BSM exercises

Javi Serra

Ex. 1 Weinberg's soft theorems. Derive charge conservation by considering the emission of a soft photon from an arbitrary process $\alpha \rightarrow \beta$. Extend your derivation to soft gravitons and massless spin-3 fields.

Ex. 2 Construct the EFT of a single, real, massless scalar, ϕ, directly at the level of the $\phi \phi \rightarrow \phi \phi$ scattering amplitude (at tree level). Hint: Use crossing symmetry.
Exchange at tree level a minimally coupled heavy scalar $\Phi, g \phi^{2} \Phi$, and match to the EFT amplitude.

Ex. 3 Compute the β-function coefficient of hypercharge in the SM. Fix its Landau pole by extending the gauge group to Pati-Salam's (and adding a right-handed neutrino ν).

Ex. 4 Identify the 1-loop diagrams that contribute to β_{λ} in the SM. Find a simple way to (potentially) avoid $\lambda\left(q^{2}\right)=0$ (see Ex. 2).

Ex. 5 Identify the masses of the particles exchanged in the tree-level stringy Virasoro-Shapiro amplitude.

Ex. 6 Obtain the Weinberg operator from the 3 types of tree-level UV completions (for a single neutrino flavor).

Ex. 7 Write down the most general potential at dimension smaller or equal than 4 for the $S U(5)$ scalars $\Phi=\mathbf{2 4}$ (adjoint) and $S=\mathbf{5}$ (fundamental).

Ex. 8 Show that parity is a symmetry of renormalizable QED. Find a dimension-6 operator that violates it.

Ex. 9 Given the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+i \bar{\nu}_{1} \not_{\mu} \nu_{1}+i \bar{\nu}_{2} \not_{\mu} \nu_{2}+\phi\left(g_{11} \nu_{1}^{T} C \nu_{1}+g_{12} \nu_{1}^{T} C \nu_{2}+g_{22} \nu_{2}^{T} C \nu_{2}\right) . \tag{1}
\end{equation*}
$$

(where ν 's are Weyl fermions in Dirac notation), estimate how small g_{11} naturalness permits given
g_{12} and g_{22}. Hint: Use a spurion analysis based on the $U(1)$ symmetries of \mathcal{L}.

Ex. 10 Given the following Lagrangian (renormalizable QED)

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{2}+i \bar{\psi}_{L} \not D \psi_{L}+i \bar{\psi}_{R} \not D \psi_{R}-m_{\psi}\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) \tag{2}
\end{equation*}
$$

(where $\not D=\gamma^{\mu} D_{\mu}$ and $D_{\mu}=\partial_{\mu}-i e A_{\mu}$), show that m_{ψ} renormalizes proportional to itself. Extend the Lagrangian with the dipole interaction

$$
\begin{equation*}
\frac{g_{5}}{\Lambda} \bar{\psi}_{L} \sigma_{\mu \nu} \psi_{R} F^{\mu \nu}+h . c . \tag{3}
\end{equation*}
$$

and estimate its expected contribution to m_{ψ}. Hint: Use a spurion analysis based on the $U(1)$ chiral symmetry of \mathcal{L}.

Ex. 11 Derive the mass of the QCD axion in 2-flavor QCD.

Ex. 12 Show the Higgs potential is $S O(4)$ symmetric. Compute the contribution of the dimension- 6 operator $-\left(c_{T} / \Lambda^{2}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)^{2}$ to the ρ-parameter, where $H^{\dagger} \overleftrightarrow{D}_{\mu} H=H^{\dagger} D_{\mu} H-\left(D_{\mu} H^{\dagger}\right) H$.

