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Lectures:

» 3h theory + 2h tutorials

» Email me for anything you may need: cpeset@ucm.es
Assumptions:

» Basic knowledge of QFT

> Focus on EFT

Ask, interrupt and don’t be shy. This course is for you to take
some ideas home!
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M. Neubert, "Renormalization Theory and Effective Field Theories",
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I. Z. Rothstein, "TASI lectures on Effective field Theories", TASI 2002
A. Pich, "Effective field theory"

Online courses
Link to video lectures on EFTs by Toni Pich

Link to MIT online course on Effective Field Theories by I. Stewart
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Further materials

Mathematica packages for automated computations
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Commun. 256 (2020) 107478, [arXiv:2001.04407], V. Shtabovenko,
R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016)
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Comput. Phys. Commun. 64 (1991) 345-359

@ FeynHelpers, V. Shtabovenko, "FeynHelpers: Connecting FeynCalc
to FIRE and Package-X", Comput. Phys. Commun., 218, 48-65,
2017, [arXiv:1611.06793], H. H. Patel, “Package-X 2.0: A
Mathematica package for the analytic calculation of one-loop
integrals,” Comput. Phys. Commun. 218 (2017), 66-70
[arXiv:1612.00009 [hep-ph]].
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https://arxiv.org/abs/1612.00009
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Outline of this course

@ Lecture I: Renormalization in QFT

Amplitudes, divergences, regularization, renormalization, masses

@ Lecture II: Introduction to EFTs

QFT as an EFT, building an EFT Lagrangian, operators, operator basis,
Wilson coefficients, matching

@ Lecture lll: Loops and logs in EFTs

EFT loops, renormalization of composite operators, operator mixing,
method of regions, summing logs

Disclaimer:

The aim of these lectures is not to give a formal description of either,
neither to provide formal proofs of the statements we make, but rather
to give some insight in the main characteristics of renormalization and
effective field theories. For a robust and formal description of the topics
in these lectures we refer to the bibliography above.



Lecture I: Renormalization in QFT

Lagrangian and interactions

Quantum field theory describes systems which are both in the
quantum (small) and relativistic (fast) regimes.
= fundamental particles: ¢(x), S[¢] = [ d*xL(p(x))

Symmetries: the behavior of a physical system is governed by the
presence of a symmetry

= key tool to unlock the secrets of physics from hadronic
interactions to electroweak physics and the Standard Model, from
superconductivity to Bose—Einstein condensates.



Lecture I: Renormalization in QFT

Lagrangian and interactions

S-matrix: out{q1,q2, - - -, gm|p1, - - - pn)in describes observables in
particle physics
c related to the correlator G via LSZ reduction formula

G(q1,- - ,qm; Pty -, Pn)

=11 / el | / d*x;e™ P9 0| T{p (1) - - dym)(x1) - - - B(xa) }|0),
i=1 j=1

= n-point function: (0|7{¢(x1) - - - ¢(x,)}|0)
= perturbation theory + Wick’s theorem

Computations are reduced to knowing the interaction Lagrangian
and the two-point function (Feynman propagator).



Example: 2 scalar model

Ao
—o°®
7 ®

L= %(ﬁugba“qb — m?¢?) + %(aucpaqu _ M) -

2 real scalar particles ¢ and ®, of masses m and M

What are the symmetries of this Lagrangian?

Note: this Lagrangian can be seen as a simplified version of a fermion interacting
theory such as QED or QCD or a Yukawa theory where all particles have been
substituted by real scalars.

(see Neubert’s lectures for QED/QCD computations)



Example: 2 scalar model

1
L= (0u00" m?¢?) + %((9“@8“(1) — M*®?) — %&p
= natural units (A = ¢ = 1) only

mass dimensions
Action is dimensionless: fquD@e‘S

s=[ase = 10=a, 6= 8= ) = M) = D = 1.

so that we can make predictions using perturbation
theory in the usual way. This means A < E, M, m.



Example: 2 scalar model

é¢2q)

L= %(amaﬂgb —m*¢*) + %(@fb@’@ — M*®?) — 5

p2,m2+m p2—M 2+m




¢¢ scattering at tree level

> X X
s PINQ /\
Mandestam variables:

s= (1 +P2)2a t = (pi —P3)27 u = (p —1!74)2

= related by s + ¢ + u = 4m?

MTL _ _Az

_7S_M2-|-(s—>t)+(s—>u).



Automated amplitude computations

Mathematica packages to compute amplitudes:
@ FeynRules: produces the Feynman rules for a given Lagrangian

@ FeynArts: produces the Feynman diagrams for a given process
at a given order

@ FeynCalc: powerful package to compute weak coupling S-matrix
elements (FeynHelpers includes interfaces to PackageX for loop
computations)



Divergences: regularization and
renormalization

Interacting fields cause
> divergences appear in the intermediate steps
> observables are of course finite
» need for a controlled computational method



Cut-off regularization

/ d* 1
(2m)* p2 —m? +in

_: A 2 A2 2 _ A
~ lim 7’2/ dlpl—L—— = = (AVA o [ Y2
Al 47 (P + m2)§ 8 m
im*> [2A* m?
~— 2 i+ —+0
(@) [ 1+ o + O )}

» Perturbativity is completely broken by terms like ~ In /& 4A2



Dimensional regularization

/ d* 1
(2m)* p?2 —m? +in

— lim D dPp 1 B LiT(32) /m? N\ 2
= D2 _ 2o 2 -
2m)P p?> —m + in (47) di

4—D

:7(;";2)2[1)274 1+1n +O(D 4)]

> pisan arbitrary scale = perturbativity is preserved

Choice: fi* = p?£-.
» Scaleless integrals vanish: de Py = =0.

> Preserves gauge invariance and chiral symmetries.

Therefore itis regularization that physicists have cho-
sen to perform computations.



Dimensional regularization

/ d*p 1
@m)* p? —m? +in
4—D

~4-D d°p 1 _ 2"F(FTD) (m2 )T

= lim - =-—m
o=t ) CmP 2 —m i (4mp

4

im? 2 m*
= 7(4ﬂ_)2 [m 71+1nE+O(D74)]

The dimension of fields and parameters changes:
Example: 2 scalar theory

S:/deE

= [Ll=D, [gl=[0]=—— [m=[M=1 [\=



The interaction Lagrangian

Lint = Z C;O;
° characterize the theory
Qo made of the fields and their derivatives

= For D > 2, adding fields or derivatives increases the O dimension

Historical classification:
> relevant (O] <D = interaction grows for E — 0
» marginal [O] =D = interaction constant for E — 0
» irrelevant [O] > D = interaction decreases for E — 0

Example: 2 scalar theory



The interaction Lagrangian

Lint = Z C;O;
° characterize the theory
Qo made of the fields and their derivatives

= For D > 2, adding fields or derivatives increases the O dimension

Historical classification:
> relevant (O] <D = interaction grows for E — 0
» marginal [O] =D = interaction constant for E — 0
» irrelevant [O] > D = interaction decreases for E — 0

Example: 2 scalar theory
Relevant: 0, = ¢?, ¢/ =-%, 0,=®% o=-"2 0;=¢% =-2

)

Marginal: 0, = 9,¢0"¢, =1, Os=0,20"®, cs=



The interaction Lagrangian

Lin=Y_ GO

@ Irrelevant operators: need higher dimensional operators for
renormalization = non- izable

@ Interactions modify the naive scaling operators and couplings:
= [0]=[0]p=a+~ anomalous dimension
May switch terms e.g. from marginal to relevant or irrelevant.

= logarithmic effects lead to e.g. asymptotic freedom and
confinement in QCD.



Renormalization scheme

Make all the pieces individually finite.
= help organize the computations & optimizes computational

effort
1) Define renormalized fields and parameters that make the 2-point

function and vertices finite.
Noninteracting quantities x, are called “bare”

Example: 2 scalar theory

4—D
¢0 = \/Z¢(i), my = Z,-,,I’I’l7 (I)() =V Z@q), M() = ZM/V[7 )\0 = Z)\ﬂT)\

» Z functions will absorb the divergences according to the
scheme

» We define renormalized couplings with integer dimensions



The renormalized Lagrangian

Example: 2 scalar theory
1 - 1% 2,2 1 y 252 )‘0 2
L= i(du%a $o — mydy) + 5(8uq>08 Do — My®;) — 7%‘1)0
= L (Oupd6 — m) + 1 (B,040 — MPB) — D5 + Loy
@ Counterterm Lagrangian
1 m? , 1
Let = E(Z¢ - 1)8;,#)6#(1) - 7(Z¢Zm —1)¢” + 5(2@ - 1)8M<I>8*L<I>

M A _4-D
- ?(ZCDZM - 1)®% - 5(Z¢\/Z¢Z)\u T — 1)¢’d



The renormalized Lagrangian

Example: 2 scalar theory

1 1 A
L= 5(8u¢08“¢o —mi ) + E(aucpoawo — M3®}) — 7%5%

= L (Oupd6 — m) + 1 (B,040 — MPB) — D5 + Loy
@ Counterterm Lagrangian

= New Feynman rules

p p

E—— B

— —-meX---- --

i(pX(Zy — 1) = m*(ZnZy — 1)) i(pH(Zo — 1) — M*(ZyZo — 1)) —iINZo ZaZpji 2 = 1)



The renormalization parameters Z;

Example: 2 scalar theory

bare and renormalized fields are equal at leading order in and
expansion in A:

Zi=146;, with & =dX+O\?).

Computed order by order

= make the propagator and vertex finite
p p
() = A+ ()

i i
I)Z*Wﬁ*’“(l’z) /)Z—A\I'TJrll(p?)



Passarino-Veltman one loop functions

[G. Passarino and M. Veltman, Nucl.Phys. B160, 151 (1979).]

Automate any one loop computation: tensor reduction algorithm

27 4—D Dk
Aoy = &) / Tk _ (—H w +1>

im? k2 —m? +in D—4
2 dPk
Bo(p*,m3,m3) = ( 7r,LL2 > 5 5
i | @ m (= p) = + i)

-2
~D_a + Bo(p*, mi, m3),

More details 0509141 or 0711.1067


https://arxiv.org/pdf/hep-ph/0509141.pdf
https://arxiv.org/pdf/0711.1067.pdf

Passarino-Veltman one loop functions

[G. Passarino and M. Veltman, Nucl.Phys. B160, 151 (1979).]
Automate any one loop computation: tensor reduction algorithm
CO(P%,P%,P%; m%v m%v m%) =

(2mp)*=P / alk
im? (k2 —mi + in)((k — p1)* — m3 + in)((k — p1 — p2)* — m3 + in)

A2 2 52 2 2 2
:C()(p17p2,p3,m1,m27m3)7

Do(p, 03,05, P% (P1 + p2)%, (P2 + p3)*, mi, m3, m3, m3) =
(27‘71)47[) Pk
2 (2 —m2+in) (k—p1)2—m3+in) ((k—p1 —p2)? —m3+in) ((k—py —py —p3)> —m3 +in)

= Do(p?,p3, 03,73, (P1 + p2)%, (2 + p3)?, m3, m3, m3, m3)

More details 0509141 or 0711.1067


https://arxiv.org/pdf/hep-ph/0509141.pdf
https://arxiv.org/pdf/0711.1067.pdf

¢ renormalization at one loop



¢ renormalization at one loop




¢ renormalization at one loop

dPl 1
2m)P (2 —m? + in)((I — p)? — M?) +in

IH([JZ) — )\2/2470/

X b / dll 1
wet CrP B —m? +in
+ i(p2(5¢ — m2(5¢ + 67}1))

iz 2 2 a0 iz 2N a2 2

= __ B M) — ————A 0p — 0, Om
e o(p”,m*, M*) ST o(m™) +i(p~dy —m” (8¢ + Im))
X =2 ix2 -2

= — 0p — 1 Om
@r2D—4  (4m22mr” “pog T =Gt )
i ix2 _

+ (471')2 BO(pzvm%ﬂn%) - (471')22M2 mzAO(mz)



¢ renormalization at one loop

dPl 1
(2m)P (2 —m? + in)((I — p)* — M?) +in

i) =2t [

X o, / a1 1
et Q2m)P 2 —m? +in
+i(p*3y — m* (8 + Om))

iX? iX? _
= an)? Bo(p?, m*, M) — (471_)22M2A0(m2) +i(p*6y — m* (8 + Sm))
i -2 iX? >

-2 s
= — n- +i(p 0y —m™(dyp + 6
GrPD—4 (ampar” p_a TP (0 + o)

ix2
(4m)?

_ i\2 _
+ Bo(pz,mz,M%) — szAo(mz)




The MS renormalization scheme

“Minimal” subtraction:

ﬁ + YE + 1H(47T).
define i = % and subtract only the divergence
~1/(D—4).

Example: 2 scalar theory

P, =0, = 65 =0,

R , =2
4ar2D—4 (4m22m2" D—4
(

" T @nena—D | 2MP

+i(=m* (65 + 6n)) =0




The MS renormalization scheme

Exercise: Check that from the ® propagator and the vertex
functions we get

A2 2

—C =0
(4m)22M> 4 — D’ A

s =0, o =



The pole mass

The mass is the pole = typically used when mpgle = mpnys

p On shell: m = mphys
oIl
(p?) = 0(m*) + —— (»? —m*) +
O o=

At 1 loop:

i
"2 P "2
2 2 11(p2 .
prom () i i(1— llf]’\/ls(mz))

p? —mie + s(p?) — p? — i + Ly (m?)

2 2 2
Mpole = Migs — Tz (m”)

Example: 2 scalar theory

2 2

P
2 2 2 2 2
me(1) = myge + —— Bo(m*,m*,M?) — i

= g (o)



The pole mass
The mass is the pole = typically used when mpgle = mpnys

p

—_—

On shell: m = mphys

At 1 loop:

i
57 )
p—mg+I1(p= .
o+ i i(1 I (m?)

p? —mie + s(p?) — p? — i + Ly (m?)

2 2 2
Mpole = Migs — Tz (m”)

Example: 2 scalar theory

A2 m? m? ,uz M? m? M2x 1+x
2 _ 2 A, M _m oM m- . MTx
mis(p) = mgge + @2 [2 Ve + (1 2M2) In = + " (I=x)In e + " In 5



Running parameters

Renormalized parameters C depend on the renormalization scale p:

dc

7:C
Mg = Ce

d is the mass of the associated operator Yc Can be obtained from

dc®  d(zcC 1 dZ
(ZcC) = Ac=-o dZ¢
du du du

Example: 2 scalar theory
At 1 loop
2)\2 m?
= (1- o’
T ) ( 2M2) +O0)
so that

2 m? u?

2 2 3

= m(u) =m (uo) + (17 )ln + O(\).
(4m)? 2M? 13

@ Evenifm(pg) =0 = m?(u) = (47r)2 In : #0 (Coleman-Weinberg)
0



Running parameters

Renormalized parameters C depend on the renormalization scale p:

dc

7:C
Mg = Ce

d is the mass of the associated operator Yc Can be obtained from

_dC®  d(Zc0) N 1 dze
= M V=T

Example: 2 scalar theory
At 1 loop
2)\2 m?
== _(1-—)+00X
T ) ( 2M2) ()
so that

2 m? u?

2 2 3

= m(u) =m (uo) + (17 )ln + O(\).
(4m)? 2M? 13

@ Similarly for M and \ (Exercise)



¢¢ scattering at 1 loop



¢¢ scattering at 1 loop

(Crossed and mirrored diagrams are understood).



¢¢ scattering at 1 loop

>( -- < > * <
(Crossed and mirrored diagrams are understood).

i _ Xt BO(S7m27m2) Co(m27m27s7m27M27M2) +C0(m27s7m27M27’n27m2)
T (@m)? | 2(s — M?)? s— M2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
+D0(m yme,me me, s, t,mT, M, mt, M )+D0(m yme,me m”, s, 6, M7, m, MT,m )]

2
N =
_ Wﬁ—f—(s,t,u—)t,u,s)—i—(s,t,u—>u,s,t)



¢¢ scattering at 1 loop

L M TBo(s,m?,m?)  Co(m?,m?,s,m>, M*,M?) + Co(m?, s, m>, M?, m*, m?)
T (@m)? | 2(s — M?)? s —M?
+D0(m2,m2,m2,m2,s7 t,mz,Mz,mz,M2) +Do(mz,mz,mz,mz,s7 t,Mz,mz,Mz,mz) ]

5

4 .
A i—D

——— + (S, f,u —> tu,s)+ (s, t,u — u,s,t
(4m)2 2(s — M?)? ( )+ )

@ The counterterm is obtained with our MS values.
@ Only By is divergent By (s, m?, m?)|gy = 725 = ML s finitel

ForM > m
32 2
MZW{I—W<9IH +12+t7r)}
)\4 / — 4m? 2 2 _ / — 4m?
+ s(s m)ln m =+ Vsls = 4nr) +(—=0)+(s—u
327iM* s 2m?

In ln the small mass m is acting as an IR cut-off.



Lecture lI: Introduction to EFTs

What are effective theories?




Lecture lI: Introduction to EFTs

What are effective theories?

@ wide separation of scales

v <L, h << Rg € \ ~ hmv, E < Aqcp



What are effective field theories?

E<M

@ degrees of freedom related to M decouple

@ anEFTis a
» we can compute S-matrix elements (observables)
» no more input than the EFT Lagrangian is needed
°
» In the coyote free fall we only need to know: g, mcoyote



What are effective field theories?

E<M
@ Provide in small parameter §
§=E/M

In multiscale problems there are several §;

@ EFT allows you to an experimentally accessible quantity
that we can quantify in terms of §;
(power counting)

Every quantum field theory is and effective field theory

= no QFT is ever complete, only valid up to a cut-off A



Example: QED is the EFT of the SM lepton sector £ < m,.



Can you think of any other EFTs?



The Fermi theory of weak interactions

@ EFT for weak interactions at E < my, myz
@ Expansion parameter is 6 = p/my

o Example: M decay (see tutorial)
» also consider scale «/(4)

@ Example: hadronic decays

> p~ Aaco
» also consider scale o,/ (4)



Chiral perturbation theory

@ EFT for hadrons formed by light quarks: pions, nucleons at
E<A,

@ EFT of QCD: at the cut-off scale A,
@ parameters are thus obtained experimentally/lattice
@ Expansion parameter is 6 = p/A, ~ Aqcp

@ Example: w scattering
> p ~ mg
» also consider scale «;/(4)

(see A. Carmona’s lectures)



HQET/NRQCD/pNRQCD

@ EFT for hadrons with at least one heavy quark (Q = ¢, b, 1)

@ Expansion parameter is 6 = A,S—SD

@ EFT of QCD at the cut-off scale my

@ Example HQET: B-decays
> p ~ mpa(mp)
» also consider scale «;/(4)

@ Example pNRQCD: YT-mass
> pr~ mbas(mb)
» also consider scale o/ (4)
> v~ ag(mg)



SCET

@ EFT for processes where the final states have small invariant
mass compared to the center of mass energy

@ Expansion parameters are 6, = M;/E, 6 = Aqcp/E, where E is
the c.0.m energy

@ EFT for every almost back to back process
@ EFT of QCD at the cut-off scale E

@ Example: jet production in pp collisions such as those at LHC
> p~TeV
> also consider scale a,(E)/(47)



SMEFT

@ SM as an EFT with cut-off A
@ Expansion parameters are 6 ~ my /A, E/A
@ Assumes perturbativity up to A

@ Example: use LHC data to constraint the parameter space



EFTs for particle physics

() power counting
= include non-perturbative effects in a systematic way,
e.g. in HQET.
o simplify computations

= multiscale systems
= reach beyond perturbativity

EFTs for QCD
Factorize amplitudes:
[ short distance (perturbative)] x [long distance (non-perturbative)]

Example: B meson decay
= scales: my > myp > AQCD

SM = FermiTheory = HQET



EFTs for particle physics

= jeopardize our perturbative expansion In % > 1
Example: semileptonic B-decays: a,In 7% ~ 1
= EFTstoturn IR logs into UV logs

Example: QCD = HQET, NRQCD, pNRQCD, SCET or ChPT
= different IR regimes sum different logs

See lecture by Javi Serra



EFT characteristics

@ Two groups:

Top-down: UV theory is known
= reach beyond perturbativity (matching)

Examples: HQET, NRQCD, pNRQCD, SCET

Bottom-up: UV theory is known
= parameters obtained from experiment/lattice

Examples: ChPT or SMEFT.

@ Symmetries
= EFTs keep the symmetries of the UV theory
= may exhibit new symmetries (ChPT, HQET)



The Operator Product Expansion

= Sefi is non-local at the scale of high energy modes A

= Dynamical fields ~ p < A

Sett can be expanded in an infinite series of local operators (OPE).

o= Z ciOi(p(x))

[ ¢; high energy] x [(O;) low energy ]



Derivation of the effective Lagrangian

E<M



Derivation of the effective Lagrangian

E<M
Step 1: choose a cut-off A < M & determine the dynamical M
degrees of freedom. A
= Easy for weakly coupled UV theory
Example: Fermi theory of weak interactions E

= Other theories more involved:
Example: NRQCD: potential quarks & soft and ultrasoft gluons
pNRQCD has only ultrasoft gluons =- power counting

Step 2: List all possible gauge invariant operators
= to agiven order

= built of the fields in step 1 and derivatives
= respect symmetries



Derivation of the effective Lagrangian

E<M

Step 3: write the Lagrangian in the general form

Nmax

(n)
£eﬁ _ £d|m§4 E E i O'(‘H’ﬂ).
" n=1 i M l

= Nmax given by precision goal & power counting
= in practice we choose A = M

= the operator basis Of") might not be unique and can be
changed by a field redefinition.

Step 4: Determine the values of the C,-(").



Example: 2 scalar model at low energy

L= %(@Mw% — ) + %(auw“q) _ M) — %qf@

Step1: E~m< A<M
= only field left is ¢

Step 2: Lorentz-invariance + Z, symmetry



Example: 2 scalar model at low energy

L= %(@Mw% — ) + %(aum% _ M) — %qf@

Step1: E~m< A<M
= only field left is ¢

Step 2: Lorentz-invariance + Z, symmetry
» Dimension 2 operators: ¢?
» Dimension 4 operators: ¢, 8,60 ¢, pd*
» Dimension 6 operators: ¢°, ¢>0¢, ¢*0,,p0" ¢



Example: 2 scalar model at low energy

L= %(@Mw% — ) + %(aum% _ M) — %qf@

Step1: E~m< A<M
= only field left is ¢

Step 2: Lorentz-invariance + Z, symmetry
» Dimension 2 operators: ¢?
» Dimension 4 operators: ¢*, 8,@8“(@9%
» Dimension 6 operators: ¢°, ¢>0?¢, ¢20, 60" d

Action is unchanged by total derivatives



Example: 2 scalar model at low energy

L= %(@Mw% — ) + %(aum% _ M) — %qf@

Step1: E~m< A<M
= only field left is ¢

Step 2: Lorentz-invariance + Z, symmetry
» Dimension 2 operators: ¢?
» Dimension 4 operators: ¢, 8,004 ¢
» Dimension 6 operators: ¢%, ¢>9%¢

Step 3:

ef 1 " 1.5 (0) ,4 sz) 6 Cf) 302
£ = 20,000 — i d” + CV¢" + Thg + T g0y



Example: 2 scalar model at low energy

L= %(@Mw% — ) + %(aum% _ M) — %qf@

Step1: E~m< A<M
= only field left is ¢

Step 2: Lorentz-invariance + Z, symmetry
» Dimension 2 operators: ¢?
» Dimension 4 operators: ¢, 8,004 ¢
» Dimension 6 operators: ¢%, ¢>9%¢

Step 3:

o 1 1
Eﬁzi u¢a#¢’**

2 o0 4 sz) 6 Cf) 32
R TR T



Field redefinitions

= common tool in EFTs (infinite series of operators)
For a field redefinition F and
8
6> b+eblg] = L] = LI+ POl

where g—i is the classical equation of motion



Field redefinitions

@ @
Example: LEFT = 19,601 — Lin2g? + CO¢* + Lo gf + 214302

o

E.o.m. (up to the order of interest)

s

2 26 4 400 o3
5¢ —0°¢ — ¢+ @

The Lagrangian after the field redefinition would then be

c® 2)
1 C
LFT = ~0u90" — - Lig? 4 Ot gt o8P

(2)
c A
vl (-6 —ico + 40(0)‘1’3)

1 rAnzC(2> 1 ) )
= 30u90"6 — 3 Lizg? 4+ |co — ot [cl +4c§ c<°>} °

= operator ¢°9°¢ has been eliminated!



Field redefinitions

@ The operator basis is not unique neither necessarily minimal

= Non-minimal operator bases lead to relations between
Wilson coefficients

= observables computed in any operator basis will be the
same Final EFT Lagrangian up to dimension 6:

Ci 6

1 1.
l:EFT: Eaﬂ¢a#¢_§m2¢2+g¢4+ﬁ¢



Power-counting

@ EFT computations always come together with an

@ For a scattering amplitude M at typical momentum p:
= insertion of one dimension d > 4 operator

(5

= insertion of i dimension d; operators

)Z,(di_D)

-

Power counting equation
= Loops only involve low energy scales!.

Example: ¢¢ scattering
= upto O(p?/M?) single d = 4 insertion
= upto O(p*/M*) single d = 6 insertion & two of d = 4



Power-counting

@ EFT computations always come together with an

@ For a scattering amplitude M at typical momentum p:
= insertion of one dimension d > 4 operator

p d—D
M~ ()
= insertion of i dimension d; operators

()

Power counting equation
= Loops only involve low energy scales!.
to provide an estimate of the size of a diagram
(see vy~ exercise in the tutorial)

Tiny



Wilson coefficients as running-couplings

@ In general, Wilson coefficients C; are renormalization scheme
and scale dependent

= only measurable in an indirect way
= they are in fact the running couplings of any QFT

Example: quark masses in MS cannot be directly measured:
extracted from comparing hadron masses to the EFT prediction

General procedure: Use N number of observables to fix N
parameters and all other observables can be predicted form those
up to a certain accuracy.

= No need to know about the UV theory.



Wilson coefficients as running-couplings

@ In general, Wilson coefficients C; are renormalization scheme
and scale dependent

= only measurable in an indirect way
= they are in fact the running couplings of any QFT

Example: quark masses in MS cannot be directly measured:
extracted from comparing hadron masses to the EFT prediction

@ If the UV theory and the EFT are weakly coupled at the scale A
= obtain the parameters through matching

MUV theory| _ M EFT

A A



Example: 2 scalar model at low energy

1 1. C
LT = 20,00 ) — i’ ¢ + 86" + 1 56"

@ Matching for g at tree level

b PN /\ 2\
s, t,u,m? < M?

UV theory: EFT:

3\2 2 MEFT — 4l
= 5+ o).

it
M =

M2>>J,t,u,m2~p2
At leading order

)\2 pZ
ae 90

).

g:



Example: 2 scalar model at low energy

1 1. C
LT = 20,00 ) — i’ ¢ + 86" + 1 56"

@ Matching for C; at tree level

= From ¢¢¢ scattering at tree level:

p2

(This can be checked as an exercise).



Lecture lll: Loops and logs in EFTs

Renormalization of composite operators

Amplitudes such as

OIT{O(o(y) o (x1)(x2) - - }|0)

are not finite after renormalization of fields and masses
Example: our EFT operator O = ¢*

b0 = /Zp®, Oy =Zp0

Zo =237



Lecture lll: Loops and logs in EFTs

Renormalization of composite operators

Amplitudes such as

OIT{O((y))d(x1)(x2) - .. }/0)
are not finite after renormalization of fields and masses
Example: our EFT operator O = ¢*
0 = \Zpd, Op=Zo0O
Zo =Z37? No!!

We have: L5FT 540 = Zo =Z}Z,

= coupling renormalization is a choice!



Operator mixing

In fact, if we have i operators of dimension d;, in general
Oio = (Z0);;0;

= Zp is a matrix.
Alternatively: renormalizes the couplings

Example: the operators m?¢* and ¢* mix

Q

q

= Zi=1-2%2 o (Zoju=1, (Zo)n=-35

= becomes important for logarithmic resummation



Loops in the EFT

6! Ci 4 p [ d°k 1 6! C; m? 2 u?
M=i-— —_— = | —— 4+ 1 +1
2t CrP i —s2  2M216x2 |4-D e

C

» DR specially important in in EFTs: keeps power counting

> Is it ok to integrate over all the momenta?

YES: the physics is in the non-analytical terms (poles) which only
involve the low energy (IR) scales

the k — oo region is analytical in the IR scales = OPE



1 loop matching

@ Compute a 1 loop matching between the UV theory and the EFT.

(see 1804.05863)

Example: (p=0)
1
e - ~
4 AY
L A\
-
@ UV theory:
dPl1 1 i 2 M? m? m?
I:“FD/ — - — =n—+ ——In— +1
# 2nP P =) —m?) 1672 {4_0 R v vl }
@ EFT:
= & does not propagate.
g Tl [ 1wt 2
M? @m)P (2 —m?) 1672M2 | 4—-D w2



1 loop matching

@ Compute a 1 loop matching between the UV theory and the EFT.

(see 1804.05863)

Example: (p=0)
1
e - ~
4 AY
L \
-
@ UV theory:
i 2 u? m*  m? m*
= —  fil4ln A+ —In— |+ O(—
s 1672 {4—D+ e e e OO0
@ EFT:
= & does not propagate.
Tl [0 0 i e 2 om
M2 Q@m)P (2 —m?)  16x>*M? | 4—D 2



1 loop matching

Example: -
= o {$+l“n£+ "y Zzz} +o(m4)
JEFT — 1622 :;22 [*ﬁ + ln%j _ 1}
g I‘ + IFFTthe order of integration and expansion matters

M>m
> the divergences of the EFT and UV theories are different

» the IR behavior of the EFT and UV theories is equal: Inm?
terms

» I, =1 — IFFTis local (analytic) in the IR scales



1 loop matching

Example: 12
i 2 u? m*  m? m*
T {ﬁ+1+1m7+ o | HOGH)
. 2 2 m2
=t 20 2 ™
6202 | a—p "2

Matching at O(1/M?):

MS _ NS EFTVS _ poom IS

S = —FT l+mE + = (1+m 5

m M 167 PP) [ + 2+M2 ( + Ile)i|
= gives the contribution to the Wilson coefficient
= non-analytic only in the UV scales



Better 1 loop matching

Since the IR behavior is the same, we can expand both around the
IR scales and get the same result

all 1 dP1 1 m*

/ _ ~4_1)/ 2~4—D/ + o=

oo P ap oy T ep ey O

-1 Pl 1 m?>  m?
JEFT :7~47D/ [ I L LR !
o M2V cope T T

s = s [EFTNS M ! [1+1 v (1+1 “2”

= — ) = = n — _ n —

" m—0 m—0 m—0 1672 M2 M? M?

= to compute the multiscale full 7



Example: 1 loop matching

On-shell scheme:

X

ﬁ12 — m2 4 Hm(mZ) _ HEFT,m(mZ)




Example: 1 loop matching

On-shell scheme:

q

VS 3gim? w? 322 u?
TIEFTMS (12) = — 1+1 =" (14+m= ) +0
() == (I +In 2anE \[ Tz )+ o

‘r;lz —m? ¥ Hm(mz) _ HEFT,m(mz) ‘




Example: 1 loop matching

On-shell scheme:




Logarithmic resummation

For operators O; of dimensions d > 4

i

dp

Ci=2;CG = p— =G
= v, has itself an expansion in the coupling

Example:
In our example the coupling is g:

dg

e =pB(g) =gBo+g B+
m

RGE for the dimension 6 operator

dCl 3 dC1
r= = ¢, C1, Yo, =80+g&mnm+t- = po— =

H "

The leading contribution is

ac (12) ) 7o
1 8% g(12)" Po

= = Ci(m2) = Ci(m) ( )

dg  g*fo g(p)

d
ﬂﬁ(g)
g



Logarithmic resummation in the EFT
The IR behavior of the EFT and the UV theory is the same

1

” ™
:Zmrl(r):Zmr l:A-‘rB +C<r>]

m—0 m m cuv €IR

JEFTVS _ ) _ Zmr { B( N B(r)] ~ S _c0

- €UV €R

@ The anomalous dimension comes for e¢yy
@ The EFT and the UV theory sum different logs

= EFTs help us gain perturbativity



