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FIDELITY IS THE LIMITING FACTOR

Google supremacy experiment  
[Arute et al.  Nature 574, 505 (2019)] 
99.8% noise 
30,000,000 shots 
 

IBM’s best 
[Jurcevic et al.  arXiv:2008.08571 (2020)] 
Quantum Volume of 64 
A 6x6 circuit has 1/3 noise rate 
What’s the point of a 65 qubit device?!

2 [IBM blog, Jan. 2020]
[IBM "Hummingbird" chip, 65 qubits, low connectivity]



Effort unscalableError rates 
not improving

Extreme  
complexity

OPERATING QUANTUM COMPUTERS IS HARD
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2014: 0.25%
2019: 0.3%
2022: 0.5%



AVENUES TOWARDS HIGHER FIDELITY

• Remove sources of decoherence - can lead to less flexibility / more complex designs 
• Outrun decoherence - operate faster if coherence times remain fixed 
• Avoid the impact of decoherence by smart stragies - can be found by optimization 
• Remove coherent errors by better understanding and then compensating them  
• Address any unknown unknowns

4

What can the community do?

Applications of optimal quantum control



GOALS OF GATE DESIGN

Mimimize gate error, 1-F 
Make it work under realistic conditions 
Use systematic mathematical methods towards this goal
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Find pulses making gates that are good enough in the shortest time possible to beat decoherence 

Take this Use this Make this



CONTENT

• Optimal control for classical systems 
• An example for quantum control : GRAPE 
• Arbitrary parameterizations for sparisity: RedCRAB and GOAT 
• The need to close the loop 
• Randomized Benchmarking+ Combined characterization and control 
• An application: Ultrafast single-qubit gates in a transmon 
• Digital twins and AI applications
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OPTIMAL CONTROL FOR CLASSICAL SYSTEMS
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EXAMPLES

• Optimal control historically invented for steering 
classical objects: Ships, rockets, planes 

• e.g. Apollo mission design problem 
 constrained to Newton’s 

equations as running cost + trajectory from 
earth to the moon as boundary conditions 

• Note: Most modern control works with feedback 
which assumes non-invasive measurement 

• This lecture: Control without real-time feedback

min Fuel[ ⃗r(t), · ⃗r(t)]
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Rockets and ships



OPTIMAL CONTROL OF A CLASSICAL SHO

Setting: Find (dimensionless) force  in the EOM  that steers the system 
from  to   

Naive solution: Use the HO Green’s function  and use it to solve for the 

coordinate and velocity. This gets us 

 and 

  

This allows us to find  e.g. by Fourier analysis

f(t) ··x(t) + Ω2x(t) = f(t)
x(0), ·x(0) x(T), ·x(T)

G(τ) =
θ(τ)
Ω

sin Ωτ

x(T) − x(0)cos ΩT −
·x(0)
Ω

sin Ωt = ∫
T

0
dt′ 

sin Ω(T − t′ )
Ω

f(t′ )

·x(T) − ·x(0)cos ΩT + Ω ·x(0)sin Ωt = ∫
T

0
dt′ cos Ω(T − t′ )f(t′ )

f(t)

9

Does not get simpler than that



OBSERVATIONS FROM THE SIMPLEST PROBLEM

• LHS of the equations describes the drift of the system, i.e., the dynamics without 
external force  

• Optimal control is used to direct / correct the drift 
• There are usually multiple solutions 

• In practice, one would impose an energy constraint or penalty  

• It turns out that if a time-optimality is reached, there are fewer solutions

∫
T

0
dt f2(t) ≤ A

10



VARIATIONAL CALCULUS FOR OPTIMAL CONTROL

• Suppose we have a set of dynamical equations  for  where x are the state 
variables and u are the controls.  

• We want to optimize a cost function at the end  for a trajectory following the dynamical 
equation 

• We introduce Lagrange multipliers to enforce that constraint and thus optimize 

 

• We introduce the associated Hamilton’s function (aka the adjoint function) 
 and rewrite by integration by parts 

·x = f [x(t), u(t), t] 0 ≤ t ≤ T

J[x(T), T]

J̄ = J[x(T), T] + ∫
T

0
dt λT(t)(f [x(t), u(t), t] − ·x)

H[x(t), u(t), t] = λ(t)f [x(t), u(t), t]

J̄ = J[x(T), T] − λT(T)x(T) + λT(0)x(0) + ∫
T

0
dt {H[x(t), u(t), t] + ·λx(t)}

11

A generalizable technique



EULER-LAGRANGE EQUATIONS

 

We vary u and by this we vary x and find  

Note that the  and that  and  are not independent given the EOM - which is fixed by the Lagrange multiplier  

The Lagrange multiplier thus follows the end-value problem (i.e., a time-inverse initial value problem)  and 

  

This is a necessary condition. If it is satisfied, we have  . For an extremum we need  

These equations constitute the Pontryagin maximum principle (PMP)

J̄ = J[x(T ), T] − λT(T )x(T ) + λT(0)x(0) + ∫
T

0
dt {H[x(t), u(t), t] + ·λx(t)}

δJ̄ = ( ∂J
∂x

− λT) δx
t=T

+ λTδx
t=0

+ ∫
T

0
dt [( ∂H

∂x
+ ·λT) δx +

∂H
∂u

δu]
δx(0) = 0 δx δu

·λT = −
∂H
∂x

= − λT ∂f
∂x

λT(T ) =
∂J

∂x(T )

δJ̄ = ∫
T

0
dt

∂H
∂u

δu
∂H
∂u

= λT ∂f
∂u

= 0 ∀t
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PRACTICAL STRATEGY

Start from an initial guess for the controls 

Solve  

 and  

Compute the gradient  and upgrade u 

according to the gradient 
Repeat until converged 

Homework: Apply this to the driven harmonic oscillator going 
from rest at x=0 to being at rest at x(T).  

·x = f [x(t), u(t), t]
·λT = −

∂H
∂x

= − λT ∂f
∂x

λT(T) =
∂J

∂x(T)
∂H
∂u

= λT ∂f
∂u

∀t
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OPTIMAL CONTROL FOR THE SCHRÖDINGER EQUATION
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PROBLEM SETTING

Want to transfer  up to global phase, so  

Dynamical variables x: A representation of  

Dynamical equation: Schrödinger, so  with WLOG a bilinear Hamiltonian 

This allows us to directly apply the PMP 

Challenge: Analytically calculate the gradient  

|ψ(0)⟩ ↦ |ψf⟩ J = ⟨ψf |ψ(T)⟩
2

|ψ(t)⟩

f = − i (H0 + ∑
i

ui(t)Hi) |ψ(t)⟩

∂H
∂u

= λT ∂f
∂u

∀t

15

State-to-state transfer - Schrödinger equation as a dynamical system



ANALYTICAL GRADIENTS

Assume a piecewise constant pulse (real or good approximation) 

 with   

Rewrite the performance index as 

 

with the propagated initial state  and the back-propagated target 
 

Now for small enough time step we can show 

 - voilà, analytical gradient 

U(T) = UNUN−1⋯U2U1 Uk = exp (−iδt(H0 + ∑
i

ui( j)Hi))
J = ⟨ψf |UNUN−1⋯U2U1ψ0⟩

2

= ⟨U†
m+1⋯U†

Nψf |Um⋯U1ψ0⟩
2

≡ ⟨λm |χm⟩
2

|χm⟩
|λm⟩

∂J
∂ui( j)

= − iδt ⟨λj Hi ρj⟩

16

For time-sliced pulses



RECIPE

Start from an initial guess of the controls 

Compute the propagated initial states  and the back-propagated target states  by iterative 
matrix multiplication 
Compute the gradient of the the performance index und update the performance index 
Repeat until converged 

Note: Can also be done for gates, then the performance index is 

 … made phase-

insensitive my maximising 

|ρm⟩ |ρm⟩

Uf − U(T)
2

2
= Tr [(U†

f − U†(T)) (Uf − U(T))] = 2d − 2TrU†
f U(T)

TrU†
f U(T)

17



UPDATE STRATEGIES

Krotov is monotonically convergent, but the 
steps take longer 
All techniques can be boosted by L-BFGS, 
exact gradients and many other tricks …

18



APPLIED PERSPECTIVE

19



CONTROL FOR NONLINEARITY AND SPECTRAL 
CROWDING
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Focus Article

Counteracting systems of diabaticities using DRAG controls:
The status after 10 years(a)

L. S. Theis1, F. Motzoi2(b), S. Machnes1 and F. K. Wilhelm1

1 Theoretical Physics, Saarland University - 66123 Saarbrücken, Germany
2 Department of Physics and Astronomy, Aarhus University - Aarhus, Denmark

received 13 September 2018; accepted 13 September 2018
published online 3 October 2018

PACS 02.30.Yy – Control theory
PACS 03.67.-a – Quantum information
PACS 82.56.Jn – Pulse sequences in NMR

Abstract – The task of controlling a quantum system under time and bandwidth limitations is
made difficult by unwanted excitations of spectrally neighboring energy levels. In this article we re-
view the Derivative Removal by Adiabatic Gate (DRAG) framework. DRAG is a multi-transition
variant of counterdiabatic driving, where multiple low-lying gapped states in an adiabatic evolution
can be avoided simultaneously, greatly reducing operation times compared to the adiabatic limit.
In its essence, the method corresponds to a convergent version of the superadiabatic expansion
where multiple counterdiabaticity conditions can be met simultaneously. When transitions are
strongly crowded, the system of equations can instead be favorably solved by an average Hamilto-
nian (Magnus) expansion, suggesting the use of additional sideband control. We give some exam-
ples of common systems where DRAG and variants thereof can be applied to improve performance.

focus  article Copyright c© EPLA, 2018

Introduction. – The Derivative Removal by Adiabatic
Gate (DRAG) technique [1–3] was developed in the con-
text of the emerging technology of high-precision super-
conducting quantum devices. With coherence times of
these systems improving dramatically towards the end of
the first decade in twenty-first century, it became a promis-
ing possibility to address desired quantum transitions
in the systems with increasing spectral resolution [4–7].
However, very fast pulses were needed which was a prob-
lem both in terms of microwave shaping technology in a
highly cooled environment [8] and in terms of the rich level
structure of nonlinear superconducting quantum circuits,
which involves unwanted coupling to so-called “leakage”
energy levels [9,10]. The basic DRAG idea was to augment
a simple smooth Rabi pulse Ω(t)σ̂x with an off-quadrature
auxiliary pulse with a simple dependence ∝ ∂tΩ(t)σ̂y/∆,
where ∆ is the gap energy to the nearest excited state.

The basic mechanism behind the correction is the
removal of diabatic errors so that the system couples
to the leakage subspace only adiabatically, returning

(a)Contribution to the Focus Issue The Physics of Quantum En-
gineering and Quantum Technologies edited by Roberta Citro, J.
Gonzalo Muga and Bart A. van Tiggelen.
(b)E-mail: felix.motzoi@phys.au.dk

back to the computational (“qubit”) space by the end
of the pulse. Such ideas have a rich history, including
the first application to removing leakage from STIRAP
pulses [11], to its generalization to a broader class
of problems in [12,13], to the formulation in terms of
transitionless dynamics in [14], and finally to a general
categorization under the framework of “Shortcuts to
Adiabaticity” (STA) [15].

Although DRAG is closely related to these ideas, they
are not interchangeable and functionally solve different
kinds of problems in quantum mechanics: I) The DRAG
framework is a convergent expansion that allows remov-
ing series of errors that differently affect different por-
tions of the Hilbert space and operators therein. Thus,
functionally, it is perhaps closest to the transitionless
superadiabatic driving technique of [16], based on the
superadiabatic expansion [17,18]. II) The expansion al-
lows the solution of not just one STA but can remove a
system of diabatic errors to a manifold of unwanted low-
lying gap states. In this sense, it is a powerful exten-
sion of STA methodology. III) While STA usually deals
with problems of adiabatic passage techniques, DRAG is
equally well applicable to resonant driving problems, also
known as spectral selectivity problems, where one can
think of an “adiabatic elimination” of fast subspaces while

60001-p1



EVOLUTION OF NONLINEARITIES
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In order to describe the energy-level structure of the quantum LCJ circuit in Fig.

2 one introduces n̂ = �ih̄ @

@�
to get a Schrödinger equation for the circuit wave function

 in the phase variable �:

[EC (�ih̄
@

@�
� ng)

2 + U(�)]  = E  (7)

U(�) = �EJ0 cos(�) + EL

(�� �e)2

2
(8)

Figure 3: Level spectrum (band structure) of the Cooper pair box (CPB) as a function of the
o↵set charge ng for di↵erent ratios EJ0/EC [25]: (a) charge qubit [23]; (b) Quantronium [15];
(d) Transmon [25]. ”Historically”, the CPB evolved from the original charge qubit (1999) [11]
via the quantronium (2002) [15, 203, 206] and CPB-cQED (2004) [21, 23], to the transmon
(2007) [25] and the Xmon (2013) [149, 150]. The charge dispersion decreases exponentially
with EJ0/EC , while the anharmonicity only decreases algebraically with a slow power law in
EJ0/EC [25, 203] - this makes it possible to individually address selected transitions even for
quite large ratios of EJ0/EC . Figure adapted from [25].

With respect to Eq. 8 and Fig. 2 there are two distinct cases:

(1) EL=0 (L ⇠ 1) : U(�) becomes a pure cosine periodic potential, and the wave

function has the form  =  (�, ng) eing�, where  (�, ng) is a Mathieu function. The

energy levels form bands E(ng) in the ”momentum” direction [22, 25]. The dispersion

of these band depends on the ratio EJ0/EC , as shown in Fig. 3. Of special interest is

that a large capacitance C results in flat low-lying bands, making the circuit insensitive

to charge fluctuations (as well as to charge control via a DC gate voltage) [25].

14

Bigger qubits have better temporal coherence,
but get closer to the (semiclassical) HO



DRAG: GETTING MOST OUT OF NONLINEARITY

22

Transmon 
= weakly nonlinear

12

ω

ωω
S

01

Spectral limitation: 
Duration/bandwith uncertainty

�2

tg

Heisenberg relation of control

Crossover: Coherence vs bandwidth limit

Lucero et al., 2008;  Chow et al., 2009Tradeoff: Polynomial loss of nonlinearity / exponential reduction of dispersion



WHY DOES IT WORK?

Iterative frame cancellation: 
Pi-pulse on the |0> to |1> transition + adiabatially returning in the |1> to |2> transition 
However: Going through the pulse (as a frame change) leads to a counterdiabatic force 
proportional to the pulse derivative 
Apply another force to correct it: Needs to go from 0 to 0 so the frames match in the 
beginning and the end 
Wait, we introduce a new force: repeat 
(Drawing on the board) 

23



DRAG, WAHWAH AND FRIENDS

24

u1(t)cos!t+ u2(t) sin!t

u2 =
u̇1

�2

Simple parameterization of 
numerical result: 
Implementable  pulse

DRAG

Motzoi et al., 2009; Gambetta et al., 2011; Lucero et al., 2010;  Chow et al., 2010; Theis et al., 2018; Schutjens et al., 2012; Vesterinen et al., arXiv:2014; Theis et al. 2015

WAHWAH

Last year’s Nature is this year’s subroutine (J. Martinis)

Weak AnHarmonicity With  Average Hamiltonian = WAHWAH



FEW-PARAMETER WORKFLOW

25

Experimental task Numerical optimization

Simple parameterizationCalibration on 
experimental toolkit

Experiment
Fully optimized pulses? 
Characterization problem



BASIC OPTIMAL CONTROL
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Goal: For N qubits, generate SU(2N)
Standard choice: Single qubit rotations+ perfect entangler - go figure how to make them

Find ui(t) to reach 

with search based on analytical
gradients

Ĥ = Ĥ0 +
X

i

ui(t)ĤiMore systematic: H0: Drift, ui: Control fields,  
Hi: Control Hamiltonians

System fully controllable if Lie closure: hHi|i = 0 . . . Ni = su(2N )

„Go figure“ is a bad idea, think about the right technique

S.J. Glaser et al., EPJ D 2015

Find controls that maximize fidelity

How to debug something 
complex, non-intuitive?Ugate = U(t,0) = 𝕋 exp (−i∫

t

0
dτ H(τ))



ERROR LANDSCAPE

Extremum is a flat point 
Strong curvature in the landscape leads to strong 
sensitivity to error 
hard to debug due to multitude of parameters 
.... but at least theory matches experiment

27



TUNEUP CHALLENGE

Fabrication uncertainty 
Transfer function uncertainty 
Best detector:  The qubit itself 
One solution: Be like the other fields (Heeres et al., 2016): Extreme precision at limited bandwidth 
(not exploring all of OC potential)

28

Ĥ = Ĥ0 + Ĥjunk +
X

i

ui(t)
⇣
Ĥi + Ĥi,junk

⌘

Unwanted degrees of freedom: i) non-computational energy levels ii) spurious DOFs
[Markovian decoherence usually beaten by speed]

a)
Chip Fabrication Errors

Chip

Electronics chain with
response function H(ω)

Arbitrary
waveform
generator

Qubit Resonator

∆ωb,i

∆δi gd,i+∆gi
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δ 2
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C
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ω
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ω
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Qubit 1 - Bus coupling error ∆g1/g1 [%]

b)

2

a b c

FIG. 1. Experimental system and demonstration of control strategy. a, Schematic drawing of the experimental system. A �/4 coax-stub
cavity resonator is coupled to a transmon and readout resonator on a sapphire substrate. Input couplers close to the transmon and cavity
deliver the respective time-dependent microwave control fields ✏T (t) and ✏C(t). b, Lower panel: optimized transmon and oscillator control
waveforms of length approximately 2⇡/� to take the oscillator from vacuum to the 6-photon Fock state. Solid (dotted) lines represent the
in-phase (quadrature) field component. Upper panel: oscillator photon-number population trajectory versus time conditioned on transmon
in |gi. A complex trajectory occupying a wide range of photon numbers is taken to perform the intended operation. c, Characterization
of the oscillator state using Wigner tomography (bottom) and transmon spectroscopy (top), where grey dashed lines indicate the transition
frequency associated with the first 7 Fock states. The single peak in the spectroscopy data directly reveals the oscillator’s population due to
the dispersive interaction giving a frequency shift of 6�/2⇡ ⇡ 13 MHz.

model of the system, its successful application is powerful
evidence that the Hamiltonian used accurately captures the
system dynamics over a broad range of driving conditions.

The physical system used in our experiments is schemat-
ically depicted in Fig. 1a. The seamless aluminum �/4
coax-stub cavity resonator [23] with a fundamental fre-
quency 4452.6 MHz has an energy relaxation time of
2.7 ms. A single-junction transmon with transition frequency
5664.0 MHz and anharmonicity of 236 MHz is dispersively
coupled to the oscillator, resulting in an interaction term
�â†â|eihe|, with �/2⇡ = �2.2 MHz. Crucially, additional
higher order terms are determined accurately through a sep-
arate set of calibration experiments (Table SI, Supplemen-
tary Information). Control of the system is implemented
through full in-phase/quadrature (IQ) modulated microwave
fields centered on the transmon (oscillator) frequency and
sent to the pin coupling to the transmon (oscillator) mode.
In the rotating wave approximation, this results in the drive
Hamiltonian Hc/~ = ✏Ca + ✏T�� + h.c. Modulation using an
arbitrary waveform generator allows the coe�cients ✏C and
✏T to be arbitrary complex-valued functions of time.

As an example application of grape to our system, we find
✏C(t) and ✏T (t) such that, starting from the vacuum, after 500
ns of driven evolution the system ends up in the state |g, 6i
(Fig. 1bc). This highly nontrivial operation, e↵ectively real-
izing a |6ih0| coupling term on the oscillator, is enabled by
the dispersive Hamiltonian using only linear drives on the
transmon and the oscillator.

Using this control strategy, we can target the creation and
manipulation of a logical qubit encoded in an even-parity
four-component cat subspace. Omitting normalization, the

code states in this subspace can be written as

|±ZLi = |↵i + |�↵i ± |i↵i ± |�i↵i (1)

where we use ↵ =
p

3. These code words are both of even
photon number parity, and are distinguished by their photon
number modulo 4:

|+ZLi =
X

n

↵4n

p
(4n)!

|4ni (2)

|�ZLi =
X

n

↵4n+2
p

(4n + 2)!
|4n + 2i (3)

Single photon loss, the dominant error channel for the sys-
tem, transforms both code words to states of odd photon
number parity. The encoded information, however, is pre-
served by this process as long as one can keep track of the
number of photons that have been lost. Since parity mea-
surements can be performed e�ciently and non-destructively
[24], single photon loss is a correctable error [5].

Using grape, we create a universal set of gates on our
logical qubit, which includes X and Y rotations by ⇡ and
⇡/2, as well as Hadamard and T gates. These pulses are
each 1100 ns ⇡ 2.4 ⇥ 2⇡/� in length with a 2 ns time res-
olution, although 99% of the spectral content lies within a
bandwidth of 33 MHz (27 MHz) for the transmon (oscilla-
tor) drive (Fig. S2, Supplementary Information). Each op-
eration is designed to begin and end with the transmon in
the ground state. Additionally, we create encode (Uenc) and
decode (Udec) pulses to transfer a bit of quantum informa-
tion between our transmon {|g, 0i, |e, 0i} subspace, which we



ADAPTIVE HYBRID OPTIMAL CONTROL
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System
design

System
characterisation

Open-loop
gradient search

Closed-loop
pulse

calibration

Pulse
update

Measure
F

Experiment

D.J. Egger and FKW, PRL 2014

J. Kelly et al., PRL 2014

Good benchmarking 
needed

Simple pulses 
needed



Standard Randomized Benchmarking

| 0i C1 ⇤ · · · Cy ⇤ Cy+1 ⇤

I applying random Clifford gate sequences of length y

I inverting the sequence – single Clifford gate efficiently found
via Gottesman–Knill theorem ) scalability

I sample average fidelity �y over few different sequences
I robust against State Preparation And Measurement errors
I error amplification

RANDOMIZED BENCHMARKING

• Clifford gates: Normalizer of Pauli group 
• Gottesman-Knill theorem: Can be efficiently simulated 
• Can be inverted (Clifford group) 
• Random sequence leads to depolarizing channel (twirling) 

• Fidelity related to survival probability

30

qubit at the end of each sequence to this expected result to
reveal errors.

For the experiment, we must determine an implementa-
tion of the Clifford unitaries in terms of the elementary
gates available. There exist efficient algorithms that trans-
late an arbitrary n-qubit Clifford unitary into order of
n2= logðnÞ elementary one- and two-qubit gates [33,34],
each of which can then be mapped into experimentally
available operations. However, for two qubits we used the
following optimized strategy: By listing compact circuits
of one-qubit rotations and phase gates Ĝ, we determined
for each of the 720 Clifford unitaries (modulo Pauli matri-
ces) a circuit with the minimum number of phase gates to
implement the corresponding Clifford unitary. On average,
1.5 phase gates and 6.5 effective !

2 pulses (1 times the
number of !

2 pulses plus 2 times the number of ! pulses
about the #x̂ or #ŷ axes) are required per Clifford unitary
including the Pauli randomization.

The process of generating and implementing ran-
dom sequences at each length is repeated in order to
ensure randomization of the unitaries and their associ-
ated implementation errors. For our two-qubit bench-
marking demonstration, we used the set of lengths
f1; 2; 3; 4; 5; 6g and generated between 15 and 55 random
sequences of each length. We implemented approxi-
mately 100 runs for each sequence to determine its
probability of error.

The experimental runs yield an average probability of
error EðlÞ for each length l shown in Fig. 1. To analyze
EðlÞ we start by assuming that each unitary’s error be-
haves as a completely depolarizing channel (see, for
example, Ref. [35], p. 378) characterized by error proba-
bility "g independent of its gates or position in the
sequence. Similarly, we assume an overall error probabil-
ity "m for state preparation, the last inverting unitary and
its Pauli randomization, and measurement. In this case the
mean of EðlÞ with respect to repetitions of the experiment
satisfies

!EðlÞ ¼ 1

"n
½1& ð1& "n"mÞð1& "n"gÞl'; (1)

where "n ¼ 2n

2n&1 ("2 ¼ 4
3 for our two-qubit benchmark).

Fitting the average probability of error to the above
equation (red line fit to circles, Fig. 1) we find "g ¼
0:162ð8Þ. Assuming that experimental observations are
consistent with the simple exponential behavior suggested
by this formula, we use it as the defining formula for the
EPO of a random Clifford unitary, regardless of the actual
behavior of errors. In particular, we associate the EPO
with the decay parameter of the error probabilities !EðlÞ
rather than a particular exact parameter of the underlying
physical errors. If the simple depolarizing assumption
does not hold, then !EðlÞ may exhibit nonexponential
and transient behaviors; however, the randomization is
intended to induce behavior that matches the one implied

by this assumption. In the experiment we were not able to
implement sufficiently long sequences to clearly observe
stationary behavior or to determine the extent to which
the behavior is nonstationary [22].
To isolate the EPG of the phase gate Ĝ, we generated a

second set of sequences by inserting Ĝ after each random
Clifford unitary. The final inverting Clifford unitary is
chosen in the same way as before, taking into account
the effect of the additional Ĝ gates to ensure that the final
state is a predictable computational basis state in the
absence of errors. The average probability of error mea-
sured for the implementation of this experiment should
also satisfy Eq. (1), but with a different value of "g due
to the additional gate in each step. In an ideal experiment
"m should be the same, but the model must take into
consideration that it might have changed, for example,
due to experimental drifts. The EPG is given by

"G ¼ 1

"n

!
1& 1& "n"

0
g

1& "n"g

"
; (2)

where "0g is the probability of error of a step consisting of a
random Clifford unitary with an extra Ĝ inserted.

FIG. 1 (color online). The red circles show one minus the
average probability of measuring an error at the end of sequences
of random Clifford unitaries !EðlÞ as a function of the sequence
length l in the two-qubit benchmarking experiment. By fitting
the data to the expression in Eq. (1) (red, upper line), we find an
error per random Clifford unitary "g ¼ 0:162ð8Þ. The prepara-
tion/measurement error, "m, is 0.086(22) (recall that measure-
ment error includes the error for an additional inverting unitary
before detection). Blue squares show the results for running
random sequences with an additional Ĝ inserted after each
Clifford unitary. Fitting this data to the same functional form
(blue, lower line) and using Eq. (2) yields an error of "Ĝ ¼
0:069ð17Þ and "m ¼ 0:132ð26Þ. The error bars in the plot repre-
sent the standard deviation of the mean of the sequences’
frequency of correct measurement outcome. Error bars for
inferred parameters are based on bootstrap resampling [22,38].
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Fidelity measurement

• Avoid waiting for 
initialization

• measure correlations 
instead of absolute 
results

2

"

AG

AD

Measurements

0./4. Determine parameters

1. Set parameters 2. Perform experiment
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FIG. 1. (a) A general qubit gate tuneup loop. In conven-
tional tuneup (b), the qubit is initialized before measuring the
e↵ect of {G}. In restless tuneup (c), the qubit is not initial-
ized but mn�1 is used to estimate the initial state (|m̃n�1i).
(d) Benchmark of various contributions to the time per iter-
ation in conventional and restless tuneup, without and with
technical improvements (see text for details).

ample, when the net ideal gate operation is a bit flip, we
can define the error fraction

"R =
NX

n=2

(mn = mn�1)/N. (1)

We demonstrate restless tuneup of DRAG pulses [19]
on the transmon qubit recently reported in [12]. We
choose DRAG pulses (duration ⌧p = 20 ns) for their
proven ability to reduce gate error and leakage [20, 21]
with few-parameter analytic pulse shapes, consisting of
Gaussian (G) and derivative of Gaussian (D) envelopes of
the in- and quadrature-phase components of a microwave
drive at the transition frequency f between qubit lev-
els |0i and |1i. These components are generated using
four channels of an arbitrary waveform generator (AWG),
frequency upconversion by sideband modulation of one
microwave source, and two I-Q mixers. The G and D
components are combined inside a vector switch matrix
(VSM) [22] (details in [23]). A key advantage of this
scheme using four channels is the ability to independently
set the G and D amplitudes (AG and AD, respectively),
without uploading new waveforms to the AWG.

To measure the speedup obtained from the restless
method, we must take the complete iteration into ac-

count. The traditional iteration of a tuneup routine in-
volves: (1) setting parameters (4 channel amplitudes on a
Tektronix 5014 AWG); (2) acquiring N = 8000 measure-
ment outcomes; (3) sending the measurement outcomes
to the computer and processing them; and (4) miscel-
laneous overhead that includes determining the parame-
ters for the next iteration, as well as saving and plotting
data. In Fig. 1(d), we visualize these costs for an exam-
ple optimization experiment. We intentionally penalize
the restless method by choosing a large number of gates
(⇠ 550). Even in these conditions, restless sequences re-
duce the acquisition time from 1.60 to 0.12 s. However,
the improvement in total time per iteration (from 1.98 to
0.50 s) is modest due to 0.38 s of overhead.
We take two steps to reduce overhead. The 0.23 s

required to send all measurement outcomes to the com-
puter and then calculate the error fraction is reduced to
< 1 ms by calculating the fraction in real time using the
same FPGA system that digitizes and processes the raw
measurement signals into bit outcomes. The 0.09 s re-
quired to set the four channel amplitudes in the AWG
is reduced to 1 ms by setting AG and AD in the VSM.
With these two technical improvements, the remaining
overhead is dominated by the miscellaneous contribu-
tions (40 ms). This reduces the total time per restless
(conventional) iteration to 0.16 s (1.64 s).
A quantity of common interest in gate tuneup is the

average Cli↵ord fidelity FCl, which is typically measured
using CRB. In CRB, {G} consists of sequences of NCl

random Cli↵ords, including a final recovery Cli↵ord that
makes the ideal net operation identity. Following [24],
we compose the 24 Cli↵ords from the set of ⇡ and ±⇡/2
rotations around the x and y axes, which requires an
average of 1.875 gates per Cli↵ord. Gate errors make "C
increase with NCl as [25, 26]

1� "C = A · (pCl)
NCl +B. (2)

Here, A and B are constants determined by state prepa-
ration and measurement error (SPAM), and 1 � pCl is
the average depolarizing probability per gate, making
FCl = 1

2
+ 1

2
pCl. Extracting FCl from a CRB experi-

ment involves measuring "C for di↵erent NCl and fitting
Eq. (2). However, for tuning it is su�cient to optimize "C
at one choice of NCl, because "C(NCl) decreases mono-
tonically with FCl [9].
Due to leakage, CRB sequences and "C are not well

suited for restless tuneup. Typically, there is significant
overlap in readout signals for the first- (|1i) and second-
(|2i) excited state of a transmon. A transmon in |2i can
produce a string of identical measurement outcomes un-
til it relaxes back to the qubit subspace. If the ideal net
operation of {G} is identity, the measurement outcomes
can be indistinguishable from ideal behavior. By choos-
ing the recovery Cli↵ord for restless randomized bench-
marking (RRB) sequences so that the ideal net operation
of {G} is a bit flip, we penalize leakage and make "R a
suitable cost function.

We now examine the suitability of the restless scheme
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FIG. 4. Two-parameter restless tuneup using a two-step
optimization, first at NCl = 80 (a) and then at NCl = 300
(b). Contour plots show a linear interpolation of "R. The
starting point, intermediate result and final result are marked
by orange, yellow and white dots, respectively. (c) CRB of

tuned pulses (FCl = 0.9991), and compared to F (T1)
Cl = 0.9994

and FCl = 0.995 for reference.

2-par. (AG, AD) 3-par. (AG, AD, f)

conv. restl. conv. restl.

FCl 0.9991 0.9991 0.9990 0.9990

�FCl 3 · 10�5 3 · 10�5 0.0001 0.0001

⌧ 660 s 59 s 610 s 66 s

�⌧ 110 s 11 s 110 s 13 s

Nit 400 370 370 420

�Nit 70 70 70 80

F (T1)
Cl 0.9994 0.9993

T1 21.4 µs 19.3 µs

TABLE I. Tuning protocol performance. Mean (overlined)
and standard deviations (denoted by �) of FCl, time to con-
vergence ⌧ , and number of iterations Nit for restless and con-
ventional tuneups with 2 and 3 parameters. Average T1 mea-
sured throughout these runs and corresponding average F (T1)

Cl
are also listed.

0.00003) for restless (conventional) tuneup [23], consis-
tent with the value obtained from CRB.

The robustness of the optimization protocol is tested
by interleaving tuneups with CRB and T1 measurements
over 11 hours (summarized in Table I, and detailed
in [23]). Both tuneups reliably converge to FCl = 0.9991,

close to the T1 limit [29]:

F (T1)

Cl
⇡ 1

6

⇣
3 + 2e�⌧c/2T1 + e�⌧c/T1

⌘
= 0.9994, (3)

with ⌧c = 1.875 ⌧p. However, restless tuneup converges
in one minute while conventional tuneup requires eleven.
It remains to test how restless tuneup behaves as ad-

ditional parameters are introduced. Many realistic sce-
narios also require tuning the drive frequency f . As a
worst case, we take an initial detuning of ±250 kHz.
The initial stepsize in the first (second) step is 100 kHz
(50 kHz). The 3-parameter optimization converges to
FCl = 0.9990± 0.0001 for both restless and conventional
tuneups. We attribute the slight decrease in FCl achieved
by 3-parameter optimization to the observed reduction in
average T1.
In summary, we have developed an accurate and robust

tuneup method achieving a tenfold speedup over the state
of the art [9]. This speedup is achieved by avoiding qubit
initialization by relaxation and using real-time correla-
tion of measurement outcomes to build the cost function
for numerical optimization. We have applied the restless
concept to the tuneup of Cli↵ord gates on a transmon
qubit, reaching a T1-dominated fidelity of 0.999 in one
minute, verified by conventional randomized benchmark-
ing and gate set tomography. We have shown experimen-
tally that the method can detect fractional reductions in
gate error with nearly constant signal-to-noise ratio. Im-
mediate next experiments will extend the restless concept
to the tuneup of two-qubit gates and measurement oper-
ations, and to simultaneous tuneup of the physical qubits
comprising a logical qubit.
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ADAPTIVE HYBRID OPTIMAL CONTROL
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gradient search
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F
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D.J. Egger and FKW, PRL 2014

J. Kelly et al., PRL 2014
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GOAT:  Making pulses as 
simple as possible 

(but not simpler)
= get away from piecewise constant



• Direct method:
– Parametrize the control functions
– Evaluate at several points
– Figure out the next set of points to sample
– Repeat  

• Pro: Great for closed loop calibration
• Con: Slow (very slow for many 

parameters)

Direct vs. Gradient methods
• Requires computing the gradient
• Start somewhere, follow the gradient 

• Pro: 
– Fast
– Can handle large parameter spaces 

• Con: 
– +computing the gradient
– “Krotov” - Based on the Pontryagin Max. Principle 

(PMP)
• Non-trivial mathematically – calculus of variations
• Requires backwards-in-time propagation of  

an adjoint state
 

L. S. Pontryagin, V. G. Bol’tanskii, R. S. Gamkre-lidze, and E. F. Mischenko.  
The Mathematical Theory of Optimal Processes. Pergamon Press, New York (1964)



OPEN-LOOP OPTIMAL CONTROL WITH GOAT 
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We follow the gradient using standard algorithms, 
e.g. LBFGS.

From                                          we compute 
We propagate 

to get 

Finally,

S.M., E. Assémat, D. Tannor and F. K. Wilhelm, Phys. Rev. Lett. 120, 150401 (2018)



Qubit 1 Qubit 2

GOAT RESULTS: CROSS-RESONANCE GATES

Current best: 0.992 at 160ns 

Single carrier : 0.999 (coherent) 
70ns for 9 Fourier components  
15ns for 167 components  

Two carriers, i.e. drive both qubits  
Result: 27ns 0.998 (coherent) 
PWC with 330MHz filter 
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GOAT CAN RESOLVE IBM‘S FREQUENCY COLLISIONS

IBM utilizes fixed-frequency transmon qubits with static resonator coupling. 
Current limitations in transmon manufacturing limit control of qubit frequency. 
Inevitable result is high probability of freq. collisions in 50+ qubit chips. 
Example: 01 transition of qubit A close to 12 transition of neighboring qubit B. 
Issue resolvable with GOAT optimal control: 
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Identity gate when 01A = 01B 
Both qubits driven  
Fidelity (coherent): 0.997  

CNOT gate for identical  qubits
(coupling to resonator different)
Fidelity (coherent): 0.992  

WAHWAH+

Tradeoff: Improve fabrication or accept having to do this



GOAT was used to do this
Xmon-like system, 10ns single 

qubit gate 
2 Gaussians per control channel

6 Fourier components, full system model
10-12 infidelity (ignoring dephasing)

Parametric gate with tunable 
coupler



C3: Combined 
characterization and 

control



BACK TO THE DRAWING BOARD

If we need pulse calibration,  
it means our model is wrong 

We learn nothing about the model  
from the calibration 
We need an error budget to improve design 
of next-gen hardware 
We need a good model for a detailed error budget 

A Good Model 
Predicts behavior for the actions we care about  
(gates in a multi-qubit system) 
To the accuracy we care about (0.9999) 

From a Good Model, best achievable gates  
and error budget are derivable

40

Caïn / Henri Vidal



• Best gates given current model-based via GOAT optimal control
• Model-free calibration with advanced algorithms 
• Improve model based on observed pulse fidelities, using GOAT
• C3 converges when model is Good, i.e. accurately predicts fidelities. 

From a Good Model, best achievable gates and error budget are 
derivable.

Construct gate 
sequences to evaluate 

pulses

Pulse-set 
performance 

database

Calibrate pulses 
(model free)

Find optimal 
pulses for 

universal gate set

Construct gate seq-s 
to evaluate pulses

Initial 
model

Update model 
parameters

Find model which 
which best matches 
pulse performance

C3 – Combined Calibration and Characterization  

Nonintuitive arrows: 
Machine learning



FULL MODEL MATCHING
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6/16

Model learning

Models

simple uncoupled Duffing oscillators
intermediate added coupling

full same as black-box

The dataset

We store sequences and results as
D = {Sk(↵j) ! mj,k}

Model match score

Simulate m̃n(�,↵) and compare with (noisy!)
experiment

fLL(D|�) = 1

2N

NX

n=1

"✓
mn � emn

e�n

◆2

� 1

#

where �̃n is the std of m̃n

and � are the model parameters.



FINDING MANY PARAMETERS AT THE SAME TIME 
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8/16

Model parameters

I Qubit frequencies !i

I Anharmonicities �i

I Coupling g

I System temperature T

I Field conversion '0

I Confusion pi!j



GOING BEYOND DRAG

trace out quantum speed limit 
7-fold reduction of error 
strong deviation from DRAG

2

x

y

0

1

Θ

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9
samples

time (ns)

Ωx

Ωy

(a) (b)

am
pl

itu
de

 (a
rb

. u
.)

a  ,bn n

Figure 1. (a) The dashed lines show the analytic DRAG
pulse, with ⌦x in red and ⌦y in blue. The solid lines show the
same pulse sampled by the AWG. The optimization param-
eters an and bn of the piecewise-constant pulse are depicted
as modifications of the sampled DRAG pulse by grey arrows
and dashed lines. (b) Ideal Bloch sphere trajectory of the ⌦x-
pulse. The rotation angle ⇥ is given by the total area under
the pulse.

thesizing this signals by an arbitrary waveform generator
(AWG) results in real-time control over phase, frequency
and amplitude [44].

In a frame rotating at the qubit frequency, the trans-
mon Hamiltonian is given by

Ĥ
R

h̄
= � |2ih2|+⌦x(t)

2

2X

j=1

�̂
x
j,j�1+

⌦y(t)

2

2X

j=1

�̂
y
j,j�1, (1)

where terms rotating at twice of the qubit frequency have
been omitted. The i

th level of the transmon is denoted
by |ii. The operators �̂

x
j,j�1 =

p
j (|jihj � 1|+ |j � 1ihj|)

and �̂
y
j,j�1 = i

p
j (|jihj � 1|� |j � 1ihj|) couple adjacent

energy levels. Therefore, ⌦x-pulses at the resonance fre-
quency !01 drive rotations about the x�axis of the Bloch
sphere spanned by {|0i , |1i}, see Fig. 1. The total area of
the pulse envelope defines the rotation angle ⇥. The rota-
tion axis can be freely chosen in the xy-plane by changing
the phase of the drive signal �. By selecting � = n⇡/2

(n = 0, 1, . . .) and ⇥ = ⇡/2, ±X/2 and ±Y/2 single-qubit
operations are realized.

Since transmons have a low anharmonicity, fast pulses
with a wide frequency response lead to leakage out of
the computational subspace defined by the two lowest-
lying energy eigenstates. This process is suppressed by
derivative removal gates (DRAG) [6, 45, 46], designed
to reduce leakage and phase errors caused by inadvertent
driving of the |1i $ |2i transition. The first-order DRAG
correction (Fig. 1(a); dashed lines) to a Gaussian shaped
pulse ⌦x(t) = A exp

�
�t

2
/(2�

2
)
 

with amplitude A and
width �, is

⌦DRAG(t) = ⌦x(t) + i
�

�

d⌦x(t)

dt
. (2)

The correction in the imaginary component of ⌦DRAG(t)
with the scaling parameter � eliminates the spectral
weight of the pulse at the |1i $ |2i transition.

Although being designed for fast, short gates DRAG
fails to produce high fidelities when the gate duration is
lower than ⇠ 10/� [6]. To overcome this, either higher-
order correction terms or pulses with more degrees of
freedom have to be employed. To find suitable pulses
we use a parameterization that applies a correction �n =

an + ibn at each point in time to a calibrated DRAG
pulse, similar to common optimal control approaches [17,
47]. This results in a list of piecewise-constant control
amplitudes

⌦n = ⌦DRAG(n�t) + �n, (3)

as shown in Fig. 1(a). The time discretization �t is
naturally given by the sampling rate of the AWG gen-
erating the pulse envelope. We use a Zurich Instru-
ments HDAWG [48] operating at a sampling rate of
fs = 2.4 GS/s. The optimization parameters are the am-
plitude corrections an and bn to the n-th sample of ⌦x

and ⌦y, respectively, with the initial guess an = bn = 0.

A. Pulse parameter optimization

Since the parametrization in Eq. (3) no longer permits
an individual optimization of each parameter we simulta-
neously optimize all of them using the Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES) optimization
algorithm [39] (see Methods section). It is based on gen-
erating sets of parameters Sk that describe k = 1, ...,�

different pulse shapes as candidate solutions. The param-
eters in Sk are defined by the parametrization of the pulse
shape. The fidelity of each candidate solution is evalu-
ated by a cost function, which serves to generate a new
set of candidate solutions. This process is repeated until
convergence is reached and the best solution is found.

As a cost function we use randomized benchmarking
(RB) sequences with a fixed number of m Clifford gates
[27] averaged over K sequence realizations, see Fig. 2(a).
This corresponds to evaluating only a single point in a
standard RB measurement [49, 50] which reduces the
runtime to evaluate the cost function. We construct the
Clifford gates by composing ±X/2 and ±Y/2 pulses, each
based on the pulse shape defined by Sk, see Fig. 2(b).
The average ground state population p0(m) of the final
qubit state defines the cost function, which is maximized
by the optimizer. To estimate the fidelity of the opti-
mized pulses we finally perform a full randomized bench-
marking measurement.

B. Fidelity estimates of optimized short pulses

We optimize single-qubit pulses of varying duration
ranging from N = 10 to N = 26 samples per pulse, corre-
sponding to a duration ⌧ = N ·fs ranging from 4.16 ns to
10.83 ns. We use K = 20 sequences of m = 120 Clifford
gates. Each sequence is measured 1000 times using the

3

Figure 2. (a) Single-qubit Clifford gate sequence of length
m. (b) Schematic visualization of the composition of a Clif-
ford gate from ±X/2,±Y/2 pulses based on a specific pulse
shape. The ⌦x and ⌦y components are displayed in red and
blue, respectively. (c) Simulated datasets showing the cost
function for m = 120 Clifford gates as a point on the full
randomized benchmarking curves for several fidelities. (d)
Experimental data of a full optimization run for a 23 dimen-
sional parameter space. The blue points represent the cost
function of each candidate pulse shape based on a unique pa-
rameter set Sk evaluated using 20 Clifford sequences. The red
points represent the average cost function at each iteration of
the optimizer.

restless measurement protocol [38] at a rate of 100 kHz.
We first use the CMA-ES based optimization procedure
to calibrate DRAG pulses, defined in Eq. (2). For this
we choose the amplitude A, the DRAG parameter � and
the sideband frequency !ssb as optimization parameters,
i.e. S = {A,�,!ssb}. The results of our CMA-ES based
calibration is shown in Fig. 3 (blue circles). The result-
ing fidelities compare well with standard sequential error
amplification calibration methods [46]. The optimized
DRAG pulse then serves as initial guess for a second op-
timization step in which we extend S by the amplitude
corrections to S 0

= {A,�,!ssb, a1, b1, ..., aN , bN}.

4 5 6 7 8 9 10 11
pulse length τ (ns)

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Cl
iff

or
d 

ga
te

 fi
de

lit
y

10 12 14 16 18 20 22 24 26
pulse samples N

DRAG (simulation)
PWC (simulation)

DRAG
PWC

T₁ limit: 0.99995 - 0.99986 

10/Δ

Figure 3. Fidelity measured with RB as a function of
pulse length for optimized DRAG (blue circles) and piecewise-
constant pulses (red squares). Simulated fidelities are shown
with red dashed and blue dotted lines (see Methods). The
dashed black line indicates the T1 limit on the gate fidelity.

For gates longer than ⌧ = 6 ns we find a constant
fidelity of F = 99.87(1)% both for the DRAG pulse and
the piecewise-constant optimized pulse, see Fig. 3. For
gates shorter than 6 ns we observe a decrease of fidelity
for the DRAG pulses consistent with the 10/� limit (see
the grey line in Fig. 3), while the fidelity of the piecewise-
constant optimized pulses remains constant even for the
shortest gate duration. Drive power limitations prevent
us from implementing gates shorter than 4 ns.

To assess the influence of leakage on the shortest
4.16 ns pulse displayed in Fig. 4(a) and Fig. 4(b) we follow
the leakage randomized benchmarking protocol outlined
in [37]. The leakage RB analysis requires measuring the
probabilities pj to occupy the states |ji with j 2 {0, 1, 2}
after the standard RB gate sequences. The probability
p�1 = p0 + p1 = 1 � p2 of remaining in the computa-
tional subspace �1 = {|0i , |1i} is fitted using the decay
model A + B�

n
1 to find the average leakage per Clifford

L1 = (1�A) (1� �1). Here n is the number of Clifford
gates while A, B, and �1 are fit parameters.

Using the extracted leakage decay B�
n
1 we fit p0(n)

using the double decay model A0 + B�
n
1 + C0�

n
2 to find

the average Clifford gate fidelity

F =
1

2
[�2 + 1� L1] . (4)

The leakage rate of the optimized piecewise-constant
pulses L

PWC
1 = 0.044(25)% is five times lower than the

leakage rate of the DRAG pulse L
DRAG
1 = 0.29(3)%,

see Fig. 4(c). Additionally, we observe a reduction
of standard errors from 1 � �

DRAG
2 = 1.49(15)% to

1� �
PWC
2 = 0.44(15)%, see Fig. 4(d). The resulting av-

erage fidelity per Clifford gate, computed using Eq. (4),
is FPWC = 99.76(8)% for the piecewise-constant pulse
and FDRAG = 99.11(8)% for the DRAG pulse.
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Figure 4. (a) In-phase and (b) quadrature amplitude com-
ponent of the pulse envelope before (blue) and after the
piecewise-constant optimization (red), as represented in AWG
memory. (c) Remaining population in the computational sub-
space �1 for randomized benchmarking measurements using
pulses based on the DRAG and optimized piecewise-constant
pulses. The decay constant �1 characterizes the population
remaining in �1. (d) Full leakage RB analysis characteriza-
tion using a double decay with decay constants �1 and �2 for
leakage and standard errors, respectively.

III. DISCUSSION

Our results show that optimal pulse shaping using
a piecewise-constant basis improves the gate fidelity of
short pulses, reducing leakage errors by a factor of seven
and standard errors by a factor of three. At longer gate
durations, controlling the pulse shapes beyond analyti-
cal DRAG pulses does not improve the fidelity. All our
pulses, aside from the DRAG pulses shorter than 5.5 ns,
are limited to an error per gate of 0.13(1)% on average.

The fidelities that we measured are, however, not lim-
ited by the T1-time, which sets an error per gate limit
of 5 · 10�5, see Fig. 3. Instead, the fidelity limitation we
observe may be explained by a dephasing proportional
to the Rabi rate of the drive [46], as illustrated by the
simulated fidelities shown in Fig. 3 (see Methods).

The improvements with more complex pulse shapes
come at the expense of long calibration times. Optimiz-
ing the longest pulse shape with N = 26 samples (i.e. 55

parameters) took up to 25 hours. To understand how this
time can be reduced we have measured the time taken to
create the pulse sequences, initialize the control electron-
ics, and gather the data (see Methods section). Creating
the pulse sequences and initializing the control electron-
ics at each iteration consumes the most time. Gathering
the required data is only a small fraction of the total ex-
perimental run time. With further improvements of the
control electronics, for instance an internal generation of
the 100 MHz side-band modulation, we expect further
significant reductions in the overall runtime of the opti-
mizer.

Our work demonstrates that optimizing – or calibrat-
ing – pulses with up to 55 parameters is experimentally
feasible. This opens up the possibility to explore more

Figure 5. (a) Experimental runtime consisting of processing
the pulse sequences (red right triangles), initializing the setup
(blue circles) and measuring the cost function (grey left trian-
gles). (b) Time per iteration of CMA-ES split into those three
categories. In one iteration the cost function of each candidate
solution in the whole population of size � is measured. Error
bars are smaller than the size of the data points. (c) Time per
evaluation, as a function of population size. Each candidate
solution in a given population requires one evaluation. As the
population size increase the experimental run-time to evalu-
ate a full iteration increases and the average time to evaluate
a candidate solution decreases.

elaborate optimal control methods on superconducting
qubit platforms. We plan to extend this scheme to multi-
qubit gates, where system dynamics are more complex
and analytic optimal control methods are not as devel-
oped as for single-qubit gates [16]. While a piecewise-
constant parametrization, as done for single-qubit gates,
is harder due to the long duration of two-qubit gates,
other analytical pulse representations, such as its spec-
tral components, will be explored to improve on gate per-
formance.

IV. METHODS

To optimize all parameters of the pulse shape simul-
taneously on the experimental setup, we have chosen
the Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) optimization algorithm as a noise-resilient
and time-efficient optimizer [39]. This algorithm opti-
mizes a population of � candidate solutions which are
normally distributed in the parameter space. The cen-
ter and spread of the distibution are chosen as starting
conditions of the optimization.

Generally, the choice of the population size � is a trade-
off between fast convergence speed and avoiding local op-
tima [39]. However, experimentally we have to consider
the time required to process the pulse sequences (i.e. the
time required to compile the pulse sequences into AWG
files), to initialize the hardware (including data transfer)
and to measure the cost function for different population
sizes �, see Fig. 5. We benchmark these three times using
a set of 20 Clifford gate sequences per candidate solution,
each with 100 Clifford gates. By dividing the total time
required to evaluate the entire population by � we calcu-
late the effective time required to asses a single candidate
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