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Exercises for QFT & EFTs tutorials

Exercise 1. In the lecture we have discussed the dimensional analysis for scalars

in dimensional regularization. Following the same reasoning obtain the dimensional

scaling of fermions and vector bosons.

Exercise 2. Compute the one loop relation between the pole bottom quark mass

and the MS renormalization scheme one evaluated at µ = mb.

Exercise 3 (Scaleless integrals). Scaleless integrals vanish in dimensional regular-

ization as we have seen in the lectures.

a. Proof that one can express∫
dDk

(2π)D
1

k4
= I1 − I2,

I1 ≡
∫

dDk

(2π)D
1

k2(k2 −M2)
, I2 ≡ M2

∫
dDk

(2π)D
1

k4(k2 −M2))

and compute both integrals in dimensional regularization.

b. Is each of the integral divergent in the UV or in the IR? What does it mean in

terms of renormalization?

You may use the formula

Inm ≡ µ̃4−D

∫
dDk

(2π)D
1

(k2)n(k2 −M2)m

=
i(−M2)2−α−β

(4π)2

(
M2

4πµ̃2

)D−4
2 Γ

(
D
2
− α

)
Γ
(
α + β − D

2

)
Γ(β)Γ

(
D
2

)
Exercise 4 (Fermi Theory). Consider the muon decay into electron µ → eνeνµ. The

Fermi theory for weak interactions in the lepton sector is given at leading order by

the Lagrangian

L = LQED − 4GF√
2

(eγµPLνe) (νµγµPLµ) ,

where PL = (1− γ5)/2.

a. Compute the leading order muon decay rate in the Fermi theory

1



b. Compare the result with the experimental value for the muon mean lifetime

τµ = 2.1970 · 10−6 s to obtain the value of GF .

c. Compute the muon decay process in the Standard Model in the low energy

limit and find an expression for GF at leading order in terms of SM parameters.

Compare the result with the one obtained before. Is the agreement as expected?

Exercise 5 (Euler-Heissenberg Lagrangian). We consider the photon-photon scat-

tering at energies much below the electron mass. The theory for this process is

described by the Euler-Heissenberg Lagrangian

L = −1

4
FµνF

µν +
1

Λ4

[
c1 (FµνF

µν)2 + c2

(
FµνF̃

µν
)2]

a. Thinking of the lowest order diagram in QED that contributes to the γγ scat-

tering, what is a good estimate for the cut-off scale Λ?

b. Based on the QED diagram and dimensional analysis, make an estimate for the

amplitude of the QED diagram in the low-energy limit in terms of the coupling

constant α and the electron mass me and the photon energy ω.

c. What is then a reasonable estimate for the scattering cross section?

d. Knowing that the true matching onto QED gives as a result c1 = α2/90, c2 =

7α2/360 so that σ = α4ω6/(16πm8
e)15568/10125. How good was your naive

estimate based on power counting and dimensional analysis?

e. How different would this scaling be if we did not impose gauge symmetry?

Exercise 6. a. Compute the integral

I = µ4−D

∫
dDk

(2π)D
1

(k2 −M2)(k2 −m2)
.

b. Compute the integral

IF = µ4−D

∫
dDk

(2π)D
1

k2 −m2

−1

M2

(
1 +

k2

M2
+

k4

M4
+ . . .

)
c. Compute the integral I using the expansion by regions.

Exercise 7. Compute the 1-loop photon polarization Π(q2) induced by a fermion of

mass M and charge Q.

a. Use the “physical” point µ2 = −q2 to subtract the UV divergence. Compute

the renormalized self-energy and the β function. Demonstrate that decoupling

occurs when M2 ≫ µ2, q2.
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b. Repeat the same calculation in the MS scheme. Show that there is no decou-

pling when M → ∞ and perturbation theory breaks down in that limit.

The β function is the anomalous dimension associated to the charge and it is

usually defined as

µ
dα

dµ
= β(α) with β(α) = −2α

∞∑
n=0

( α

4π

)n+1

βn

Exercise 8. Consider the theory of QCD with nf number of quark flavors L(nf )
QCD. In

the case where there are nf − 1 light quark flavors and one heavy quark of mass M ,

one can develop an EFT described by L(nf−1)
QCD plus operators suppressed by powers

of 1/M which we may neglect in this exercise.

The one loop QCD β function, β0 = 11/3CA−4/TFnf depends on the number of

light flavors, and thus the coupling constant in each of the theories will be different

and the can be related order by order by an equation

α
(nf )
s (µ) = α

(nf−1)
s (µ)

1 +∑
k

ck(L)

(
α
(nf−1)
s (µ)

4π

)k


where L = ln(µ/M).

a. Knowing that c0(0) = 0 compute c0(L).

b. Compute in both theories the momentum dependence of αs as a function of β0

and β1 = 34/3C2
A − 20/3CATFnf − 4CFTFnf .

c. Make a plot of αs between 3 and 100 GeV.

Exercise 9 (Non-relativistic QED). NRQED is the low energy theory for QED

suitable for leptons with large masses compared to their typical momentum scales.

a. Obtain the NRQED Lagrangian up to order 1/m2 following the steps in the

lecture.

b. Obtain the leading contribution to the Wilson coefficients by matching onto

the QED vertex function at low energies.

Exercise 10 (pNRQED for hydrogen). pNRQED is a low energy theory of NRQED

where the dynamical degrees of freedom are only potential fermions (E, |P|) ∼
(Mα2,Mα), where M is the typical fermion mass, and ultrasoft photons pγ ∼ Mα2

and it is suited for computations of two heavy fermion bound states FF̄ . Its La-

grangian can be written in a compact way as

LpNRQED =

∫
d3rd3RdtS†(r,R, t)

{
i∂0 −

p2

2mr

− V (r,p,σ1,σ2) + er · E(R, t)

}
S(r,R, t)

−
∫

d3R
1

4
FµνF

µν ,

3



where S is the field representing the hydrogen, R the center of mass coordinate and r

the relative distance. V stands for the potential and admits an expansion in powers

of 1/me

V = V (0) +
V (1)

me

+
V (2)

m2
e

+ . . .

We know that the Lamb shift in hydrogen 2S1/2 − 2P1/2 is an effect of order

O(meα
4).

a. To what order in the expansion in α do we need to compute each V (i) in order

to obtain the leading order Lamb shift?

b. Compute the V (1) potential up to order α0 by matching onto NRQED.

c. Compute the V (2) potential up to order α by matching onto NRQED.

d. Compute the leading order Lamb shift in hydrogen from pNRQED.
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