TAE 2023 – International Workshop on High Energy Physics Benasque (Spain), 3-16 September 2023

Higgs Physics (Lecture 2)

Aurelio Juste (ICREA/IFAE)

Outline

Lecture 1: Stalking the Higgs boson

- Preliminaries on Higgs physics
- Pre-LHC searches
- The discovery

Lecture 2: Studying the Higgs boson

- Overview of Run 1 studies
- Summary of recent Run 2 results
- Future prospects

HOW IT STARTED:

HOW IT'S GOING:

Much more to Higgs physics than the LHC!

Explosion of the Higgs landscape

Precision measurements

- Mass and width
- Quantum numbers (spin, CP)
- Coupling properties
- Differential cross sections
- Off-shell couplings and width
- Interferometry

Is the SM minimal?

- 2HDM searches
- MSSM, NMSSM searches
- Doubly-charged Higgs bosons

Since the discovery of the Higgs boson, an entire new field has emerged

Tool for discovery

- Portal to DM (invisible Higgs)
- Portal to hidden sectors
- Portal to BSM physics with H⁰ in the final state (VH⁰, H⁰H⁰)

Rare / BSM decays

- H⁰→μμ
- H⁰→Zγ
- $H^0 \rightarrow J/\psi\gamma$, $\Upsilon(ns)\gamma$
- LFV H⁰→μτ, eτ, eμ
- H⁰→aa

...and more!

- FCNC t→H⁰q decays
- Di-Higgs production
- Trilinear coupling
- ... etc

Overview of main Higgs analyses

Overview of main Higgs analyses

			Production modes					
	Channel categories	gggF	VBF ^q ^q ^q ^q ^q ^q ^q ^q		ttH ⁹ (20000000) ⁹ (20000000) ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ² ² ² (20000000) ¹ ² ² (20000000) ² (2000000) ² (2000000) ² (20000) ² (20000)			
		<i>√</i>	<i>√</i>	<i>√</i>	<i>√</i>			
	ZZ (IIII)	\checkmark	1	\checkmark	<i>√</i>			
Sč	WW (IvIv)	✓	√	√	 Image: A set of the set of the			
iy mod€	ττ	<i>√</i>	A different kind of discovery channel					
Deca			\checkmark	1	\checkmark			
		1	s de la construcción de la const					
		1	\checkmark					
		🗸 (monojet)	\checkmark	\checkmark				

$H \rightarrow WW^* \rightarrow I_V I_V$

Requires exquisite background understanding!

$H \rightarrow WW^* \rightarrow I_V I_V$

200

- High-sensitivity channel for 130<m_H<200 GeV. .
- Clean dilepton plus E_T^{miss} signature but low S/B. .
- Main backgrounds: Z+jets, WW, W+jet/ γ , tt. • ➔ normalization in data control regions.
- No direct reconstruction of Higgs mass possible (neutrinos) ٠ → use transverse mass variable.
- Exploit spin correlation between W bosons: ٠ spin $0 \rightarrow$ small angular separation between leptons.

PRD 92 (2015) 012006

Higgs mass

- Measurement of the Higgs boson mass performed in the two channels with the best mass resolution: H→γγ and H→ZZ^{*}→4I using final Run 1 calibrations.
- Signal yield left free to avoid biasing mass measurement.

 m_{H} = 125.09 ± 0.24 GeV

2 per-mille accuracy!

- Compatibility of the four measurements ~10%.
- Measurement dominated by the statistical uncertainty.
- Main systematic uncertainty related to photon and lepton energy scales.

Spin and CP

- **Goal**: verify scalar and CP-even nature (J^{CP}=0⁺) of the new boson.
 - Spin is a property of the particle. Possibilities: J=0 and J=2 allowed

J=1 forbidden by Landau-Yang theorem (since $H \rightarrow \gamma \gamma$ is observed)

CP is a property of the interaction

→ here will discuss about CP tests in the HVV interaction. Additional tests required to test the CP properties of the interactions with fermions

- Many options to probe J^{CP} from angular (or threshold behavior) distributions:
 - From the associated production modes (VH, VBF or gg→H+jets)
 - From the production angle cosθ* distribution
 - From the decay angles and the spin correlation when applicable
- Basic idea:
 - Measure compatibility with the 0⁺ hypothesis.
 - Try to exclude alternative hypotheses (in favor of the 0⁺ hypothesis) simulated using an effective Lagrangian including higher order couplings.

Spin and CP

• Use $H \rightarrow \gamma \gamma$, ZZ^{*} and WW^{*} analyses re-optimized for J^{CP} tests. Different kinematic distributions used.

H \rightarrow *γ*γ: mostly sensitive to spin. Uses p_T(*γ*γ) and photon decay angle in *γ*γ rest frame.

 $H \rightarrow ZZ^* \rightarrow 4I$: mostly sensitive to parity. Uses the distribution of 5 production and decay angles combined in a BDT or Matrix Element (MELA) discriminants

Spin and CP

- Alternative spin hypotheses are disfavored by >3 σ combining H $\rightarrow \gamma\gamma$, H \rightarrow ZZ^{*}, and H \rightarrow WW^{*} analyses.
- Tensor structure of the HVV interaction has been tested using $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, $H \rightarrow Z\gamma$, and $H \rightarrow \gamma\gamma$ analyses, including CP-odd contributions.

<u>PRD 92 (2015) 012004</u>

Results consitent with a SM-like Higgs boson, within the precision of the tests

Overview of main Higgs analyses

And more!

Higgs couplings to fermions: $H \rightarrow \tau^+ \tau^-$

Higgs couplings to fermions: $H \rightarrow \tau^+ \tau^-$

- The most sensitive of the fermionic decay modes.
- Events categorized depending on the tau decay modes (leptonic, hadronic) and the jet multiplicity to enhance the sensitivity to VBF and gluon fusion production of highly-boosted Higgs bosons.
- Main background is $Z \rightarrow \tau \tau$, modeled from $Z \rightarrow \mu \mu$ data replacing muons by simulated tau decays (" τ embedding").

JHEP 05 (2014) 104

Higgs couplings to fermions: $H \rightarrow bb$

Higgs couplings to fermions: H→bb

- Most abundant decay mode: BR(H→bb)~58%.
- Exploit three leptonic W/Z decay modes in VH associated production
 - → categorize events by lepton multiplicity (0-lepton, 1-lepton, 2-lepton).
- Broad di-b-jet resonance over large background from W+heavy-flavor and tt production.
- Multivariate analyses to increase sensitivity. Use $VZ(Z \rightarrow bb)$ to validate search strategy.

Higgs couplings to fermions: $H \rightarrow bb$

Associated ttH production allows direct measurement of the top-Higgs Yukawa coupling.

Very rich experimental signature, depending on the decay of the top quarks and the Higgs boson.

q

Analyses characterized by large number of categories and control regions.

Higgs couplings to fermions: H→bb

• Associated ttH production allows direct measurement of the top-Higgs Yukawa coupling.

- Very rich experimental signature, depending on the decay of the top quarks and the Higgs boson.
- Analyses characterized by large number of categories and control regions.

JHEP 05 (2016) 160

Obs (exp) significance: 3.4σ (1.2 σ)

Obs (exp) significance: 2.5σ (1.5σ)

Probing Higgs couplings

- At the LHC only products of cross section times branching ratios are measured.
 - There is no model-independent way to determine the cross section and the branching ratio separately.
 - Several production and decay mechanisms contribute to signal rates per channel → interpretation is difficult.

$$n_{s}^{c} = \mu \left(\sum_{i \in \{processes\}} \mu^{i} \sigma_{SM}^{i} \times A^{ic} \times \varepsilon^{ic} \right) \times \mu^{f} Br^{f} \times L^{c}$$

$\sigma_{meas}/\sigma_{SM}$ per production mode

BR_{meas}/BR_{SM} per decay mode

(assuming SM production)

Probing Higgs couplings

• A better option: measure deviations of couplings from the SM prediction using an effective Lagrangian (arXiv:1209.0040).

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W^+_{\mu\nu} W^{-\mu\nu} \right) H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

• <u>MOTIVATION</u>: Precision Higgs coupling measurements can provide an indirect probe for NP.

Expected deviations in general small. Need precise measurements!

The "kappa framework"

- Basic assumptions:
 - there is only one underlying state with m_H =125.09 GeV,
 - it has negligible width,
 - it is a CP-even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched).
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings.
 Examples:

$$\sigma(gg \to H)BR(H \to WW) = \sigma_{SM}(gg \to H)BR_{SM}(H \to WW)\frac{\kappa_{g}^{2}\kappa_{W}^{2}}{\kappa_{H}^{2}}$$
$$\sigma(WH)BR(H \to bb) = \sigma_{SM}(WH)BR_{SM}(H \to bb)\frac{\kappa_{W}^{2}\kappa_{b}^{2}}{\kappa_{H}^{2}}$$
where $\kappa_{H}^{2} = \frac{\sum_{i} \kappa_{i}^{2}\Gamma_{i,SM}}{\sum_{i} \Gamma_{i,SM}}$

Parameterizing Higgs production cross-sections

Parameterizing Higgs branching ratios

- The $\mu\mu$ channel (0.02%) $\propto \kappa_{\mu}^2 / \kappa_{H}^2$

Standard Model fit

- Resolve all loops.
- One coupling parameters per SM particle.
- No beyond-SM decays.

Beyond Standard Model fit

- Allow deviations in all tree-level couplings.
- Allow independent deviations in loop couplings.
- Allow beyond-Standard-Model decays.
- Impose weak constraint $\kappa_V \leq 1$.

ATLAS and CMS LHC Run 1

---- Observed ----- SM expected

8-

З

Ό

0.05

0.1

0.15

 $[\kappa_{\rm Z},\,\kappa_{\rm W},\,\kappa_{\rm t},\,\kappa_{\tau},\,\kappa_{\rm b},\,\kappa_{\rm g},\,\kappa_{\gamma},\,{\sf B}_{\rm BSM}]$

0.25

Obs (exp) limit: BR_{BSM}<0.34 (0.39)

0.2

0.3

0.35

0.4

0.45 0.5

B_{BSM}

The LHC Run 2

Extremely successful Run 2 during 2015-2018:

- pp collisions at $\sqrt{s}=13$ TeV
 - → x2.3 higher Higgs production cross-section than at \sqrt{s} =8 TeV
- Integrated luminosity: 139 fb⁻¹ (vs 25 fb⁻¹ in Run 1)
 - Peak instantaneous luminosity of 2x10³⁴ cm⁻²s⁻¹ (a x2 higher than the detector was designed for) → Higher pile-up!

Run 2 milestones in Higgs physics

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$: inclusive cross-sections

- Significantly improved precision compared to Run 1 (almost x3 better).
- Starting to approach SM theory uncertainty (~6%)
- Much higher statistics allows to perform differential measurements.

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$: differential cross-sections

- Comprehensive program of differential cross-section measurements. E.g. CMS: <u>arXiv:2305.07532</u>
- Significantly improved precision in differential cross section distributions, particularly in the tails.
- dσ/dp_{T,H} sensitive to perturbative QCD calculations but also allows probing in a model-independent way the ggH vertex!

Higgs mass

• Individual measurements by the experiments already better than ATLAS+CMS Run 1 combination!

31

Higgs width

- $\Gamma_{H}(SM)=4.1 \text{ MeV} (\sim 3 \text{ orders of magnitude smaller than } \Gamma_{W,Z}!)$
- A precise and model-independent determination at the LHC through rate measurements is not possible, since what is measured is σ x BR.
 - → Much better prospects at an e^+e^- collider.
- Existing direct bounds are quite weak:
 - $\Gamma_{\rm H}$ >3.6x10⁻⁹ MeV (from lifetime in H \rightarrow ZZ^(*) \rightarrow 4I)
 - Γ_H<1.7 GeV (from width of invariant mass distribution in H→ZZ^(*)→4I)
- Other possibilities:
 - Constraints from invisible (and exotic) decays
 - Interferometry in γγ: interference with background shifts mass by ~30 MeV. → Use p_T dependence of shift: exp limit Γ_H<200 MeV (3 ab⁻¹).
 - Coupling measurements (with some assumptions)

Indirect Higgs width measurement

15

- Measure Higgs signal strength in the far off-shell region in $H \rightarrow VV$ decays (V=W,Z).
- Need to take into account interference effects with the $gg \rightarrow ZZ$ background, which can be significant.

- Consider $H \rightarrow ZZ^* \rightarrow 4I$ and II_{VV} decays. ٠
- Both experiments established evidence for off-shell Higgs production.
- Assuming $\mu_{on-shell} = \mu_{off-shell}$: ٠
 - ATLAS: $\Gamma_H = 4.5^{+3.3}_{-2.5}$ MeV [arXiv:2304.01532]
 - CMS: $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV [<u>NP 18 (2022) 1329</u>]

Impressive but they still leave plenty of room for New Physics!

$H \rightarrow \tau \tau$

- Observed with a fraction of Run 2 data.
- Very sophisticated analyses targeting different production modes in different kinematic regimes. E.g.

<u>JHEP 08 (2022) 175</u>

2

3

 $(\sigma \times B)^{meas}$

^s / (σ×B)SM

0

EPJC 83 (2023) 562

34

H→bb

- VH production observed with a fraction of Run 2 data. ٠
- Also targeting $gg \rightarrow H$ and VBF production modes ٠ → additional measurements in extreme kinematic regimes.

PLB 786 (2018) 59

-5 0 5

 μ_{VBF} 15

CMS-PAS-HIG-21-020

138 fb⁻¹ (13 TeV)

Probing ttH and tH production

JHEP 07 (2023) 088

Syst. unc. SM + Theo. unc.

1.20 0.2 +0.6

1.5

0.89

3

6 8 10 12

√s=13 TeV, 139 fb

Tot. Stat. Syst.

(+0.08 +0.06

+0.5 +0.1

 $(\sigma \cdot B_{\gamma\gamma})/(\sigma \cdot B_{\gamma\gamma})_{SM}$

-0.08 -0.06 +0.18 +0.21

+ 0.10

-05 -0.5 -0.1 +0.6

-0.5 -0.5 -0.1 $^{+0.32}_{-0.30}$ ($^{+0.31}_{-0.29}$ $^{+0.08}_{-0.05}$

- Increasingly more sophisticated analyses bring significant improvements in sensitivity.
- Observation separately in multilepton and $\gamma\gamma$ final states.

Simplified template cross-sections (STXS)

- Measure production modes separately, categorising each into bins of key (truth) quantities (p_{T,H}, N_{jets}, m_{jj}).
- Chosen as most sensitive variables for theory predictions / signal sensitivity / new physics.
- Framework provided in different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity.
- Decay mode agnostic: well-suited for combinations.

Simplified template cross-sections (STXS)

- Measure production modes separately, categorising each into bins of key (truth) quantities (p_{T,H}, N_{jets}, m_{jj}).
- Chosen as most sensitive variables for theory predictions / signal sensitivity / new physics.
- Framework provided in different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity.
- Decay mode agnostic: well-suited for combinations.

Higgs couplings

Rare decays

Η→Ζγ

- BR~0.2% (similar to $H \rightarrow \gamma \gamma$). Sensitive to New Physics in the loop.
- First evidence for $H \rightarrow Z\gamma$ with ATLAS and CMS combination.

Compatibility with the SM: 1.9σ

$H \rightarrow \mu \mu$

- BR~0.02% (x10 rarer than $H \rightarrow \gamma \gamma$!).
- Very sophisticated analysis with different MVA-based categories.

JHEP 01 (2021) 148

$H \rightarrow meson + \gamma$

- Couplings to 1st and 2nd generation quarks extremely challenging.
- $H \rightarrow cc$ may still be probed in a similar way as $H \rightarrow bb$ (needs excellent c-tagging). Other, lighter quarks, hopeless. .

Events / 2.5 GeV

One possibility:

 $H \rightarrow J/\psi\gamma$: coupling to charm .

- $\mathbf{H} \rightarrow \boldsymbol{\phi} \gamma$: coupling to s quarks .
- $H \rightarrow \rho \gamma \& H \rightarrow \omega \gamma$: coupling to u/d quarks
- $H \rightarrow K^* \gamma$: flavor-violating coupling to u and d quarks .

arXiv:2301.09938

LFV Higgs decays: $H \rightarrow e\mu$, $e\tau$, $\mu\tau$

Extremely suppressed in the SM. An observation would indicate New Physics. ٠

H→eµ

(not confirmed by ATLAS)

95% CL

68% CL

¥ Best fit

0.2 0.25 0.3

 $B(H \rightarrow e\tau)$ in %

* SM

H→eτ, μτ

Probing the Higgs potential

Double-Higgs production

Determination of the scalar potential → self interaction!
 λ₄: currently hopeless at any planed experiment
 λ₃: in principle possible via double-Higgs production, but very challenging because of negative interference among diagrams (particularly ggF)

gluon- gluon fusion

g .000000000000000.

9.0000000000000

Double-Higgs production

- No single golden channel. Exploit all channels with at least one H→bb. Also some channels giving multilepton final states.
- Main channels:
 - HH→bbbb: highest BR, large background
 - HH→bbγγ: small BR, small background
 - **HH\rightarrowbb\tau\tau: balance of both**
- Different production modes (non- resonant: ggF, VBF, VH; resonant production) exploited.
- Very sophisticated analyses.

HH→bbττ

HH→bbbb

HH→bbγγ

Double-Higgs production

- No single golden channel. Exploit all channels with at least one H→bb. Also some channels giving multilepton final states.
- Main channels:
 - HH→bbbb: highest BR, large background
 - HH→bbγγ: small BR, small background
 - HH→bbττ: balance of both
- Different production modes (non- resonant: ggF, VBF, VH; resonant production) exploited.
- · Very sophisticated analyses.

HH→bbττ

HH→bbbb

HH→bbγγ

 Include precise single-Higgs measurements for more modelindependent interpretation.

- Impressive progress on di-Higgs search program during Run 2.
- Latest combinations per experiment reaching 3xSM expected sensitivity, but still room for improvement!

Higgs as a tool for discovery

Probing NP through the Higgs boson

- In many NP scenarios the Higgs boson couples preferentially to new particles:
 - $m_X > m_h$: the Higgs boson may appear in decays of X or is produced in association with X.
 - m_X<m_h: Higgs boson may decay into X.

Some examples:

Invisible Higgs decays

- SM prediction: BR(H→ZZ→vvvv)~0.1%
- Most sensitive searches use VBF production.
 - Main selection on m_{jj}, Δη_{jj}, and large E_T^{miss}.
 - Challenging backgrounds from V+jets production.
- Derive upper limit on BR(H→inv), under the assumption of SM production cross section.
- Different SM Higgs production modes combined.
- Result also interpreted in the context of a Higgsportal model of dark matter interactions.

Is the Higgs sector minimal?

Extended Higgs sectors

Many possibilities beyond the SM!

- EWS (EW singlet): add a Higgs singlet real scalar field to the SM
 → 2 neutral physical states (h and H).
- 2HDM (Two Higgs Doublet Model): add 2nd Higgs doublet to the SM
 → 5 physical states: 2 neutral CP-even (h and H), 1 neutral CP-odd (A), 2 charged (H[±]).
 6 free parameters in minimal model:
 m_h, m_H, m_A, m_{H[±]}, tanβ =v₁/v₂ (ratio of doublet vacuum expectation values), α (mixing angle between CP-even states)

MSSM (Minimal Supersymmetric SM): extended Higgs sector is a particular case of a 2HDM type II.

Туре	Description	up-type quarks couple to	down-type quarks couple to	charged leptons couple to	remarks
Type I	Fermiophobic	Φ_2	Φ_2	Φ_2	charged fermions only couple to second doublet
Type II	MSSM-like	Φ_2	Φ_1	Φ_1	up- and down-type quarks couple to separate doublets
x	Lepton- specific	Φ_2	Φ_2	Φ_1	
Y	Flipped	Φ_2	Φ_1	Φ_2	
Type III		Φ_1,Φ_2	Φ_1,Φ_2	Φ_1,Φ_2	Flavor-changing neutral currents at tree level

Extended Higgs sectors

Many possibilities beyond the SM!

- EWS (EW singlet): add a Higgs singlet real scalar field to the SM
 → 2 neutral physical states (h and H).
- 2HDM (Two Higgs Doublet Model): add 2nd Higgs doublet to the SM
 → 5 physical states: 2 neutral CP-even (h and H), 1 neutral CP-odd (A), 2 charged (H[±]).
 6 free parameters in minimal model:
 m_h, m_H, m_A, m_{H±}, tanβ =v₁/v₂ (ratio of doublet vacuum expectation values), α (mixing angle between CP-even states)

MSSM (Minimal Supersymmetric SM): extended Higgs sector is a particular case of a 2HDM type II.

- NMSSM (next-to-MSSM): add Higgs singlet to MSSM.
 → 7 physical states: CP-even H₁, H₂, H₃, CP-odd A, H[±].
- HTM (Higgs Triplet Model): add Higgs triplet to SM in order to generate Majorana mass terms for neutrinos
 → 7 physical states: h, H, A, H[±], and H^{±±}.

Heavy Higgs searches: a broad program

Heavy neutral Higgs: fermionic decays

In Type II 2HDM:

- **High tan** β : main search mode is H/A(b) \rightarrow tt(b) • (also H/A(b) \rightarrow bb(b) but lower sensitivitý)
- **Low tan** β : main search mode is H/A \rightarrow tt .
 - Challenging due to strong interference between $gg \rightarrow H/A$ signal and $gg \rightarrow tt$ bkg that creates peak-dip structure.

700

PRL 125 (2020) 051801

JHEP 04 (2020) 171

57 m_A [GeV]

Heavy neutral Higgs: bosonic decays

• Many searches in many channels ($\gamma\gamma$, WW, ZZ, Z γ , Zh, hh) considering gg/bb \rightarrow H/A and/or VBF.

$gg \rightarrow H/A \rightarrow \gamma \gamma$ PLB 822 (2021) 136651 16 GeV 10₂ **ATLAS** √s=13 TeV, 139 fb⁻¹ Data Background-only fit ່ ຜູ້10⁴ Generic NW signal at 0.4 TeV Generic NW signal at 1 TeV 표 10³ Generic NW signal at 2 TeV 10² 10 fit)/σ 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 m_{rr} [GeV] $\sigma_{ m fid} imes B$ [fb] ATLAS Observed CL, limit 10² √s = 13 TeV, 139 fb⁻¹ ----- Expected CL_s limit Spin-0 Model Expected $\pm 1 \sigma$ NWA 10 Expected $\pm 2 \sigma$ 10 10-500 2500 3000 1000 1500 2000

m_x [GeV]

CMS-PAS-HIG-20-016 L = 59.7 fb⁻¹ (13 TeV) **CMS** Preliminary < Events / GeV > tW and tī DY ww Nonpromp 10³ Multiboson SM Higgs ggF (1000 GeV) VBF (1000 GeV) Uncertainty 10² - Data 10 10-1 10-1.4 1.2 Data/E 0.8 0.6 1000 2000 3000 DNN m., [GeV] 138 fb⁻⁺ (13 TeV 95% CL limit on $\sigma(H \rightarrow WW \rightarrow 2I2v)$ [pb] 10 CMS Observed ---- Expected Preliminary 68% expected 95% expected — Exp. for SM-like Higgs 10 Scenario: fvBF=1 10- 10^{-3} ----- 10^{-4} 10^{-5} 1000 2000 3000 4000 5000 m_⊣ [GeV]

VBF H\rightarrowWW(\rightarrow IvIv)

Charged Higgs

- Production modes:
 - $m_{H\pm} < m_t m_b$: $tt \rightarrow WbH^{\pm}b$
 - m_{H±} > m_t-m_b: associated tbH[±]
 - Also possible via VBF
- Decay modes:
 - High $\tan\beta$: $H^{\pm} \rightarrow \tau v$
 - Low tan β : H[±] \rightarrow tb

tbH[±](→tb)

• Also possible: $H^{\pm} \rightarrow Wh$, WZ

tbH[±](→τν) JHEP 07 (2019) 142

59

Doubly charged Higgs

- Production via the EW interaction.
- Decay modes: I[±]I[±], W[±]W[±].
- Exploit multilepton final states: 2ISS, 3I, 4I.

EPJC 83 (2023) 605

Light scalars

- Direct production: $gg \rightarrow a$, bba, tta
- In Higgs decays: h→aa •
 - Decay modes are model dependent.

JHEP 11 (2018) 161

19.7 fb⁻¹ (8 TeV

Future prospects

Beyond LHC Run 2

Beyond LHC Run 2

- The high available statistics will allow an ٠ unprecedented level of scrutiny of the Higgs sector.
 - Precise Higgs coupling measurements.
 - Observation of rare decay modes.
 - Evidence for SM di-Higgs production.
 - Improved searches for BSM Higgs.
 - Studies of vector-boson scattering.

---- 5o sensitivity

1500

m₄ [GeV]

Conclusions

- Since the discovery of the Higgs boson, and entire new field of research has emerged.
- The LHC Run 1 program allowed outlining the experimental profile of the Higgs boson:
 - Mass measured to 0.2% accuracy.
 - Evidence of CP-even scalar nature.
 - Observation of coupling to W, Z and taus.
 - Evidence for non-universal couplings.
 - First studies on Higgs production.
 - First constraints on Higgs width and rare/BSM decay modes.

Greatly benefited from strong experiment-theory connection.

• A deep exploration of the Higgs sector is a top priority of the LHC Run 2 and beyond.

Backup