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Outline

Lecture 1 (yesterday)

• Artificial intelligence

• Machine learning

• Model representation

• Metrics

• Parameter learning

Lecture 2 (today)

• Non-linear models

• Beyond neural networks

• Clustering

• Cross-validation

• Hyperparameter tune
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Artificial neural networks



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.
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Non-linear models timeline

1943
Neural Nets

1958
Perceptron

1980
Neocogitron
SOMs

1974
Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1982
Hopfield 
Networks

1985
Boltzmann 
Machine

1986
Multilayer Perceptron
Restricted BMs, RNNs

1990
LeNet

1997
LSTMs
BRNNs

2006
Deep BMs
Deep Belief NNs

2014
GANs

2012
Dropout

2017
RTBMs

2020
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Neural networks

Artificial neural networks are computer systems inspired by the biological neural networks in the

brain.

Currently the state-of-the-art technique for several ML applications.
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Neuron model

We can imagine the following data communication pattern:

Dendrite

Soma

Nucleus

Axon

Myelin sheath

Node of
Ranvier

Axion
terminal

Schwann cell

Input Output

Logical Unit
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Neuron model

Schematically:

where

• each node has an associate weights and bias w and inputs x,

• the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...

gw(x) =
1

1 + e−wT x
, tanh(wTx), x.
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Neural networks

In practice, we simplify the bias term with x0 = 1.

Neural network → connecting multiple units together.

where

• a
(l)
i is the activation of unit i in layer l,

• w
(l)
ij is the weight between nodes i, j from layers l, l + 1 respectively. 7



Neural networks
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Neural networks

Some useful names:

• Feedforward neural network: no cyclic connections between nodes from the same layer

(previous example).

• Multilayer perceptron (MLP): is a feedforward neural network with at least 3 layers.

• Deep neural networks: term referring to neural networks with more than one hidden layer.
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Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function gradient with respect to

parameters w
(l)
ij :

w
(l)
ij := w

(l)
ij − η∇(l)

ij J → ∇(l)
ij J =

∂

∂w
(l)
ij

J(w)

Use the backpropagation algorithm to compute the gradient of a NN.

• can be used with any gradient-based optimizer, including quasi-Newton methods.

• reduces the large amount of computations thanks to chain rule

• requires the derivative of the cost function with respect to the output layer w
(l)
ij with l =

output.
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Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i )

2: perform a backward propagation: evaluate for each node a “prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .
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Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))
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At this step we know the output of the current MLP setup.
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Backpropagation algorithm

2. evaluate for each node the error δ
(k)
j for k = 2, 3, . . . , L.

Some remarks:

It is possible to proof using derivative chain rules that:

∇(l)
ij J =

∂J

∂z
(l+1)
i

a
(l)
j ≡ δ

(l+1)
i a

(l)
j ,

for l = 1, . . . , L− 1.

The recursive relation for the error is:

δ
(l)
i =

∑
k

w
(l)
ki δ

(l+1)
k · g′(z(l)i )

and at l = L, i.e. the highest l index:

δ
(L)
i =

∂J

∂a
(L)
i

· g′(z(L)
i )

where g′(z
(l)
i ) = a

(l)
i (1− a

(l)
i ) if g is the sigmoid function.
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Backpropagation algorithm

Example: evaluating error δ
(l)
j for a MLP with sigmoids in the hidden layers and linear

activation function in the output layer:

• δ(4) = a(4) − y

• δ(3) = (w(3))T δ(4) · (a(3)(1− a(3)))

• δ(2) = (w(2))T δ(3) · (a(2)(1− a(2)))

14



Backpropagation algorithm summary

Data: training set (x(i),y(i)) with i = 1, . . . ,m examples.

Result: the trained neural network

Initialize network weights;

while stopping criterion is not satisfied do

Set all ∆w
(l)
ij = 0.

for k = 1 to m do

Perform forward pass and compute a(l) for l = 1, 2, 3, . . . , L;

Perform backward pass and compute δ(l) for l = 2, . . . , L;

∆w
(l)
ij := ∆w

(l)
ij + aljδ

(l+1)
i

end

Update network weights using gradient descent;

end
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Training neural networks

Some remarks and example of neural network initialization:

• zero: all weights are set to zero so all neurons perform the same calculation. The

complexity of the neural network is equivalent to a single neuron.

• random: breaks parameter symmetry.

• glorot/xavier: initialize each weight with a small Gaussian value with mean zero and

variance based on the in/out size of the weight.

• he: avoid activation function saturation. Weights are random initialized considering the

size of the previous layer.
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Neural networks zoo



Artificial neural networks architectures
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MLP

• Sequential model (MLP): regression and classification
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Artificial neural networks architectures

Some examples of neural network popular architectures:

• Recurrent neural networks: neural networks where connections between nodes form a

directed cycle.

• built-in internal state memory

• built-in notion of time ordering for a time sequence
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Artificial neural networks architectures

• Recursive neural networks: a variation of recurrent neural network where pairs of layers or

nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural networks composed by

custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.
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Artificial neural networks architectures

• Convolutional neural networks: multilayer perceptron designed to require minimal

preprocessing, i.e. space invariant architecture.

• the hidden layers consist of convolutional layers, pooling layer, fully connected layers and

normalization layers

• great successful applications in image and video recognition.
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Artificial neural networks architectures

• Generative adversarial network: unsupervised machine learning system of two neural

networks contesting with each other.

• one network generate candidates while the other discriminates.
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Hyperparameter tune



Outline

Model

Optimizer

Cost function Best modelCross-validationTraining

Data
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Hyperparameters summary

So far we have encountered the following problems:

• Model:

• model architecture / size

• if NN: layers, nodes, activation functions

• regularization techniques including early stopping techniques, weight decay, etc.

• Training:

• performance metrics

• optimizer configuration, e.g.: η, scheme, etc.

• cross-validation split fractions

• Dataset:

• size (gather more data?)

• unbalanced data

Each choice should be tested → large space → difficult / time consuming.
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Practical methodology



Don’t get lost!

Designing a practical pipeline process:

• Estimate current state-of-the-art performance.

• Define realistic project goals, simplify / accelerate algorithms.

• Propose initial performance metrics matching the project goals.

• Perform incremental changes iteratively (data, hyperparameter, algorithms, etc.).

25



Example 1: auto-tuning model’s capacity

How to simplify model capacity selection? Early stopping techniques

Iteration

J(w) training

J(w) validation

Stop

Monitor the cost function for the validation set and stop when it stops improving:

• look at the variation in a moving window

• stop at the minimum of the validation set (lookback method),

26



Example 2: auto-tuning model’s capacity

How to simplify model capacity selection? Neural Network Dropout

At each training stage:

• individual nodes and related incoming and outgoing edges are dropped-out of the neural

network with a fixed probability.

• the reduced NN is trained on the data.

• the removed nodes are reinserted in the NN with their original weights.

27



Data considerations



Data considerations

Step 1: Understand your data, extract correlations, perform minimal feature extraction.

28



Data considerations

Gathering more data is usually crucial but before:

Step 2:

• check the performance with the current training set, if its performance is:

• poor → increase model size and tune the optimizer.

• acceptable → check test set performance.

Step 3:

• if tuned models fail → check data for noise or inconsistencies, collect new data

• if test set performance is poor → gather more data if possible

• if not possible reduce the size of the model or improve hyperparameter tuning.

Step 4:

• estimate how much additional training data is needed.

• if gathering much more data is not feasible → improve the learning algorithm itself.

29



Data considerations

30



Unbalanced data

Unbalanced datasets are common issues:

Solution → perform class weighting, oversampling, data augmentation.
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Hyperparameter tune



Manual hyperparameter tuning

Manual approach goal → achieve good performance on the test set.

Some examples of effect of hyperparamaters on model capacity:

• Number of layers/nodes → increases capacity when increased.

• Learning rate → increases capacity when tuned optimally.

• Weight decay → increases capacity when decreased.

• Dropout rate → increases capacity when decreased.
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Automatic hyperparameter optimization algorithms

Hyperparameter tuning is an optimization problem thus we can automate the process.

Common approaches:

• grid search

• random search

• bayesian optimization

• gradient-based optimization

• evolutionary optimization

33



Grid search

Grid search: searching through a manually subset range of the hyperparameter space.

• Train model for every grid point of the hyperparameter space.

• Allocate initial grids following a logarithmic scale, perform zoom in another round.

• Monitor the best validation set error → best hyperparameter values.

The disadvantage: with n values and m

parameters the number of trials is O(nm)

34



Random search

Random search: sample trial points from a marginal distribution for each hyperparameter.

• Do not discretize or bin the values of the hyperparameters.

• The marginal distribution will perform independent explorations of hyperparameters.
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Model-based hyperparameter optimization

Idea:

• Perform a training using a set of hyperparameters.

• Define the cost function to be optimize as the validation set error.

• Use sequential model-based optimization (SMBO) approach, or algorithms which monitors

the numerical gradient from the loss function.

Example: Tree-structured Parzen Estimator (TPE)

36



SMBO

SMBO minimizes functions f : X → R where each evaluation is very expensive.

The f function is replaced by a surrogate function, f̄ , easier to manage.

The surrogate function proposes a new search point xi+1, f(xi+1) is computed and f̄ updated

or recomputed to approximate better the true loss function.

Where L(x, f̄), the criterion, and f̄ depend on the specific algorithm.
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TPE

The Tree-structured Parzen Estimator (TPE) algorithm is a SMBO where the surrogate model

is a probabilistic model p(y|x), which chooses the next trial point by optimizing the Expected

Improvement criterion:

EIy⋆(x) =

∫ ∞

−∞
max(y⋆ − y, 0)p(y|x)dy

which measures how much the loss function is expected to be lower than a threshold value y⋆,

chosen so that p(y < y⋆) = γ where γ is a parameter of the algorithm.
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TPE

The p(y|x) is computed via Bayes’ theorem through p(x|y)

p(x|y) = l(x) if y < y⋆; g(x) if y ≥ y⋆

where l(x) and g(x) are probability distributions estimated by using the trials xi such that

f(xi) is respectively lower and higher or equal y⋆.

The Expected Improvement for the TPE admits a closed form solution:

EIy⋆(x) =

∫ ∞

−∞
max(y⋆ − y)

p(x|y)p(y)
p(x)

dy ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1
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Code libraries and algorithms

• scikit-learn: grid and random search.

• Hyperopt: grid, random and TPE.

• Optuna: grid, random, TPE, CMAES.

• Ray Tune: grid, random, bandit, blended, cost-frugal, TPE, gradient-free, etc.

40



Cross-validation



Cross-validation

The hyperparameter tune procedure still requires the training/validation/test split to choose for

the best model.

Training Set Test Set

Total number of examples

Validation Set

Problems:

• how to perform the data split when the available data set is small?

• how to define a suitable split?

Solution:

Use cross-validation algorithms to access the quality of your model + hyperparameter choice.

41
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Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a

training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to divide the original sample

but use discrete subsamples.

• k-fold cross-validation.

42



Example k-fold cross-validation

k-fold cross-validation:

1. the original data is randomly partitioned into k equal sized subsamples.

2. from the k subsamples, a single subsample is used as validation data and the remaining

k − 1 subsamples are used as training data.

3. repeat the process k times by changing the validation and training partitions.

4. compute the average over the k results.

Example of k-fold with k = 4:
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Complete recipe

Perform hyperparameter tune coupled to cross-validation:

Best solution

Grid/random search

Cross-validation Test set

Cross-validation Test set

Cross-validation Test set

... ...

Run I

Run II

Run n

Easy parallelization at search and cross-validation stages.
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Closure testing



Closure tests

Validation and optimization of fitting strategy performed on closure test with known

underlying law.

New fitting methodology

Define Underlying Law

Generate pseudo-data

Validate results by comparing to law

Perform Training

Fit real data
Fails OK
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ML in practice



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation
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Keras

Keras is a high-level deep learning framework in Python which runs on top of TensorFlow,

CNTK or Theano.

Pros:

• fast prototyping, user friendly, common code for multiple backends.

• support several NN architectures out-of-the-box.

• runs seamlessly on CPU and GPU.

Cons:

• more tricky to extend when custom ML setups are required

• runs only in Python
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TensorFlow

TensorFlow is a library for high performance numerical computation.

Pros:

• solves optimization problems with

automatic differentiation.

• can be extended in python and c/c++.

• runs seamlessly on CPU and GPU, and

can uses JIT technology.

Cons:

• do not provides builtin models from the

core framework

• less automation for cross-validation

and hyperparameter tune
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Scikit-learn
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Scikit-learn

Scikit-learn contains the most popular algorithms for:

• Supervised learning: neural networks, decision trees, etc.

• Unsupervised learning: density estimate, clustering, etc.

• Model selection: cross-validation, hyperparameter tune, etc.

• Dataset transformations: feature extractions, dim. reduction, etc.

• Dataset loading

• Strategies to scale computationally

• Computational performance
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Questions?
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