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Outline of  the lectures 

•  First lecture: 

•  Introduction to solitons in field theory 
•  Domain wall solution 
•  Vortex solutions 
•  Cosmic strings. 

 
•  Second Lecture: 

•  Cosmological Formation of Defects 
•  Topological defect dynamics 
•  Observational signatures 
 



Introduction to Solitons 
•  Many aspects of physics can be studied at a linear level. 

•  There are however interesting new phenomena that 
appear once we study a theory at a non-linear level. 

•  One interesting aspect of these non-linear interactions is 
the appearance of localized energy solutions, soliton 
solutions ( solitary waves ). 

•  They have been studied in many branches of physics: 

 - Condensed matter physics 
  - Non-linear optics 

 - Particle Physics 
 - Cosmology 
 - String Theory 



Historical remarks 

John Scott Russell first observed 
the formation of these “solitary 
waves” in a water channel in 
Scotland.

However it took some years 
before it was understood.

Eventually, this type of 
phenomena found its way into 
high energy physics 
applications.



The general idea 
•  We are interested in studying these soliton solutions and their 

implications in the hope that they are realized by Nature. 

 
•  We will be interested in studying models BSM that allow for some 

of the objects to be present in our universe. 

 
•  This could lead either to the detection of these objects confirming 

the model or to constrain those models BSM.  

 
•  The typical energy scale of these objects would be too high to 

leave any imprint on accelerators, so we need to use cosmology 
as our probe for those energies. 



Kink solution 
We will consider a simple scalar field theory in (1+1) 
 
 
 
 
The theory has two distinct vacua: 
 
Fluctuations around the vacuum have propagating degrees of 
freedom of mass: 
 
 
 
We will now show that there are other type of configurations in this 
theory that represent localized concentrations of energy. 
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Kink solution 



We are looking for a solution of the time independent eom, namely: 
 
 
 
 
This is analogous of a Newtonian equation with a potential  
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Kink solution 



 
Energy conservation in this effective Newtonian problem 
 
 

Ẽ =
1

2

 
dX̃

dT̃

!2

+ U(X̃) = 0



 
Similarly to what we do in Newtonian physics, we can integrate this 
equation. (Going back to the original formulation) 
 
 
 
 
Which can be integrated to give in our case: 
 
 
 
 
 
Properties of the solution: 

-  It interpolates between the vacua 
-  Its thickness is of the order of  
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Its energy density is concentrated on this thickness  
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The total energy of the configuration is given by: 
 
 
 
 
At small coupling these objects are much heavier than the 
elementary particles: 
 
 
 
These are non-perturbative objects. 
 
 
Ex: Boost the solution to a moving field configuration and compute the energy and momentum 
of the solution. What happens to the shape of the solution? 
 
 
 
 
 
 

Kink solution 
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Kink stability 
Let’s now consider small perturbations around our domain wall solution 
 
 
 
The equation of motion for the fluctuations is: 
 
 
 
 
Assuming:                                   , we arrive at : 
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Spectrum of  perturbations  

The associated Schrodinger equation is  
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w0 = 0

The zero mode describes 
small rigid displacements 
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Topological aspects of  the kink solution 
Let us consider the conserved current defined as: 
 
 
 
 
So there is charge: 
 
 
 
 
Defining, N appropiately and, 
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Topological aspects of  the kink solution 

The charge of the solution depends only on the boundary conditions 
of the solution.That is why this charge is a topological charge. 
 
 
The solution with the same vacua on both ends would have 
topological charge equal to zero. 
 
 
Let’s now show that in fact the kink is the lowest 
energy configuration with this topological charge.
 
 
 
 
 
 
 
 
 
 



Bogomol’nyi Bound 
With our previous definitions we can see that in our case we have: 
 
 
 
 
This allows us to write the total energy of the static configuration in 
the form: 
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Bogomol’nyi Bound 
This means that given the boundary conditions the energy is 
bounded from below 
 
 
And this bound is saturated when 
 
 
 
 
 
Which is exactly the equation we used to find the kink solution. 
 

 So, indeed this solution is the minimal energy 
configuration with the given boundary conditions ! 
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Going to higher dimensions 
Derrick’s Theorem: 
 
Let’s consider a generic Langrangian density in (d+1) spacetime: 
 
 
 
The energy of the soliton static configuration can be expressed as 
 
 
 
 
Let’s now consider a scaling transformation of the form, 
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Going to higher dimensions 
With this transformation the energy scales as, 
 
 
For the soliton solution to be stable we need: 
 
 
 
 
 
RESULTS: 
 

   
 

    

E[�] = �2�dEk + ��dEp

✓
dE[�]

d�

◆

|�=1

= 0 (2� d)Ek � (d)Ep = 0

Ek = Epd = 1

d = 2 Ep = 0



Going to higher dimensions 
The most important result: 
 
 
 
 
Therefore:  
 
“there are no stable, static, finite energy soliton solutions in a 
scalar field theory with canonical kinetic terms in more than 2 
spacetime dimensions.”

This looks like a very strong limitation, however, the theorem has 
also important assumptions. 
 

d > 2 Ep = Ek = 0



Going to higher dimensions 
A way out can be to violate one of the assumptions: 
 
-  Finite energy 

•  Extended objects along some spatial direction (domain walls)   
•  Having a physically motivated cut-off of the energy (vortex solitons) 

-  Only a scalar field theory 
•  Adding other kind of fields avoids the conclusions (Gauge fields for 

example) 

-  Time independence 
•  With time dependent configurations one can have stable, localized 

configurations (Q-balls) 

-  Canonical kinetic terms 
•  Adding higher derivative terms modify Derrick’s theorem. (Skyrme 

model) 



Domain Wall solution 
•  Let’s now consider the same kind of 

kink solution we studied earlier but in 
(3+1)d. 

•  The solution is the same: 
 
 
 
 
•  In (3+1)d the region of high energy 

density forms a 2d surface parallel to 
the (y,z) plane, a membrane or wall 
(domain wall). 
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Domain Wall solution 
•  The equation of state of these objects is 

quite interesting. (Ex.)


•  The object is invariant along (y,z). The only 

motion is the transverse one. 

•  The tension in the (y,z) directions is equal to 
the surface density. 

•  Similar situation in other defects. 

This gives rise to peculiar dynamical and 
gravitational properties to these objects. 
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Global Vortex solution (2+1)d 
•  Let’s follow the same strategy as before and make the fields 

approach different vacua at infinity. 

 
•  In (2+1)d, spatial infinity is a circle so this suggest to look for a 

field theory with a vacuum manifold given by a circle. The 
simplest case is: 

•  Where the   is a complex scalar field 
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Global Vortex solution (2+1)d 
•  The potential is given by: 

 



Global Vortex solution (2+1)d 
•  This theory has a global U(1) symmetry. 

•  The scalar field potential in minimized by 

•  Looking at the perturbations around this vacuum we see that 
there are 2 elementary types of excitations: 

•  Massive excitation (Radial excitation) 
 
 
•  Massless excitation (Angular excitation) 
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Global Vortex solution (2+1)d 



Global Vortex solution (2+1)d 

•  Following the strategy in the kink solution we want to map the 
asymptotic circle at infinity in real space in 2d to the vacuum 
manifold. 

 



Global Vortex solution (2+1)d 

•  Following the strategy in the kink solution we want to map the 
asymptotic circle at infinity in real space in 2d to the vacuum 
manifold. 

 
•  The red circle represents the 

circle at infinity in physical 
space. 

•  The blue arrows indicate the 
configuration of the complex 
scalar field in field space 

 



Global Vortex solution (2+1)d 
•  One can see that the solutions are characterized by a topological 

charge: 

•  This is called the winding number and is a integer. 

•  So given this asymptotic boundary conditions with a non-zero 
winding number, what is the lowest energy configuration of the 
field. 

Something interesting must happen at the center of this 
configuration. 
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Global Vortex solution (2+1)d 
•  In order to find the form of the solution everywhere we look for 

solutions of the equations of motion, which in the static case are: 

•  Using the ansatz in polar coordinates: 

•  We obtain: 
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Global Vortex solution (2+1)d 
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•  We want to solve this equation: 

 
•  With the following boundary conditions: 

•  In fact one can show that: 
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Global Vortex solution (2+1)d 
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Global Vortex solution (2+1)d 
•  Let’s compute the energy of this configuration: 

 
•  The gradient term of the phase is problematic (Recall Derrick’s 

Theorem) 
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Global Vortex solution (2+1)d 
•  We can regularize this by introducing a long distance cutoff ( R ) . 

 
•  Physically this could be due to the size of the box or the distance 

to the nearest vortex. 

 
•  Taking this into account the energy of the vortex becomes: 

 
 

•  This logarithm dependence resembles the energy of charged 
particles in 2+1 dimensions. 

 



Global Vortex solution (2+1)d 
•  In fact this analogy can be made more precise by a duality 

transformation between the massless scalar field and a (2+1)d 
Maxwell field: 

 
•  This duality demonstrates that vortices behave as charged 

objects in (2+1)d. 

•  This leads to an important point, these objects have long range 
interactions. This has important consequences in cosmological 
models 

•  This suggests that n=2 vortices are unstable (This is indeed 
demonstrated by looking at small perturbations around the field 
theory solution with n=2.) 
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Local vortices in (2+1)d 
•  Let’s now consider the local U(1) symmetric Abelian-Higgs Lagrangian 

 
•  The vacuum manifold is still the same: 

 
•  However the propagating degrees of freedom are now both massive. 

 
•  The Higgs mechanism. 

 
This has very important consequences for the solution and the 

dynamics of the soliton.
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Local vortices in (2+1)d 
•  There is a way now to cure the divergent contribution to the gradient 

energy since we have 

•  So turning on a non-zero vector potential asymptotically we can kill 
this contribution. This can be accomplished by the ansatz that 
asymtotically is of the form, 
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Local vortices in (2+1)d 
•  In order to find the complete solution, let’s look for an ansatz of the 

form, 

•  With the boundary conditions: 
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Local vortices in (2+1)d 
(Nielsen & Olesen’73) 
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Local vortices in (2+1)d 
•  Properties of the solution: 

•  They are characterized by a quantum winding number: 
 

 
•  Due to the asymptotic form of the solution, this is also connected 

to the magnetic flux. 
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Local vortices in (2+1)d 
•  Properties of the solution (cont.) 

•  Exponential approach to the vacuum 

 
•  Finite energy solutions 

 
 

•  Interaction between vortices 
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Local vortices in (2+1)d 
•  Critical case (supersymmetric one), no force between vortices 

 
•  Similarly to what happens in the kink solution we can write the static 

energy of the vortex in the critical case in terms of an inequality 

•  This is saturated if the vortex solution satisfies a first order equations 
of motion. 
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Cosmic Strings 

•  Extending the vortex solution to a (3+1)d spacetime, 
we have a straight string; a cosmic string 

•  The tension of the string will have the same 
magnitude as the energy density. 

•  The dynamics are therefore relativistic. 

•  Furthermore, the Newtonian potential of an infinitely 
straight string is zero


 
 r2� = 4⇡G (⇢+ p1 + p2 + p3)

p3 = �⇢

p1 = p2 = 0



Other solitons 
•  It is easy to generalize the global vortex model to a global theory 

whose vacuum manifold is a 2-sphere.  

•  This would lead to a global monopole (also divergent in energy). 

•  This could be cured by a local theory. This would give rise to magnetic 
monopole solutions. 

•  However, the existence of a phase transitions that produces stable 
magnetic monopoles is problematic.  

•  They do not annihilate fast enough and become the dominant form of 
energy in the universe. 

•  These models are ruled out. Inflation is a natural way out of this 
problem. 

 

 

 



Other localized solutions 

•  There are other field theory configurations that make 
use of their non-linear properties to create long lasting 
localized energy configurations. 

 
•  Most well know one Oscillons. 

•  In 1+1 can be understood as bound states of 
kink-antikink configurations. 

•  They do not have a topological stability (no-
charge) 

•  Others 
 

 

 



Summary part I 
•  Many extensions of the Standard Model of Particle Physics 

allow for the possibility of stable soliton configurations. 

•  There are different types of objects depending on the field 
theory and in particular on its vacuum manifold: 

•  Domain walls, strings, monopoles… 
 
•  Many of these models are associated with new physics scale 

typically at high energies. 

•  This energy scale characterizes the object, mass, size, etc.. 

•  Their long lifetime can leave some imprint in our universe. 

 

 

 



Thanks 



Lecture II 



Outline of  2nd lecture 

 
•  Second Lecture: 

•  Cosmological Formation of Defects 

•  Viable models 
 
•  Observational signatures 

•  Domain wall networks 
•  Cosmic string networks 

 



Cosmological Phase Transitions 
•  As the universe expands the temperature of the universe decreases. 

•  The effective potential for different fields changes with temperature. 
 

 

 

 



Cosmological Phase Transitions 
•  Depending of the pattern of symmetry breaking different defects 

can be formed. 

 
 
 
 

•  We will concentrate for now on the case such that vacuum 
manifold is not simply connected. In this case we will form 
domain walls. 

 

 



The Kibble mechanism 
•  In an expanding universe, there are parts of the universe separated 

by a distance larger than the distance travelled by light since the 
beginning of the universe. 

•  This length is the horizon distance. 

•  The fields can not be correlated over distances bigger than the 
horizon. 

•  That means that in our example there will be regions that settle to one 
vacuum while others choose the other vacuum. 

•  Domain walls will form between these vacua. 

 

 

 

 

(Kibble‘76). 

dh ⇠ H�1



The Kibble mechanism 
Cartoon picture of the Kibble mechanism 

 

 

 

 

(Kibble‘76). 

Horizon 
distance

 



Cosmological models with defects 

•  In order to have a viable cosmological model, the energy in 
these defects can not dominate the energy density of the 
universe. 

•  This is an important constraint and rules out models with 
monopoles. 

•  For domain walls we will see that this alone restricts the 
type of models allowed but does not kill this possibility 
completely. 

•  We will explain that strings are indeed allowed due to their 
special dynamics. 

 

 

 

 



•  At low energies, we can take as the effective action for the 
massless degrees of freedom the Nambu-Goto action. (Thin wall 
approximation) 

 

    where       is the energy per unit area of the domain wall and  
    denotes the induced metric 
 
 
 
 
   and                       parametrizes the position of the worldvolume of            
the domain wall.  

Domain wall dynamics 

SNG = ��

Z p
�� d3⇠

� �↵�

�↵� = ⌘µ⌫@↵X
µ@�X

⌫

Xµ(⇠↵)



Simple example: (Ex: Work out the details)
 
•   Let’s consider a spherical domain wall which we parametrize in 

terms of its radius  

•  Plugging this ansatz in the NG action we get 

 
     whose equation of motion imply,  

 

Domain wall dynamics 

R(t)

S = �4⇡�

Z
dtR2

p
1� Ṙ2

R̈ = �2

 
1� Ṙ2

R

!
Force

area

⇠ �

R

Curved walls collapse under their own 
tension

 



Domain wall networks 
•  Simulations show that networks in a cosmological background enter a 

period of scaling. 

•  This means that all the distances in the problem scale with the 
horizon. 

•  We can picture this scaling as the configuration where there is a wall 
per horizon volume. 

•  That means that the energy density in domain wall is 

•  Therefore the fraction of energy in the universe in walls will be: 
 

 

 

⇢DW ⇠ �H�2

H�3

⌦DW =
⇢DW

⇢c
⇠ �HG

H2
⇠ �G

H



Domain wall networks 
•  Taking, 
 
•  We see that domain walls in a scaling solution would start dominating 

the energy density in the universe at the time roughly of the order 

 
•  Taking this time to be at least the current age of the universe imposes 

the constraint on the domain wall tension 

 

This is quite a very important constraint 
on models with domain walls !

 
 

 

H ⇠ t�1

t⇤ =
1

G�

� < 1 GeV



Biased Domain wall networks 
•  This constraints can be avoided if the 

domain walls dissapear at some point. 
 
•  This can happen if, for example, there is 

a small bias towards one of the vacua. 

 
•  This produces a source of small pressure 

towards one of the vacua. This force 
becomes important when 

•  This should happen before wall 
domination 

 

 

 

 

�V ⇠ ✏

✏ ⇠ �

R

R <
1

G� ✏ > G�2



Gravitational waves from domain walls 
•  Taking this rough scenario we can estimate the spectrum of the 

stochastic background of gravitational waves produced by these 
walls. 

 
•  First we would like to estimate the height of the spectrum: 

•  And the position of the peak: 

 

 

�
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�
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✓
�

1TeV3
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◆4

fpeak ⇠ 10�9Hz
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Gravitational waves from domain walls 
•  Changing the parameters of the model,                   , we can move this 

spectrum in different bands of observation and amplitude. 

 

 

(�, Tann)



Gravitational waves from domain walls in the 
PTA band 

(R. Ferreira et al.‘22). 

See also the discussion of these 
types of models in the NANOGrav 
Collaboration paper: 

“The NANOGrav 15-year Data 
Set: Search for Signals from 
New Physics”, A. Afzal et al. 
(2023)
 
 

 

For example: 
 

 



Cosmic Strings 
 













What is a cosmic string? 
•  Physical properties of the strings: 

•  They are topological stable objects, they have no ends. 
 
•  They are Lorentz invariant.  

Tension = Energy density per unit length 

•  They are not coupled to any massless mode, except 
gravity. 

 
 

(This is the simplest version of strings that we will consider here) 



The String Scale 

•  Thickness,	  energy	  density	  and	  tension	  of	  the	  string	  are	  controlled	  by	  
the	  symmetry	  breaking	  scale.	  

	  
•  For	  a	  Grand	  Unified	  Theory	  scale:	  
	  
•  Thickness:	  
	  
•  Linear	  mass	  density:	  
	  
•  Tension	  :	  
	  
•  Gravita>onal	  effects	  depend	  on:	  	  

	  

 

⌘

⌘ ⇡ 1016GeV

� = 10�30cm

µ = 1022gr/cm

T = 1037N

Gµ =

✓
⌘

MPl

◆2
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Cosmological Formation 

•  Strings get formed at a cosmological phase transition. 

•  In order for strings to be cosmologically relevant this should 
happen at the end of inflation. 

•  They could be formed in models of hybrid inflation or during 
reheating. 

•  In String Theory they are produced at the end of brane inflation.
(They have some characteristic properties that make them 
special)	  

	  

 

(Kibble‘76). 



Initial Conditions 
(Vachaspati & Vilenkin‘84). 

(B-P., Olum and Shlaer ‘12). 



75 

Classical Relativistic String 
 

•  The	  Lagrangian	  of	  a	  rela>vis>c	  string:	  

	  
•  String	  tension	  equal	  to	  the	  energy	  
density:	  

	  
	  
	  
•  Induced	  metric	  on	  the	  worldsheet:	  
	  
	  
	  
	  
	  
	  
 

(Nambu,’71; Goto ‘70). 



Cosmic String Dynamics 

SNG = �µ

Z p
�� d2⇠

(Nambu,’71; Goto ‘70). 

X(�, ⌧) =
1

2
[a(� � ⌧) + b(� + ⌧)]

⌧

X(�, ⌧)

•  A relativistic string dynamics has an action of 
the form, 

•  The string is described by: 

•  We use the gauge conditions: X02 + Ẋ2 = 1

X0 · Ẋ = 0

•  The e.o.m. become: 

X00 = Ẍ
|a0| = |b0| = 1
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Classical Non-relativistic String 
 

•  There	  are	  two	  important	  parameters	  in	  this	  problem:	  

•  The	  energy	  per	  unit	  length	  of	  the	  string	  

•  Tension	  of	  the	  string	  
	  
•  The	  equa>ons	  of	  mo>on	  for	  the	  transverse	  mo>on	  of	  the	  string	  
is	  given	  by:	  
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The	  wave	  equa>on	  	  
	  
	  
	  
	  
 



Cosmic String Dynamics 

X(�, ⌧) =
1

2
[a(� � ⌧) + b(� + ⌧)]

The function a and b represent travelling waves moving on the string in opposite directions. 
 

 



What about interactions? 
•  Strings	  interact	  by	  exchanging	  partners,	  crea>ng	  loops.	  

 

•  This	  mechanism	  produces	  kinks	  on	  strings.	  

•  This	  builds	  up	  small	  scale	  structure	  on	  strings. 

•  For	  field	  theory	  strings	  	  

	  
	  
	  	  	  for	  Superstrings	  

 

Pinter = 1

Pinter < 1



Classical Relativistic String 
 

•  Simplest	  possible	  example:	  

•  With	  this	  ansatz,	  we	  have:	  

•  Equa>on	  of	  mo>on:	  

•  Solu>on:	  

	  
	  
	  
	  
	  
	  
	  
	  
 



Cosmic String Dynamics (Loops) 

•  The solutions for closed loops are periodic. 

•  The loops oscillate under their tension. 

•  The strings move typically relativistically. 

•  During its evolution a loop may have points where the string 
reaches the speed of light:  A cusp 

	  

	  

 

X(�, ⌧) =
1

2
[a(� � ⌧) + b(� + ⌧)]

b0 = �a0|Ẋ| = 1

2
|b0 � a0|



Cosmic String Cusps 

•  Loops will typically have a cusp in each 
oscillation. 

•  The string doubles back on itself. 

( Turok ‘84). 

X02 + Ẋ2 = 1



The importance of  Loops 

•  Without any mechanism for energy loss strings would 
dominate the energy density of the universe. 

•  Loops oscillate under their tension and lose energy by 
gravitational radiation. 

•  This mechanism allows strings to be subdominant part of 
the energy budget. 

•  No “monopole problem” for strings. 

	  



Cosmic String Networks 

•  As the string network evolves it reaches a scaling solution where 
the energy density of strings is a constant fraction of the energy 
density in the universe. 

 

•  All statistical properties scale with the horizon distance. 

⇢1
⇢

= constant



Nambu-Goto Cosmic String Networks 
Simulations (B-P., Olum and Shlaer ‘12). 



The Scaling of  Cosmic String Networks 

All the properties of the strings scale with the horizon size. 

(B-P., Olum and Shlaer ‘12). 

� =
1

dh

r
µ
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Observational Signatures 

•  Many different ideas: 

•  Lensing. 
 
•  Effects on the CMB. 

•  Cosmic Rays. 
 
•  Gravitational waves. 
 
•  Several other ideas… 

	  



Spacetime around a string 

•  The spacetime generated by a cosmic string is conical 

( Vilenkin ‘81). 

� = 8⇡Gµ



Lensing 
•  This	  space>me	  will	  create	  exact	  copies	  of	  the	  same	  galaxy	  at	  a	  
small	  angular	  distance.	  

�' ⇡ 8⇡Gµ ⇡ 500
✓

Gµ

10�6

◆



String signatures on the CMB 

•  We	  can	  see	  the	  effect	  on	  the	  temperature	  fluctua>ons	  by	  
genera>ng	  maps	  that	  include	  strings.	  

( Fraisse et al. ‘08). 



String signatures on the CMB 

•  Another	  approach:	  
	  
	  
	  
•  Calculate	  of	  the	  power	  spectrum	  using	  the	  network	  of	  strings	  
as	  a	  source.	  

•  Conclusions	  agree:	  

•  Only	  a	  small	  percent	  of	  the	  total	  power	  in	  temperature	  
perturba>ons	  could	  be	  due	  to	  strings.	   

(Bevis et al. 06 ). 

Gµ < 6⇥ 10�7



Gravitational Radiation by Loops 
•  The power of gravitational waves will affect the size of the loops: 

•  The total power has been calculated with several sets of loops: 

•  Loops will therefore shrink in size so the rest mass of the loop 
will be: 

 

P ⇠ �Gµ2 � ⇠ 50� 100

Ṁ ⇠ G(
...
Q)2 ⇠ GM2L4w6 ⇠ �Gµ2

m(t) ⇠ m(t0)� �Gµ2(t� t0)

L(t) ⇠ L(t0)� �Gµ(t� t0)



Gravitational Waves from the Network 
•  There are 2 different contributions to gravitational waves from a 

network of strings: 

•  Stochastic background generated by all the modes in the 
loop. 

  

 
•  Burst signals from individual cusps. 

( Damour & Vilenkin ‘01). 

(Vilenkin ‘81, Hogan and Rees ’84, Caldwell et al. ‘92,  
Siemens et al.; Battye et al., Sanidas et al., Binetruy et al.; 
Ringeval and Suyama; Kuroyanagi et al…). 



Stochastic background of  Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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It also depends on the spectrum of gw 
emission by the surviving loops. 



The number of  cosmic string loops 
(B-P., Olum and Shlaer ‘13). 

•  We	  have	  been	  able	  to	  obtain	  from	  the	  simula>ons	  the	  scaling	  
distribu>on	  of	  loops.	  

	  
	  
•  This	  allows	  us	  to	  calculate	  the	  loop	  distribu>on	  of	  sizes	  at	  any	  moment	  
in	  the	  history	  of	  the	  universe: 

nr(t, l)

a3(t)
⇡ 0.18

t3/2(l + �µt)5/2



Stochastic background of  Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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Stochastic background of  Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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It also depends on the spectrum of gw 
emission by the surviving loops. 



Gravitational Radiation by Loops 

•  Loops are periodic sources so they emit at specific frequencies 

 
 
 
•  We have to determine the amount of radiation at each frequency 

and it total power  

 � =
1X

n=1

Pn

L(t) ⇠ L(t0)� �Gµ(t� t0)

fn =
2n

L



Gravitational Radiation by Loops 
•  The spectrum of radiation depends on the shape of the string. 
 
•  Different structures on the strings have different spectrum: 
 

P cusps
n ⇠ Gµ2n�4/3

P kinks
n ⇠ Gµ2n�5/3

(Vachaspati and Vilenkin ‘85). 



Loops from the Simulation 
(B-P., Olum and Shlaer ‘12). 

Loops obtained directly from the simulation have a lot of structure. 
However, we need to consider smoothing by gravitational backreaction. 



Smoothing the loops (Toy model) 
(B-P., Olum‘15). 

We need to do the actual gravitational smoothing by gravitational 
backreaction (Work in progress) 



Gravitational Radiation by Loops 
(B-P. and Olum  ‘17). 
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Gravitational Radiation by Loops 
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Radiation Spectrum Step 7 

•  Averaging over more than 1000 loops we get a spectrum of the form. 

n

n4/3Pn

(B-P. and Olum  ‘17). 



Stochastic background of  Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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(B-P. , Olum and Siemens  ‘17). 
Implications for Future Observations  



GW observations from Pulsar Timing Array 

Gravitational waves can create 
a residual on the time of arrival 
of these pulses. 

There are several PTA observatories that monitor the time of arrival 
of the pulses that come from many pulsars. 

These observatories are 
sensitive to gravitational waves 
with a frequency of the order: 

fPTA ⇡ 10�9Hz



NANOGrav 15 year data 
⌦GW =

2⇡2

3H2
0

A2f2
yr

✓
f

fyr

◆5��

“The NANOGrav 15-year Data Set: Search for 
Signals from New Physics”, A. Afzal et al. (2023)

Is there room for new 
physics in this data? 



NANOGrav 15 year data 

“The NANOGrav 15-year Data Set: Search for 
Signals from New Physics”, A. Afzal et al. (2023)



NANOGrav 15 year data 
“The NANOGrav 15-year Data Set: Search for 
Signals from New Physics”, A. Afzal et al. (2023)

We can use this data to place 
upper bounds on the tension of 
the strings: 

log (Gµ)STABLE-C < �9.67

log (Gµ)STABLE-N < �9.71

log (Gµ)STABLE-K < �9.87

log (Gµ)STABLE-N < �10.10



NANOGrav 15 year data 

“The NANOGrav 15-year Data Set: Search for 
Signals from New Physics”, A. Afzal et al. (2023)

This may have important consequences for possible observations in 
other frequency bands. 



Cosmic Rays (B-P. & Olum‘99). 

Strings can radiate massive particles in regions of high curvature. 

This radiation could be seen in form of cosmic rays. However, we do not 
expect this to be very significant.  



Nambu-Goto dynamics and particle radiation 

Strings from cosmological field theory simulations move exactly like 
Nambu-Goto predicts for most of their evolution. 

(BP, Jimenez-Aguilar, Lizarraga, Lopez-Eiguren, Olum, Urio and Urrestilla, ’23). 

Green line: Nambu-Goto prediction 
Blue tube: Field Theory simulation 



Nambu-Goto dynamics and particle radiation 

Except in regions of high curvature where they can radiate particles. 

(BP, Jimenez-Aguilar, Lizarraga, Lopez-Eiguren, Olum, Urio and Urrestilla, ’23). 

More work in progress 



Global Strings (Axionic strings) 
•  Global strings are coupled to a massless field thefore they have 

another decay channel apart from gravity. 

•  This is in fact much more efficient than the gravitational radiation. 

•  These massless fields should become massive and give rise to a 
cosmic abundance of axionic dark matter. 

•  The effective action for these strings should incorporate this 
coupling: 
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Global Strings (Axionic strings) 
•  There are several field theory simulations of these axionic strings 

and the results are not in agreement yet. 

•  These networks also have some signature in gravitational waves. 
However their amplitude is expected to be lower than local 
strings. 

•  These strings would eventually dissapear by the formation of 
domain walls that bound them. 

 

Gorghetto et al. ‘18 
 Buschmann et al. ‘21 

 Hindmarsh et al.’20 & ‘21 



Summary Part II 
•  Topological defects are predicted in many extensions of the SM. 

•  They long lifetime could leave some imprint on the different cosmological 
observable we have access to. (CMB, Stochastic GW Background, Cosmic 
Rays, etc…) 

•  We can impose important constraints on some regions of the parameter 
space from current observations. 

•  Gravitational wave observatories have a great potential to discover new 
physics involving topological defects. 

•  Future observatories like LISA or ET could detect or constrained these 
scenarios. 

•  These bounds have an impact on high energy physics of the early universe. 
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