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Part 1. First tutorial

Problem 1. Check that the vectorial representation of the Lorentz group
() = (g8 — g"0%)
satisfies the Lorentz algebra

[JHY JPO] = i(g"P TR — gHP JvT — gV P 4 gl g,

Problem 2. Prove that, if we define the covariant derivative as

A A

D, =0, —igT* A}, = 0, —igA,, A, = ALTY,
the term i) ) = i@Zw“Duw is invariant under gauge transformations
Y= U, U =exp(—il"0"(x)),

A, = UA U - g(ﬁuU)UT.

Problem 3. Check that the gauge transformation
A, - UAU - ;(@U)UT, U = exp (—iT"0(x)),
translates for infinitesimal gauge transformations as
Al — A — fCAN — ;auea
with [T, 7% = i fe*T¢ and A, = AaT°.
Problem 4. Check that
A = 0,A, = 0,4, —ig| Ay, A

o
implies that
AL, = 0,4, — 0, A, + gfabCAZAl‘i

where AW = Aj, T
Problem 5. Check that the gauge transformation

A, - UAU - 3(@LU)UT, U =exp ( — z'gT“G(:c)),

g
implies that
A, — UA,U.
Demonstrate also that this implies that
1 T Ty
Ly = —§Tr(WWW” )

is gauge invariant.



Problem 6. Show that the Faddeev-Popov determinant reads

5F[AZ] 1 ab abc Ac Qu
ab = " 5ob ——5(5 U—-gf A#a)

using that under a gauge transformation U = exp(—i1*0(z))

1
a a abc Ab pc a
Al = AL — A0 —gﬁ,ﬁ :
Finally, shows that redefining the ghost fields and integrating by parts we obtain
Lep = @7V DN ", Dy =0, —igT VAL, (T = —if ™.
Why are ghost irrelevants for abelian theories?

Problem 7. Show that the full gauge Lagrangian for a Yang-Mills theory
1 1 —a aoc &
Liot = Lym + Lap + Lpp = —— A% A — —(9,A™")? + (0"7*) (9, — gf*" nbAu).

4 2¢
is invariant under BRS transformations,
a a a a 1 Adj\ab, b
Al — AL+ 0A], 0A} = —EG(Du N,
1
N =0+ o, 0" = 0",
n® — n* 4+ on® 7 1618”/1“
/r’ T] n ) n = U= v
9 &

where 6 is a Grassmann variable {6,0} = {0, 7%} = {6,7°} = {n®, 1’} = 0. For that:

1) Check that Ly is invariant under AZ BRS transformations since
a a 1 aoc &
Al — Al — EH(GM —gf® nbAM)

can be written as a gauge transformation of gauge parameter w® = 6n®.

2) Assuming that (D;%)*n" is invariant under BRS transformations, check that the BRS transforma-
tions of A} and 7* precisely make the Faddeed-Poppov term invariant.

3) Using the Jacobi identity

fade]cbcd + fbdefcad + fcde]cabd =0
check that
(Dﬁdj>ab,'7b _ 8/,L77b _ gfabc,r]bAz
is indeed invariant.

Problem 8. Consider the Proca Lagrangian of a massive abelian vector field

1 1
L= —21 MY+ iMQAMA”, with  F,, = 0,A, — 0, A,,
show that the propagator takes the following form
~ 1 kHEY
Du¥) = 3507 _g“”LMJ'

Hint: Write the quadratic piece of the lagrangian as

LD ;AVH“”(k)AM
and define the propagator as

Dy = (11" (k)) ™!

where I1# is the Fourier transformed of II* and ~! denotes the inverse operator.



Problem 9. Compute the mass dimension of the following operators

(@) o', (0) €% (¢) evu, (d) @Yo, (e) A Ar,

. . . ot . ot
(f) (%Mi) (%v“ulfa), (9) (CTLL’VALQQ]L> (QEV“QQZL), (h) foeGyrGrraer,

where ¢ is a scalar singlet, 1 is a gauge-singlet Dirac fermion, A,, = 9,4, — 0,4, with A, an abelian
gauge boson, while G}, is the gluon field tensor and ¢, ur are the usual quark chiral fields of the SM.

Problem 10. Demonstrate that

wie = (01T {5 (@)pk(y)]0) = (= — y°) (0l (2) ek (y)]0) + O(y° — 2°)(0lr(y)p(2)[0)
implies that

0L Gz —y) = 0(2° = y"){01[55 (x), ¢x()]]0)-
Problem 11. Let us consider a real scalar SU(2) triplet ® with Lagrangian

L=-(0,0")(0"®) — ;M(@T@) — 5(@%)2.

1
2 4
1) Show that such Lagrangian is invariant under global SU(2) rotations
O UL =exp (—iT50,)®,  (12Y)e = —ie™,

with €2 the fully antisymmetric rank 3 tensor.
2) Show that if 2 < 0 and A > 0 the potential has a minimum for (0|®7®|0) = v? with v? = —pu?/\.
3) Write the Lagrangian as a function of ¢ and 7, where

¥1 1 )
b=1 2 |, o = —7=(p1 +ipa).
v+n \/ﬁ

4) Write the values for m, and m,,.
5) How many Nambu-Goldstone bosons are present? How can you explain that?

Problem 12. Consider sQED with a gauge-fixing term

1 1
L= =7 FuwF" + (Dup) (D) = 1ol = Alol* = 2g OuA + Emag)?
D, =0, —ieA,, F,,=0,A,—38,A, ma=ev, e\ (—p°)€R".

Defining

1
= ——(v+n+iy),
© \/5( n+ix)

1) write the Lagrangian as a function of 7, x and A, and find all their masses.
2) Show that the propagators for n, x and A, are, respectively,

- 1 N 7
Z)T7 k = DX =
(k) k2 —m2 +i0+ k% — &mA + 0+’
- i k, k.,
D, (k) = —Guw + (1 =8) -

k2 —m2 + 0% K2 —em}



Part 2. Second tutorial

Problem 13. Check that, the covariant derivative for a colorless scalar or fermion field ¥ of hypercharge
Y and electric charge Q = T3 +Y

D, = laﬂ - z’gWg% - ig/YBu] U

can be writen as

D,V = [au —igWiTE — it 7, (T} - $3,Q) - ieAuQ]‘I’
cw

where
. 3
(iﬂ> — (S‘;VV chW> . (Ig“> sw =sinfy, cy =cosby tanfy =4'/g
m n
and
i Wy Fiwy],  TE = = 0! +i0?]
VaLlH K L 22 '

Problem 14. Demonstrate that

ot 1
Ly = |D,® — p?|®]* — \®|*, D,® = (aﬂ - z’gm% — ig’BN2)®

is equal to

Ly = ;Tr (D2 (DY) - ;MQTr (=fz) + i | Tr (2*2)}2,

where

Y=(0®), DE=09,%- nglequgEQB

Problem 15. Show that

1)
am

0(Z — ff)= N/ Sz(vf+af)

2)
A o(cos > 0) —o(cos <0) 3 A — 2uray
"B o(cosB > 0) + o(cosf < 0) 477 f_vf:—i—a?
For that, remember that for a 1 to 2 decay
dl'(i —1,2) 1 |p| 5
dQ - 327 2]\42"/\/1|

with
{[M? — (my + mg)?|[M? — (my — my)?]}1/?
2M ?

where M is the mass of the decaying particle while m; and my are the masses of the decay products.

p| = |p1] = |p2| =

Problem 16. Show that

= Grmy, 4m?
T(h— ff) =N/ 21— —=1L).
( ff) c47T\/§mf< 2



Problem 17. Consider the leading derivative term in ChPT with two flavors,

2 i
L= ];Tr(ﬁuUT(‘?“U), U = exp <2i7TiTi/f) : T = %,

where

and we have defined

1
ﬂi:—{ﬂliliiﬁ2}, T =T

V2
Write down the Lagrangian that one gets after expanding the Lagrangian above up to four fields. It could
be useful to use that

1

0 lexp (A)] = {0,4(0) + 5

where A(x) is z,-dependent matrix.

1

A@). 0,A@)] +

+ oy |A(@), |A2), 9,A(7)

+ (9<A4)} exp(A(z))

Problem 18. Compute the pion masses after adding a term
2
AL = ];Tr(UT X+ xU)

where x = 2B, diag(m,,, mg) to the Lagrangian of the previous problem.

Problem 19. Show that when k < p1, po the amplitude

iMqég = ﬂ(pl)igST“,{*

M :%iqu%v(pz) - U(pl)iqu%WigsTaf*U(m)

can be written as

. L a pL-€  pp-€
iMagg = u(p1)ieQq T v(p2)gs (m i k) :
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