
Lectures on Machine Learning

Lecture 1: from artificial intelligence to parameter learning

Stefano Carrazza

TAE2023, 11-12 September 2023

University of Milan and INFN Milan (UNIMI)

PDFN 3
Machine Learning • PDFs • QCD

Why lectures on machine learning?

1

Why lectures on machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.

1

Why lectures on machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.

1

Why lectures on machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.

1

Why lectures on machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.

1

What expect from these lectures?

2

What expect from these lectures?

• Learn the basis of machine learning techniques.

• Learn when and how to apply machine learning algorithms.

2

The talk is divided in two lectures:

Lecture 1 (today)

• Artificial intelligence

• Machine learning

• Model representation

• Metrics

• Parameter learning

Lecture 2 (tomorrow)

• Non-linear models

• Beyond neural networks

• Clustering

• Cross-validation

• Hyperparameter tune

3

Some references

• The elements of statistical learning, T. Hastie, R. Tibshirani, J. Friedman.

• An introduction to statistical learning, G. James, D. Witten, T. Hastie, R. Tibshirani.

• Deep learning, I. Goodfellow, Y. Bengio, A. Courville.

4

Artificial Intelligence

Artificial intelligence timeline

5

Defining A.I.

Artificial intelligence (A.I.) is the science and engineering of making intelligent machines.

(John McCarthy ‘56)

Artificial intelligence

Machine learning

Natural language processing

Knowledge reasoning

Computer vision

Planning

Robotics

Speech

A.I. consist in the development of computer systems to perform tasks commonly associated

with intelligence, such as learning . 6

A.I. and humans

There are two categories of A.I. tasks:

• abstract and formal: easy for computers but difficult for humans, e.g. play chess (IBM’s

Deep Blue 1997).

→ Knowledge-based approach to artificial intelligence.

• intuitive for humans but hard to describe formally:

e.g. recognizing faces in images or spoken words.

→ Concept capture and generalization

7

A.I. and humans

There are two categories of A.I. tasks:

• abstract and formal: easy for computers but difficult for humans, e.g. play chess (IBM’s

Deep Blue 1997).

→ Knowledge-based approach to artificial intelligence.

• intuitive for humans but hard to describe formally:

e.g. recognizing faces in images or spoken words.

→ Concept capture and generalization

7

A.I. technologies

Historically, the knowledge-based approach has not led to a major success with intuitive tasks

for humans, because:

• requires human supervision and hard-coded logical inference rules.

• lacks of representation learning ability.

Solution:

The A.I. system needs to acquire its own knowledge.

This capability is known as machine learning (ML).

→ e.g. write a program which learns the task.

8

A.I. technologies

Historically, the knowledge-based approach has not led to a major success with intuitive tasks

for humans, because:

• requires human supervision and hard-coded logical inference rules.

• lacks of representation learning ability.

Solution:

The A.I. system needs to acquire its own knowledge.

This capability is known as machine learning (ML).

→ e.g. write a program which learns the task.

8

Machine learning definition

Machine Learning definition (from T. Mitchell in 1998):

A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P , if its performance on T , as measured by P , improves with

experience E.

Deep Learning

When a representation learning is difficult, ML provides deep learning techniques which allow

the computer to build complex concepts out of simpler concepts, e.g. artificial neural networks.

9

Machine learning definition

Machine Learning definition (from T. Mitchell in 1998):

A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P , if its performance on T , as measured by P , improves with

experience E.

Deep Learning

When a representation learning is difficult, ML provides deep learning techniques which allow

the computer to build complex concepts out of simpler concepts, e.g. artificial neural networks.

9

Venn diagram for A.I.

Artificial intelligence

Machine learning

Deep learning

Representation learning

e.g. Knowledge bases

e.g. Logistic regression

e.g. Autoencoders

e.g. MLPs

10

Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation

11

Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation

11

Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation

11

Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation

11

ML applications in HEP

12

ML in experimental HEP

There are many applications in experimental HEP involving the LHC measurements,

including the Higgs discovery, such as:

• Tracking

• Fast Simulation

• Particle identification

• Event filtering

13

ML in experimental HEP

Some remarkable examples are:

• Signal-background detection:

Decision trees, artificial neural networks, support vector machines.

• Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.

• HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.

14

ML in theoretical HEP

15

ML in theoretical HEP

• Supervised learning:

• The structure of the proton at the LHC

• parton distribution functions

• Theoretical prediction and combination
• Monte Carlo reweighting techniques

• neural network Sudakov

• BSM searches and exclusion limits

• Unsupervised learning:

• Jet physics

• GANs and CycleGANs for jet reconstruction

• Clustering and compression

• PDF4LHC15 recommendation

• Density estimation and anomaly detection

• Monte Carlo sampling

• Reinforcement learning:

• Jet grooming

x
3−10 2−10 1−10 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g/10

vu

vd

d

c

s

u

NNPDF3.1 (NNLO)

)2=10 GeV2µxf(x,

x
3−10 2−10 1−10 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
g/10

vu

vd

d

u

s

c

b

)2 GeV4=102µxf(x,

10
-2

10-1

100

10
1

102

σ

pe
r
bi
n

[p
b]

STJ★
STJ
ST

P
O
W
H
E
G

B
O
X

+

P
Y
T
H
I
A
8

Top quark rapidity

 0.6

 0.8
 1

 1.25
 1.6

#
/S
T

 0.6

 0.8
 1

 1.25
 1.6

#/
S
T
J

 0.6

 0.8
 1

 1.25
 1.6

-4 -3 -2 -1 0 1 2 3 4

#
/S
T
J★

y(t)

16

Learning paradigm

Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are known

Supervised learning

Input Data

Processing

Output

Algorithm

Supervisor

Training Data Set

Desired Output

17

Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are unknown

Unsupervised learning

Input Data

Processing

Output

Algorithm

No Training Data Set

Unknown Output

Discover
Interpretation
from Features

17

Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Reinforcement learning

Input Data

Output

Algorithm

Agent

Environment

Best Action Reward

17

Machine learning algorithms

More than 60 algorithms.
18

Workflow in machine learning

The operative workflow in ML is summarized by the following steps:

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

The best model is then used to:

• supervised learning: make predictions for new observed data.

• unsupervised learning: extract features from the input data.

19

Models and metrics

Models and metrics

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

20

Model representation in supervised learning

We define parametric and structure models for statistical inference:

• examples: linear models, neural networks, decision tree...

Machine Learning
Algorithm

Model

Data Set
for Training

Input x
Estimated
Prediction

• Given a training set of input-output pairs A = (x1, y1), . . . , (xn, yn).

• Find a model M which:

M(x) ∼ y

where x is the input vector and y discrete labels in classification and real values in

regression. 21

Model representation in supervised learning

Examples of models:

→ linear regression we define a vector x ∈ Rn as input and predict the value of a scalar y ∈ R
as its output:

ŷ(x) = wTx+ b

where w ∈ Rn is a vector of parameters and b a constant.

→ Generalized linear models are also available increasing the power of linear models:

→ Non-linear models: neural networks (talk later).

22

Model representation in supervised learning

Examples of models:

→ linear regression we define a vector x ∈ Rn as input and predict the value of a scalar y ∈ R
as its output:

ŷ(x) = wTx+ b

where w ∈ Rn is a vector of parameters and b a constant.

→ Generalized linear models are also available increasing the power of linear models:

→ Non-linear models: neural networks (talk later).

22

Model representation in supervised learning

Examples of models:

→ linear regression we define a vector x ∈ Rn as input and predict the value of a scalar y ∈ R
as its output:

ŷ(x) = wTx+ b

where w ∈ Rn is a vector of parameters and b a constant.

→ Generalized linear models are also available increasing the power of linear models:

→ Non-linear models: neural networks (talk later).

22

Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

• Prediction accuracy vs interpretability:

→ e.g. linear model vs splines or neural networks.

• Optimal capacity/flexibility: number of parameters, architecture

→ deal with overfitting, and underfitting situations

Neural Nets

Accuracy

Interpretability

Support Vector Machines

Linear Regression

Decision Tree

K-Nearest Neighbors

Random Forest

23

Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

• Prediction accuracy vs interpretability:

→ e.g. linear model vs splines or neural networks.

• Optimal capacity/flexibility: number of parameters, architecture

→ deal with overfitting, and underfitting situations

23

Assessing the model performance

How to check model performance?

→ define metrics and statistical estimators for model performance.

Examples:

• Regression: cost / loss / error function,

• Classification: cost function, precision, accuracy, recall, ROC, AUC

24

Assessing the model performance - cost function

To access the model performance we define a cost function J(w) which often measures the

difference between the target and the model output.

In a optimization procedure, given a model ŷw, we search for:

argmin
w

J(w)

The mean square error (MSE) is the most commonly used for regression:

J(w) =
1

n

n∑
i=1

(yi − ŷw(xi))
2

a quadratic function and convex function in linear regression.

25

Assessing the model performance - cost function

Other cost functions are depending on the nature of the problem.

Some other examples:

• regression with uncertainties, chi-square:

J(w) =
n∑

i,j=1

(yi−ŷw(xi))(σ
−1)ij(yj−ŷw(xj))

where:

• σij is the data covariance matrix.

e.g. for LHC data experimental statistical

and systematics correlations.

1.000

1.025

1.050

1.075

1.100

NN
LO

/N
LO

ATLAS1JET11 - R=0.4 - k-factor models
NN model
k-factor CGP |y|=0.2

1.000

1.025

1.050

1.075

1.100

NN
LO

/N
LO

NN model
k-factor CGP |y|=0.8

1.00

1.05

1.10

NN
LO

/N
LO

NN model
k-factor CGP |y|=1.2

0.95

1.00

1.05

1.10

NN
LO

/N
LO

NN model
k-factor CGP |y|=1.8

0.95

1.00

1.05

1.10

NN
LO

/N
LO

NN model
k-factor CGP |y|=2.2

250 500 750 1000 1250 1500 1750
pT (GeV)

0.95

1.00

1.05

1.10

NN
LO

/N
LO

NN model
k-factor CGP |y|=2.8

26

Assessing the model performance - cost function

• logistic regression (binary classification): cross-entropy

J(w) = − 1

n

n∑
i=1

yi log ŷw(xi) + (1− yi) log(1− ŷw(xi))

where ŷw(xi) = 1/(1 + e−wT xi).

27

Assessing the model performance - cost function

• density estimate / regression: negative log-likelihood:

J(w) = −
n∑

i=1

log(ŷw(xi))

20 10 0 10 20
v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

Gaussian mixture pdf
RTBM model
Sampling Ns = 105

6 4 2 0 2 4 6
v1

6

4

2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

• Kullback-Leibler, RMSE, MAE, etc.

28

Assessing the model performance - cost function

• density estimate / regression: negative log-likelihood:

J(w) = −
n∑

i=1

log(ŷw(xi))

20 10 0 10 20
v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

Gaussian mixture pdf
RTBM model
Sampling Ns = 105

6 4 2 0 2 4 6
v1

6

4

2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

• Kullback-Leibler, RMSE, MAE, etc.

28

Training and test sets

Another common issue related to model capacity in supervised learning:

• The model should not learn noise from data.

• The model should be able to generalize its output to new samples.

To observe this issue we split the input data in training and test sets:

• training set error, JTr(w)

• test set/generalization error, JTest(w)

Training Set Test Set

Total number of examples

29

Training and test sets

Another common issue related to model capacity in supervised learning:

• The model should not learn noise from data.

• The model should be able to generalize its output to new samples.

To observe this issue we split the input data in training and test sets:

• training set error, JTr(w)

• test set/generalization error, JTest(w)

Training Set Test Set

Total number of examples

29

Training and test sets

The test set is independent from the training set but follows the same probability distribution.

Training Set Permanent model

Test Set Prediction Estimate performance

Model building

30

Bias-variance trade-off

From a practical point of view dividing the input data in training and test:

The training and test/generalization error conflict is known as bias-variance trade-off.

31

Bias-variance trade-off

Supposing we have model ŷ(x) determined from a training data set, and considering as the

true model

Y = y(X) + ϵ, with y(x) = E(Y |X = x),

where the noise ϵ has zero mean and constant variance.

If we take (x0, y0) from the test set then:

E[(y0 − ŷ(x0))
2] = (Bias[ŷ(x0)])

2
+Var[ŷ(x0)] + Var(ϵ),

where

• Bias[ŷ(x0)] = E[ŷ(x0)]− y(x0)

• Var[ŷ(x0)] = E[ŷ(x0)
2]− (E[ŷ(x0)])

2

So, the expectation averages over the variability of y0 (bias) and the variability in the training

data.

32

Bias-variance trade-off

Supposing we have model ŷ(x) determined from a training data set, and considering as the

true model

Y = y(X) + ϵ, with y(x) = E(Y |X = x),

where the noise ϵ has zero mean and constant variance.

If we take (x0, y0) from the test set then:

E[(y0 − ŷ(x0))
2] = (Bias[ŷ(x0)])

2
+Var[ŷ(x0)] + Var(ϵ),

where

• Bias[ŷ(x0)] = E[ŷ(x0)]− y(x0)

• Var[ŷ(x0)] = E[ŷ(x0)
2]− (E[ŷ(x0)])

2

So, the expectation averages over the variability of y0 (bias) and the variability in the training

data.

32

Bias-variance trade-off

If ŷ increases flexibility, its variance increases and its biases decreases.

Choosing the flexibility based on average test error amounts to a bias-variance trade-off:

• High Bias → underfitting:

erroneous assumptions in the learning algorithm.

• High Variance → overfitting:

erroneous sensitivity to small fluctuations (noise) in the training set.

33

Bias-variance trade-off

More examples of bias-variance trade-off:

34

Bias-variance trade off

Regularization techniques can be applied to modify the learning algorithm and reduce its

generalization error but not its training error.

For example, including the weight decay to the MSE cost function:

J(w) =
1

n

n∑
i=1

(yi − ŷw(xi))
2+λwTw.

where λ is a real number which express the preference for weights with smaller squared L2

norm.

35

Solution for the bias-variance trade off

Tuning the hyperparameter λ we can regularize a model without modifying explicitly its

capacity.

36

Solution for the bias-variance trade off

A common way to reduce the bias-variance trade-off and choose the proper learning

hyperparamters is to create a validation set that:

• not used by the training algorithm

• not used as test set

Training Set Test Set

Total number of examples

Validation Set

• Training set: examples used for learning.

• Validation set: examples used to tune the hyperparameters.

• Test set: examples used only to access the performance.

Techniques are available to deal with data samples with large and small number of examples.

(talk later) 37

Parameter learning

Parameter learning

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

38

Cost function minimization

Optimization algorithms minimize an objective

function, J(w), that depends on the model

internal learnable parameters w.

argmin
w

J(w)

w

J(w)

The most popular techniques are:

• normal equations (least squares)

• derivative based optimization

• evolutionary algorithms

The choice of a technique depends on the model and problem employed.

39

Cost function minimization

Optimization algorithms minimize an objective

function, J(w), that depends on the model

internal learnable parameters w.

argmin
w

J(w)

w

J(w)

The most popular techniques are:

• normal equations (least squares)

• derivative based optimization

• evolutionary algorithms

The choice of a technique depends on the model and problem employed.

39

Normal equations

The normal equation is a method to solve for w analytically.

• it is employed in linear and non-linear least squares optimization.

• it is fast for small models with few features, otherwise it can be computationally intensive

and slow.

40

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size (m,n), and the

observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size (m,n), and the

observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size (m,n), and the

observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size (m,n), and the

observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.
41

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost function with respect

to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the cost function and takes

care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

42

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost function with respect

to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the cost function and takes

care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

42

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost function with respect

to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the cost function and takes

care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

42

Which method?

Q: normal equation or derivative based?

Suppose we have m training examples and n features.

Normal equation

✓ no parameters to tune

✓ no iterations

✗ slow if n is large

✗ requires (XTX)−1,O(n3)

Gradient descent

✓ efficient when n is large

✓ easy to implement/use

✗ requires iterations

✗ requires parameter tune

43

Which method?

Q: normal equation or derivative based?

Suppose we have m training examples and n features.

Normal equation

✓ no parameters to tune

✓ no iterations

✗ slow if n is large

✗ requires (XTX)−1,O(n3)

Gradient descent

✓ efficient when n is large

✓ easy to implement/use

✗ requires iterations

✗ requires parameter tune

43

Gradient descent idea

Basic idea:
Assuming we want to minimize J(w) where w is a vector of parameters:

• select a initial solution vector w,

• change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

w1

30 20 10 0 10 20 30

w2

30
20
10
0
10
20
30

20
40
60
80
100
120
140
160

J(w1,w2)

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162

44

Gradient descent idea

Basic idea:
Assuming we want to minimize J(w) where w is a vector of parameters:

• select a initial solution vector w,

• change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

w1

30 20 10 0 10 20 30

w2

30
20
10
0
10
20
30

20
40
60
80
100
120
140
160

J(w1,w2)

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162

44

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

wi := wi − η
∂

∂wi
J(w)

where η is the learning rate, η ≥ 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: ∇wJ |w→wbest
→ 0.

Why the negative sign in term −η? (example in 1D)

w

J(w)

Positive slope

w

Negative
slope

• if ∇wJ(w) > 0 then

w decreases

• if ∇wJ(w) < 0 then

w increases

45

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

wi := wi − η
∂

∂wi
J(w)

where η is the learning rate, η ≥ 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: ∇wJ |w→wbest
→ 0.

Why the negative sign in term −η? (example in 1D)

w

J(w)

Positive slope

w

Negative
slope

• if ∇wJ(w) > 0 then

w decreases

• if ∇wJ(w) < 0 then

w increases

45

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly.

46

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly.

46

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly.

46

Gradient descent and feature scaling

Another practical hint: feature scaling.

Make sure the input features xi are in a similar scale, e.g. standardization:

xi :=
xi − µxi

σxi

where µxi
and σxi

are the mean and standard deviation respectively.

w1

J(w)

w1

w2w2

Standardized

47

Gradient descent variants

When performing gradient descent the cost function J(w) is evaluated over the training data,

e.g. for the MSE cost function:

∂

∂w
J(w) =

∂

∂w

(
1

n

n∑
i=1

(yi − ŷw(xi))
2

)
.

If the training data set is too large, there are gradient descent variations that may improve

convergence in terms of speed and quality:

• Batch Gradient Descent: all training data points are evaluated in the cost function

gradient at each iteration.

48

Gradient descent variants

• Stochastic Gradient Descent (SGD):

1. randomly shuffle training examples,

2. use 1 example at each iteration.

Features:

• parameters updates have high variance and cost function fluctuates.

• helps to discover new and possibly better minima.

• requires to slowly decrease the learning rate η to reduce fluctuations.

30 20 10 0 10 20
w1

30

20

10

0

10

20
w

2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162Batch GD
Stochastic GD

49

Gradient descent variants

• Mini Batch Gradient Descent:

1. use a subset of size b (batch size) of examples in each iteration,

2. use the batch set example at each iteration.

Features:

• takes the best from both previous methods,

• reduces the variance in the parameter updates (stable convergence),

• good for data parallelism, efficient for matrix operations

30 20 10 0 10 20
w1

30

20

10

0

10

20
w

2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162Batch GD
Stochastic GD
Mini batch GD

50

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an adaptive learning rate for

each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra hyperparameters to

tune.

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an adaptive learning rate for

each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra hyperparameters to

tune.

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an adaptive learning rate for

each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra hyperparameters to

tune.

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an adaptive learning rate for

each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra hyperparameters to

tune.

51

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Newton’s method: an iterative method based on Taylor expansion.

Example in 1D: consider the Taylor expansion

JT (w) = JT (wn +∆w) ≈ J(wn) + J ′(wn)∆w +
1

2
J ′′(wn)∆w2

We aim to find ∆w which satisfies:

∇∆wJT (wn +∆w) = J ′(wn) + J ′′(wn)∆w = 0

wn+1 = wn +∆w = wn − J ′(wn)

J ′′(wn)

w1, w2, . . . will converge to a stationary point w∗ where J ′(w∗) = 0.

Generalization in N dimensions:

(HJ(wn))∆w = −∇J(wn)

where H is the Hessian matrix.

52

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Newton’s method: an iterative method based on Taylor expansion.

Example in 1D: consider the Taylor expansion

JT (w) = JT (wn +∆w) ≈ J(wn) + J ′(wn)∆w +
1

2
J ′′(wn)∆w2

We aim to find ∆w which satisfies:

∇∆wJT (wn +∆w) = J ′(wn) + J ′′(wn)∆w = 0

wn+1 = wn +∆w = wn − J ′(wn)

J ′′(wn)

w1, w2, . . . will converge to a stationary point w∗ where J ′(w∗) = 0.

Generalization in N dimensions:

(HJ(wn))∆w = −∇J(wn)

where H is the Hessian matrix.

52

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Quasi-newton methods: i.e. methods which optimizes even if the Hessian matrix is

expensive or not available. The Taylor’s series is:

J(wn +∆w) ≈ J(wn) +∇wJ(wn)
T∆w +

1

2
∆wTB∆w,

where B is an approximation to the Hessian matrix and

∇wJ(wn +∆w) ≈ ∇wJ(wn) +B∆w,

which produces the Newton step:

∆w = −B−1∇wJ(wn).

Some methods: BFGS, L-BFGS, DFP, Broyden.

• differ by the choice of the solution to update B.

Popular in ML since the beginning of the deep learning era.

53

Evolutionary algorithms

Evolutionary algorithms (EA), inspired by biological evolution, is a generic population-based

metaheuristic optimization algorithm.

Techniques in EA use mechanisms such as: reproduction, mutation, recombination, and

selection.

Genetic algorithm is the most popular technique of EA.

Converged?

Best solution

Initialization
Reproduction

Mutation

Recombination

Selection

No

Yes

EA/GA algorithm

54

Genetic algorithm

Genetic algorithm is well suited when:

• gradients are not available,

• non parametric function,

• non homogeneous cost function along all training set points.

Example:

Converged?

Best solution

Initialization

Selection

No

Yes

Parent gene

Mutations/
Crossover

Best candidate

55

Questions?

55

	Artificial Intelligence
	Learning paradigm
	Models and metrics
	Parameter learning

