BSM exercises Javi Serra

Ex. 1 Weinberg's soft theorems. Derive charge conservation by considering the emission of a soft photon from an arbitrary process $\alpha \rightarrow \beta$. Extend your derivation to soft gravitons and massless spin-3 fields.

Ex. 2 Construct the EFT of a single, real, massless scalar, ϕ , directly at the level of the $\phi\phi \rightarrow \phi\phi$ scattering amplitude (at tree level). Hint: Use crossing symmetry. Exchange at tree level a minimally coupled heavy scalar Φ , $g\phi^2\Phi$, and match to the EFT amplitude.

Ex. 3 Compute the β -function coefficient of hypercharge in the SM. Fix its Landau pole by extending the gauge group to Pati-Salam's (and adding a right-handed neutrino ν).

Ex. 4 Identify the 1-loop diagrams that contribute to β_{λ} in the SM. Find a simple way to (potentially) avoid $\lambda(q^2) = 0$ (see Ex. 2).

Ex. 5 Identify the masses of the particles exchanged in the tree-level stringy Virasoro-Shapiro amplitude.

Ex. 6 Obtain the Weinberg operator from the 3 types of tree-level UV completions (for a single neutrino flavor).

Ex. 7 Write down the most general potential at dimension smaller or equal than 4 for the SU(5) scalars $\Phi = 24$ (adjoint) and S = 5 (fundamental).

Ex. 8 Show that parity is a symmetry of renormalizable QED. Find a dimension-6 operator that violates it.

Ex. 9 Given the following Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + i \bar{\nu}_1 \partial_{\mu} \nu_1 + i \bar{\nu}_2 \partial_{\mu} \nu_2 + \phi \left(g_{11} \nu_1^T C \nu_1 + g_{12} \nu_1^T C \nu_2 + g_{22} \nu_2^T C \nu_2 \right) . \tag{1}$$

(where ν 's are Weyl fermions in Dirac notation), estimate how small g_{11} naturalness permits given

 g_{12} and g_{22} . Hint: Use a spurion analysis based on the U(1) symmetries of \mathcal{L} .

Ex. 10 Given the following Lagrangian (renormalizable QED)

(where $D = \gamma^{\mu} D_{\mu}$ and $D_{\mu} = \partial_{\mu} - ieA_{\mu}$), show that m_{ψ} renormalizes proportional to itself. Extend the Lagrangian with the dipole interaction

$$\frac{g_5}{\Lambda}\bar{\psi}_L\sigma_{\mu\nu}\psi_R F^{\mu\nu} + h.c. \tag{3}$$

and estimate its expected contribution to m_{ψ} . Hint: Use a spurion analysis based on the U(1) chiral symmetry of \mathcal{L} .

Ex. 11 Derive the mass of the QCD axion in 2-flavor QCD.

Ex. 12 Show the Higgs potential is SO(4) symmetric. Compute the contribution of the dimension-6 operator $-(c_T/\Lambda^2)(H^{\dagger}\overleftrightarrow{D}_{\mu}H)^2$ to the ρ -parameter, where $H^{\dagger}\overleftrightarrow{D}_{\mu}H = H^{\dagger}D_{\mu}H - (D_{\mu}H^{\dagger})H$.