappa_{1}}[s_{mn}, a^{\dagger}]b_{in}(t) - \sqrt{v\kappa_{1}}b_{in}^{\dagger}(t)[s_{mn}, a] \\
+ \sqrt{v\kappa_{2}}[s_{mn}, a^{\dagger}]c_{in}(t) - \sqrt{v\kappa_{2}}c_{in}^{\dagger}(t)[s_{mn}, a].$$
rotating frame
$$s_{mn}(t) \equiv e^{i\Omega_{0}(m-n)t}S_{mn}(t), a(t) \equiv e^{-i\Omega_{0}t}A(t), \\
b_{in}(t) \equiv e^{-i\Omega_{0}t}B_{in}(t), c_{in}(t) \equiv e^{-i\Omega_{0}t}C_{in}(t)$$
take expectation value
$$\sqrt{v}\langle B_{in}\rangle = E_{in} \text{ and } \langle C_{in}\rangle = 0,$$

$$\frac{d}{dt}\langle S_{mn}\rangle = \frac{i}{\hbar}\langle [\mathcal{H}_{sys}, S_{mn}]\rangle + \frac{\kappa}{2}\left(2\langle A^{\dagger}S_{mn}A\rangle - \langle S_{mn}A^{\dagger}A\rangle - \langle A^{\dagger}AS_{mn}\rangle\right) \\
+ \sqrt{\kappa_{1}}E_{in}\langle [S_{mn}, A^{\dagger}]\rangle - \sqrt{\kappa_{1}}E_{in}^{*}\langle [S_{mn}, A]\rangle.$$

Master equation

$$\frac{d}{dt}\langle S_{mn}\rangle = \frac{i}{\hbar}\langle [\mathcal{H}_{sys}, S_{mn}]\rangle + \frac{\kappa}{2} \Big(2\langle A^{\dagger}S_{mn}A\rangle - \langle S_{mn}A^{\dagger}A\rangle - \langle A^{\dagger}AS_{mn}\rangle \Big) + \sqrt{\kappa_1}E_{in}\langle [S_{mn}, A^{\dagger}]\rangle - \sqrt{\kappa_1}E_{in}^*\langle [S_{mn}, A]\rangle.$$

$$\langle S_{mn} \rangle = \operatorname{Tr}[\rho S_{mn}] = \rho_{nm},$$

$$\langle A^{\dagger} S_{mn} A \rangle = \sqrt{(m+1)(n+1)} \operatorname{Tr}[\rho S_{m+1,n+1}] = \sqrt{(m+1)(n+1)} \rho_{n+1,m+1},$$

etc.

$$\frac{d\rho}{dt} = -\frac{\mathrm{i}}{\hbar} [\mathcal{H}_{\mathrm{int}}, \rho] + \frac{\kappa}{2} (2A\rho A^{\dagger} - A^{\dagger}A\rho - \rho A^{\dagger}A),$$

Lindblad operator for single photon decay $D[\hat{a}]\rho$

$$\mathcal{H}_{\rm int}/\hbar = \frac{\beta}{2}(A^2 + A^{\dagger 2}) + \frac{K}{2}A^{\dagger}A^{\dagger}AA + \sqrt{\kappa_1}(E_{\rm in}A^{\dagger} + E_{\rm in}^*A)$$

parametric drive Kerr nonlinearity single-photon drive

Analytical solution for steady state

PHYSICAL REVIEW A 94, 033841 (2016)

Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions

Nicola Bartolo,^{*} Fabrizio Minganti, Wim Casteels, and Cristiano Ciuti[†] Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS-UMR7162, 75013 Paris, France (Received 28 July 2016; published 22 September 2016)

> N. Bartolo et al., Phys. Rev. A94, 033841 (2016). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.033841 Fig. 1

$$\begin{aligned} \hat{\mathcal{H}} &= -\Delta \hat{a}^{\dagger} \hat{a} + \frac{U}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} + F \hat{a}^{\dagger} + F^* \hat{a} + \frac{G}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} + \frac{G^*}{2} \hat{a} \hat{a}, \\ i \frac{\partial \hat{\rho}}{\partial t} &= [\hat{\mathcal{H}}, \hat{\rho}] + i \frac{\gamma}{2} \mathcal{D}(\hat{a}) \hat{\rho} + i \frac{\eta}{2} \mathcal{D}(\hat{a}^2) \hat{\rho}, \quad = 0 \\ \text{for steady state} \end{aligned}$$

 $\mathcal{F}_m(f,g,c) = (i\sqrt{g})^m {}_2F_1(-m, -c - i f/\sqrt{g}; -2c; 2),$

N. Bartolo et al., Phys. Rev. A94, 033841 (2016). https://journals.aps.org/pra/abstract/10.1103/ PhysRevA.94.033841 Fig. 2

Realization of quantum parametric oscillator

PHYSICAL REVIEW X 9, 021049 (2019)

Quantum Dynamics of a Few-Photon Parametric Oscillator

 Zhaoyou Wang,^{*} Marek Pechal,^{*} E. Alex Wollack, Patricio Arrangoiz-Arriola, Maodong Gao, Nathan R. Lee, and Amir H. Safavi-Naeini[†]
 Department of Applied Physics and Ginzton Laboratory, Stanford University 348 Via Pueblo Mall, Stanford, California 94305, USA

 $\langle K/\kappa \sim 17$: single-photon Kerr regime

♦ no ancilla qubit

state tomography based on transient PSD measurement

◆ 5.8 photon Schrodinger's cat state

Z. Wang et al., Phys. Rev. X 9, 021049 (2019). https://journals.aps.org/prx/abstract/10.1103/P hysRevX.9.021049 Fig. 5

Z. Wang et al., Phys. Rev. X 9, 021049 (2019). https://journals.aps.org/prx/abstract/10.1103/P hysRevX.9.021049 Figs. 3a and 3b

Z. Wang et al., Phys. Rev. X 9, 021049 (2019).

hysRevX.9.021049

Fig. 4c

https://journals.aps.org/prx/abstract/10.1103/P

Z. Wang et al., Phys. Rev. X 9, 021049 (2019). https://journals.aps.org/prx/abstract /10.1103/PhysRevX.9.021049 Fig. 4d

Table of Contents

- 1. Brief overview
- 2. Introduction of KPO
 - theoretical description
- 3. Application of KPO in FTQC
- 4. Application of KPO in quantum annealing
- 5. Summary

Generic QEC

Hardware efficient QEC

W. Cai et al., Fundamental Research **1**, 50 (2021). <u>https://www.sciencedirect.com/science/article/pii/S2667325820300145</u> Figs. 2a and 2b

Encode logical qubit using multiple physical qubits (two-level system) →increase in error source →requires many physical qubits

Encode logical qubit using one physical system with infinite degree of freedom →limited error source (with biased noise) →reduced hardware overhead

W. Cai et al., Fundamental Research 1, 50 (2021).

noise-biased qubit

Coherent state
$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Eigenstate of photon loss operator

 $a|\alpha\rangle = \alpha |\alpha\rangle$

quasi-orthogonal

$$\langle -\alpha | \alpha \rangle = e^{-2|\alpha|^2} \sim 0$$

error due to photon loss

N. Frattini, PhD thesis 2021 <u>https://elischolar.library.yale.edu/gsas_dissertations/332/</u> Fig. 4.1a

$$\begin{aligned} |\pm X\rangle &= \frac{1}{\sqrt{2}} \left(\left| \mathcal{C}_{\alpha}^{+} \right\rangle \pm \left| \mathcal{C}_{\alpha}^{-} \right\rangle \right) \to |\pm \alpha\rangle \\ |\pm Y\rangle &= \frac{1}{\sqrt{2}} \left(\left| \mathcal{C}_{\alpha}^{+} \right\rangle \pm i \left| \mathcal{C}_{\alpha}^{-} \right\rangle \right) \to \frac{1}{\sqrt{2}} \left(|+\alpha\rangle \mp i |-\alpha\rangle \right) \\ |\pm Z\rangle &= \left| \mathcal{C}_{\alpha}^{\pm} \right\rangle \to \frac{1}{\sqrt{2}} \left(|+\alpha\rangle \pm |-\alpha\rangle \right) \end{aligned}$$

 $\begin{array}{l} \mbox{Phase-flip rate:} \\ |\langle -\alpha |a|\alpha\rangle|^2 = |\alpha|^2 e^{-4|\alpha|^2} \sim 0 & \mbox{exponentially suppressed} \\ \mbox{Bit-flip rate:} \\ |\langle \mathcal{C}^-_\alpha |a|\mathcal{C}^+_\alpha\rangle|^2 \sim |\alpha|^2 & \mbox{polynomial increase} \end{array}$

Can focus on most likely error 📫

P. Aliferis et al., Phys. Rev. A78, 052331 (2008).

N. Frattini, PhD thesis 2021

N. Frattini, PhD thesis 2021

• Operators in cat basis: ex.
$$\begin{pmatrix} \langle \mathcal{C}_{\alpha}^{+}|a|\mathcal{C}_{\alpha}^{+} \rangle & \langle \mathcal{C}_{\alpha}^{+}|a|\mathcal{C}_{\alpha}^{-} \rangle \\ \langle \mathcal{C}_{\alpha}^{-}|a|\mathcal{C}_{\alpha}^{-} \rangle & \langle \mathcal{C}_{\alpha}^{-}|a|\mathcal{C}_{\alpha}^{-} \rangle \end{pmatrix} = \alpha \begin{pmatrix} 0 & r^{-1} \\ r & 0 \end{pmatrix} = \alpha \begin{pmatrix} \frac{r+r^{-1}}{2} \end{pmatrix} \mathbf{X} - \mathrm{i}\alpha \begin{pmatrix} \frac{r-r^{-1}}{2} \end{pmatrix} \mathbf{Y}$$

Gate operations

Preparation of cat state $\beta \qquad |\alpha\rangle + |-\alpha\rangle$ $|0\rangle \qquad |0\rangle \qquad time$

NEC

R_x gate

β

 $|0\rangle$

P. T. Cochrane et al., Phys. Rev. A **59**, 2631 (1999). H. Goto, Sci. Rep. 6, 21686 (2016). S. Puri et al., npj Quantum Info. **3**, 18 (2017).

single-photon drive @
$$\omega_p/2$$

$$\mathcal{H}_{\rm KPO}/\hbar = -\frac{K}{2}a^{\dagger}a^{\dagger}aa + \beta(a^{\dagger^2} + a^2) + E_x(t)(a + a^{\dagger})$$

 $|\alpha\rangle + |-\alpha\rangle$

produces energy difference between $|\alpha\rangle$ and $|-\alpha\rangle$

$$\langle \alpha | E_x(t)(a+a^{\dagger}) | \alpha \rangle = 2\alpha E_x(t)$$
$$\langle -\alpha | E_x(t)(a+a^{\dagger}) | -\alpha \rangle = -2\alpha E_x(t)$$

R_z gate

temporarily remove the two-photon drive. Grim et al., 2020 🔍

Two-qubit R_{zz} gate

- H. Goto, Sci. Rep. 6, 21686 (2016).
 S. Puri et al., npj Quantum Info. 3, 18 (2017).
 H. Chono et al., Phys. Rev. Res. 4, 043054 (2022).
- 4. S. Puri et al., Sci. Adv. 6, eaay5901 (2020). [bias preserving C-NOT gate]
- R_{zz} gate (in α basis) based on linear coupling ($a_1a_2^+ + a_1^+a_2$) was proposed in Refs. [1,2].
 - requires temporal control of the coupling g(t) to turn on/off the coupling
- Effective turn on/off using conditional-driving [3]
 - Iarge detuning between two KPO's effectively turns off the coupling in idle state
 - additional two-photon drive at sum (or diff.) frequency induces the coupling
 - realize R_{zz} gate (in α basis)

H. Chono et al., Phys. Rev. Res. 4, 043054 (2022). https://journals.aps.org/prresearch/abstract/10.1103 /PhysRevResearch.4.043054 Fig. 1

$$\begin{split} \hat{H} &= \sum_{j=1,2} \hat{H}_{j} + \hat{H}_{I} + \hat{H}_{g}, \end{split}$$

$$\begin{split} \hat{H}_{j} &= -\frac{K}{2} \hat{a}_{j}^{\dagger 2} \hat{a}_{j}^{2} + \frac{P}{2} (\hat{a}_{j}^{\dagger 2} + \hat{a}_{j}^{2}), \end{aligned}$$

$$\begin{split} \hat{H}_{I} &= g (\hat{a}_{1} \hat{a}_{2}^{\dagger} \mathrm{e}^{-\mathrm{i}\Delta_{12}t} + \hat{a}_{1}^{\dagger} \hat{a}_{2} \mathrm{e}^{\mathrm{i}\Delta_{12}t}), \end{aligned}$$

$$\begin{split} \hat{H}_{g} &= \frac{P_{g}(t)}{2} (\hat{a}_{1}^{2} \mathrm{e}^{-\mathrm{i}\Delta_{12}t} + \hat{a}_{1}^{\dagger 2} \mathrm{e}^{\mathrm{i}\Delta_{12}t}), \end{aligned}$$

 $\begin{array}{c|ccccc} |\alpha\rangle |\alpha\rangle & |\alpha\rangle |-\alpha\rangle & |-\alpha\rangle |\alpha\rangle & |-\alpha\rangle |-\alpha\rangle \\ \begin{pmatrix} e^{-\mathrm{i}\theta/2} & 0 & 0 \\ 0 & e^{\mathrm{i}\theta/2} & 0 & 0 \\ 0 & 0 & e^{\mathrm{i}\theta/2} & 0 \\ 0 & 0 & 0 & e^{-\mathrm{i}\theta/2} \end{pmatrix} \end{array}$

static coupling: 'effectively off due to fast oscillation cancel the oscillation to turn on the coupling

$$\alpha_1 \to \alpha_1 + \delta \alpha_1 e^{\mathbf{i} \Delta_{12} t}$$

additional two-photon drive:

Stabilization and operation of a Kerr-cat qubit

A. Grimm *et al*., Nature **584**, 205 (2020).

- Use SNAIL's 2nd order and 3rd order nonlinearities to realize two-photon drive and Kerr nonlinearity.
- Readout after transforming to Fock-base qubit (adiabatically turn off the pump) or freq. conversion using 3-wave mixing.
- phase-flip time >> bit-flip time (qubit with biased noise)
- two-photon drive increases phase-flip time by >30 times compared to T2 of FQ (stabilization)

A. Grimm *et al.*, Nature **584**, 205 (2020). <u>https://www.nature.com/articles/s41586-020-2587-z</u> Figs. 1d, 1e, and 1f

R_x gate

A. Grimm *et al.*, Nature **584**, 205 (2020). <u>https://www.nature.com/articles/s41586-020-2587-z</u> Figs. 2a, 2b, and 2c

phase-flip time ~100 us

bit-flip time ~2.6 us \Orchestrating a brighter world

Table of Contents

- 1. Brief overview
- 2. Introduction of KPO
 - theoretical description
- 3. Application of KPO in FTQC
- 4. Application of KPO in quantum annealing
- 5. Summary

Quantum bifurcation machine

Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

Hayato Goto

Sci. Rep. 6, 21686 (2016).

Network of KPO's: connected by linear coupling

$$H_{1} = \hbar \Delta a^{\dagger} a + \hbar \frac{K}{2} a^{\dagger 2} a^{2} - \hbar \frac{p}{2} (a^{2} + a^{\dagger 2})^{-1}$$
$$H = \sum_{i=1}^{N} H_{1}^{(i)} - \hbar \frac{\xi_{0}}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} J_{i,j} (a_{i}^{\dagger} a_{j} + a_{i} a_{j}^{\dagger})$$

 $\Delta_{i} = \xi_{0} \sum_{i=1}^{N} \left| J_{i,j} \right| \qquad \text{for the vacuum state to be the ground state}$

increase *p* slowly

final $p \gg \Delta, \xi_0 |J_{ij}|$

$$\left|s_1\sqrt{p/K}\right\rangle\otimes\cdots\otimes\left|s_N\sqrt{p/K}\right\rangle\qquad s_i=\pm 1$$

$$E_{\text{corr}}(\{s_i\}) = \hbar \frac{p}{K} \sum_{i=1}^{N} \Delta_i - \hbar \xi_0 \frac{p}{K} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} s_i s_j$$

should be minimized!

Orchestrating a brighter world **NEC**

Quantum bifurcation machine

Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

Hayato Goto

Sci. Rep. **6**, 21686 (2016).

KPO (quantum)

finds global minimum

Quantum effect?

H. Goto, Sci. Rep. **6**, 21686 (2016). https://www.nature.com/articles/sr ep21686 Figs. 3a and 3b classical

trapped in local minimum

H. Goto, Sci. Rep. **6**, 21686 (2016). https://www.nature.com/articles/srep21686 Fig. 2

numerical simulation for 4-spin problem

1000 instances with random J_{ii}

Ising machine using OPO

For theoretical comparison between QbM and CIM, see Goto, J. Phys. Soc. Jpn. **88**, 061015 (2019).

OPTICAL PROCESSING

A coherent Ising machine for 2000-node optimization problems

Takahiro Inagaki,^{1*} Yoshitaka Haribara,^{2,3,4} Koji Igarashi,⁵ Tomohiro Sonobe,^{4,6} Shuhei Tamate,⁴ Toshimori Honjo,¹ Alireza Marandi,⁷ Peter L. McMahon,⁷ Takeshi Umeki,⁸ Koji Enbutsu,⁸ Osamu Tadanaga,⁸ Hirokazu Takenouchi,⁸ Kazuyuki Aihara,^{2,3} Ken-ichi Kawarabayashi,^{4,6} Kyo Inoue,⁵ Shoko Utsunomiya,⁴ Hiroki Takesue^{1*}

T. Inagaki et al., <u>https://www.science.org/doi/10.1126/science.aah4243</u> Fig. 2A

T. Inagaki et al., https://www.science.org/doi/10.1126/science.aah4243 Fig. 4 Simulated bifurcation machine

H. Goto *et al*, Sci. Adv. **5**, eaav2372 (2019), also H. Goto *et al*, Sci. Adv. **7**, eabe79532 (2021).

SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED PHYSICS

Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems

Hayato Goto*, Kosuke Tatsumura, Alexander R. Dixon

H. Goto *et al*, Sci. Adv. **5**, eaav2372 (2019). <u>https://www.science.org/doi/10.1126/sciadv.aav2372</u> Eqs. 3, 4, and 5 H. Goto *et al*, Sci. Adv. **5**, eaav2372 (2019). https://www.science.org/doi/10.1126/sciadv.aav2372 Fig. 2

All-to-all connectivity

- Minor embedding
 - V. Choi, Quantum Inf Process **10**, 343 (2011).
- Measurement and feedback
 - T. Inagaki *et al*., Science **354**, 603 (2016).
- Bus coupling
 - T. Onodera *et al.,* NPJ Quantum Inf. **6**, 48 (2020).
- Parity mapping
 - W. Lechner *et al.*, Sci. Adv. **1** e1500838 (2015).

Lechner-Hauke-Zoller (LHZ) scheme

RESEARCH ARTICLE Sci. Adv. **1**, e1500838 (2015).

QUANTUM MECHANICS

A quantum annealing architecture with all-to-all connectivity from local interactions

Wolfgang Lechner,^{1,2}* Philipp Hauke,^{1,2} Peter Zoller^{1,2}

 Define new pseudo-spins for all pairs of spins in the network by their parity (parallel or anti-parallel)

example: 3 spins

Lechner-Hauke-Zoller (LHZ) scheme

 $\sum_{i < j}^{N} J_{ij} \sigma_{iz} \sigma_{jz} \xrightarrow{\text{Mapping}} \mathcal{H}_{p} = \sum_{k}^{K (= {}_{N}C_{2})} + \sum_{l}^{K - N + 1} C_{l}$ Original problem penalty term to make the energy of the blue region higher

Lechner-Hauke-Zoller (LHZ) scheme

W. Lechner et al., Sci. Adv. 1 e1500838 (2015).

- \blacklozenge Express the product (parity) of two Ising spins σ using one physical spin $\tilde{\sigma}$
- Realize programmable all-to-all connectivity with local interactions.
- Simple correspondence between physical and logical spins

ARTICLE

Received 1 Nov 2016 | Accepted 28 Apr 2017 | Published 8 Jun 2017

DOI: 10.1038/ncomms15785 OPEN

Quantum annealing with all-to-all connected nonlinear oscillators

Shruti Puri¹, Christian Kraglund Andersen², Arne L. Grimsmo¹ & Alexandre Blais^{1,3}

Nature Commun. 8, 15785 (2017).

Josephson junction as a 4-body coupler

S. Puri et al., Nature Commun. **8**, 15785 (2017). <u>https://www.nature.com/articles/ncomms15785</u> Fig. 4 S. Puri et al., Nature Commun. **8**, 15785 (2017). <u>https://www.nature.com/articles/ncomms15785</u> Fig. 5

4-body coupler using a Josephson junction

$$H_{\text{total}} = \sum_{k=1..4} H_{\text{JPO},k} + H_{\text{coupler}} + g \sum_{k} s_k (a_k^+ - a_k) (a_g - a_g^+)$$

$$H_{\text{JPO},k} = \hbar \omega a_k^+ a_k - \frac{E_C}{12} (a_k^+ + a_k)^4 + \frac{\hbar \omega \delta E_J}{4E_J} (a_k^+ + a_k)^2 \cos(\omega_{p,k} t)^4$$
$$H_{\text{coupler}} = \hbar \omega_g a_g^+ a_g - \frac{E_{C_g}}{12} (a_g^+ + a_g)^4 \qquad \text{coupler nonlinearity}$$

◆ Coupler's nonlinear term turns to the effective 4-body coupling by unitary transform $U_g = e^{g' \sum_k s_k (a_k^+ a_g - a_k a_g^+)}$ under small $g' = g/\hbar(\omega - \omega_g)$ $(a_g^+ + a_g)^4 \rightarrow \left(a_g^+ + g' \sum_k s_k a_k - 2g'^2 a_g + \dots + \text{h.c.}\right)^4$ $= (a_g^+ + a_g)^4 + 24g'^4 \left(a_1^+ a_2^+ a_3 a_4 + a_1 a_2 a_3^+ a_4^+ + \sum_{k < l} a_k^+ a_k a_l^+ a_l\right) + \dots$

4-body coupler using a Josephson junction

Effective Hamiltonian for JPOs in the frame rotating at $\omega_{p,k}/2$

$$H_{\text{total}} \to H'_{\text{total}} \simeq \sum_{k} H_{\text{JPO},k} + H'_{\text{coupler}} -g^{(4)} \left(a_{1}^{+}a_{2}^{+}a_{3}a_{4} + a_{1}a_{2}a_{3}^{+}a_{4}^{+} + \sum_{k < l} a_{k}^{+}a_{k}a_{l}^{+}a_{l} \right)$$

- Condition for pump frequencies $\omega_{p,1} + \omega_{p,2} = \omega_{p,3} + \omega_{p,4}$ keeps the 4-body coupling terms stationary
- Other coupling terms oscillate fast and are ignored
- 4-body coupling constant $g^{(4)} = 2g'^4 E_{C_q}$
 - g': Effective coupling constant between a JPO and the coupler
 - E_{C_q} : Capacitive energy of the coupler
 - Decreasing capacitance of the coupler can increase $g^{(4)}$ without increasing g^{\prime} much

Advantages

- no on-chip coupler
 - J_{ij} and C are controlled by the phase of the injection microwave.
- neighboring KPO's have different resonance frequencies
 - smaller crosstalk
- state stabilized after pump becomes sufficiently high

Issues

Performance benchmarking with conventional quantum annealing

M. J. Kewming et al., New J. Phys. **22**, 053042 (2020).

- decoherence during adiabatic evolution*?
- requires the same microwave engineering as gate-based QC without error correction

*effect of photon loss is investigated in S. Puri et al., Nature Commun. **8**, 15785 (2017).

JPO in single-photon Kerr regime (KPO)

• Kerr nonlinearity K >> photon-loss rate $\kappa \sim 2\pi \times 0.1$ MHz

how to design Kerr nonlinearity?

lumped-element circuit

$$\omega_0' = rac{1}{\sqrt{(L_{
m r}+L_{
m J})C_{
m r}}} \qquad \mathcal{C}_{
m J} ext{ is neglected.}$$

distributed-element circuit

Kerr nonlinearity

$$\mathcal{H} = \hbar \omega_k \left(a^{\dagger} a + \frac{1}{2} \right) - E_{\rm c} B_k (a^{\dagger} + a)^4$$

$$B_k = \frac{(1/4)\cos^2(kd)}{1 + 2kd/\sin(2kd)}$$

Wallquist et al., PRB **74**, 224506 (2006). Bourassa et al., PRA **86**, 013814 (2012).

NEC

Device fabrication

JPO in single-photon Kerr regime (KPO)

JPO in single-photon Kerr regime (KPO)

- Kerr coefficient (flux-bias dependent) can be extracted from the power dependence of reflection coefficient.
- Perfect agreement with theory
- Can be used as power calibration of probe microwave

$$\mathcal{H} = \hbar\omega_0 a^{\dagger} a - \hbar \frac{K}{2} a^{\dagger} a^{\dagger} a a$$

Coupled KPO's

Air-bridges

- suppress slot-line mode
- create superconducting loop to suppress x-talk

(b) Pump + DC Port Port RP Output Cin Cin Cin Port LP Composition Compositi

Coupling between KPO's

- avoided level crossing due to coupling capacitance
- single-photon Kerr regime ($K_{L,R} \sim 10 \kappa_{L,R}$)

transmission from L to R

(independent) parametric oscillation phase diagram consistent with theory [1]

parametric oscillation phase diagram

[1] N. Bartolo et al., Phys. Rev. A **94**, 033841 (2016).

Correlated parametric oscillation

simultaneously apply pulsed pump and detect the output phase

probability of the same phase is higher (ferromagnetic correlation)

Controllable coupling with pump phase

S. Masuda et al., Phys. Rev. Appl. **18**, 034076 (2022). T. Yamaji et al., arXiv:2212.13682.

- Demonstration of controllable coupling by pump phase (no on-chip control!)
- ◆ Agree with numerical simulation by adjusting (unknown) dephasing rate

Summary

Superconducting Kerr parametric oscillator

derived from Josephson parametric amplifier/oscillator

\blacksquare single-photon Kerr regime (K >> κ)

New paradigm for quantum information processing

- Quantum annealing
 - quantum bifurcation machine
- Fault-tolerant quantum computing
 - hardware efficient
 - biased noise qubit

This presentation is partly based on results obtained from a project, JPNP16007, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

\Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.

Orchestrating a brighter world

