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Lecture 1 (yesterday) Lecture 2 (today)
e Artificial intelligence e Non-linear models
e Machine learning e Beyond neural networks

Model representation
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Parameter learning e Hyperparameter tune



Artificial neural networks



Limitations of linear models

Why not linear models everywhere?



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:
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Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n?) so linear models are impractical.
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Each image has 28x28 pixels = 785 features (x3 if including RGB colors).
If consider quadratic function O(n?) so linear models are impractical.

Solution: use non-linear models.



Non-linear models timeline
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Neural networks

Avrtificial neural networks are computer systems inspired by the biological neural networks in the
brain.

o
L./ synapse
\

N

Py o oy I ~ - - -~ E—_— .



Neuron model

We can imagine the following data communication pattern:

Output

Node of
Ranvier

Schwann cell

Myelin sheath

Logical Unit



Neuron model

Schematically:

Activation
function

Output

Weights

where

e cach node has an associate weights and bias w and inputs =z,
e the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...
1
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Neural networks

In practice, we simplify the bias term with zy = 1.
Neural network — connecting multiple units together.

Input Layer ~ Hidden Layer

ij
Layer 1 Layer 2 Layer 3

where
)

i
° wg.) is the weight between nodes 4, j from layers [, + 1 respectively. =

e a,’ is the activation of unit ¢ in layer [,



Neural networks

Input Layer =~ Hidden Layer

Layer 1 ! Layer 2 Layer 3
o af? = glwly +wi)s +wz; + wm a3)
° (2) = g(wéo) + w;)xl + wé?mz + wQ3 xd)
° (2) g(wéo) + w;(),1>x1 + w§2)5132 + w33 .I'g)
. Output = a® = g(w? + wPa® + w2al? + wPa)



Neural networks

Some useful names:

e Feedforward neural network: no cyclic connections between nodes from the same layer
(previous example).

e Multilayer perceptron (MLP): is a feedforward neural network with at least 3 layers.

e Deep neural networks: term referring to neural networks with more than one hidden layer.




Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function gradient with respect to
0.

parameters w, ;"
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Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function gradient with respect to

@,
parameters w, ;"

W =u® —qv®1 o vO7= 2 j)
Wij uw®

ZJ

Use the backpropagation algorithm to compute the gradient of a NN.

e can be used with any gradient-based optimizer, including quasi-Newton methods.
e reduces the large amount of computations thanks to chain rule

e requires the derivative of the cost function with respect to the output layer w( ) with [ =
output.
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Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate agl))
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2: perform a backward propagation: evaluate for each node a “prediction error”:

5§l) = “error” of node j in layer [.
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Backpropagation algorithm

The backpropagation steps:
(l))

@

1: perform a forward propagation (calculate a

2: perform a backward propagation: evaluate for each node a “prediction error”:
5§l) = "error” of node j in layer [.

3: calculate Vg)J using erros 61@ and agl).

4: perform weight updates, Awgé), via gradient descent using VE?J.
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Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).
Step 1: We first perform a forward propagation pass:

Y a(l) =a

12
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o 22 — wg®
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Backpropagation algorithm
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Backpropagation algorithm
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Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).
Step 1: We first perform a forward propagation pass:
e a =g
e 22 — (Mg
o a® = g(z?)
o 203 — w@q?
e a® = g(z(«%))

o 2D — u(3g®
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Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).
Step 1: We first perform a forward propagation pass:
e a) =g
o 2(2) = (Mg
o a® = g(z)
e 203 — w@q?
e a® = g(z(B))

o 29 — u®g®

e Output a™® = g(z@¥)
At this step we know the output of the current MLP setup.

12



Backpropagation algorithm

2. evaluate for each node the error 6j(-k) fork=2,3,..., L.
Some remarks:
It is possible to proof using derivative chain rules that:

vy — 37«7@(_1) _ 50+ ,0

ij 1+1) 7 i j
az(+)

fori=1,...,L —1.
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Backpropagation algorithm

2. evaluate for each node the error 6j(.k) fork=2,3,..., L.
Some remarks:

It is possible to proof using derivative chain rules that:

v = _9T alP = 5D g0

ij aZ(lH) J i j
fori=1,...,L —1.

The recursive relation for the error is:

50 = S usH) ¢ (:0)
k
and at [ = L, i.e. the highest [ index:

( _ 0J (L)
& _30(@)' /(Zi )

0

where ¢'(z;7) = agl)(l — agl)) if g is the sigmoid function.
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Backpropagation algorithm

Example: evaluating error 5](.” for a MLP with sigmoids in the hidden layers and linear
activation function in the output layer:

o 6@ =g _ Y
e 6®) = (wB)TeW . (aB®)(1 - a®))
e 5 = (w®)T® . (a@(1 - a®))
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Backpropagation algorithm summary

Data: training set (¥, y()) with i = 1,...,m examples.
Result: the trained neural network

Initialize network weights;

while stopping criterion is not satisfied do

Set all Aw%) =0.

for k=1 to m do

Perform forward pass and compute a(®) for 1 =1,2,3,...,L;
Perform backward pass and compute 60 for i = 2,...,L;
(O O] 1 s(+1)
Awij = Awij —O—ajéi
end

Update network weights using gradient descent;

end
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Ti ng neural networks

Some remarks and example of neural network initialization:

e zero: all weights are set to zero so all neurons perform the same calculation. The
complexity of the neural network is equivalent to a single neuron.

e random: breaks parameter symmetry.

e glorot/xavier: initialize each weight with a small Gaussian value with mean zero and
variance based on the in/out size of the weight.

e he: avoid activation function saturation. Weights are random initialized considering the

size of the previous layer.
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Neural networks zoo



Artificial neural networks architectures

Amostly comlete chart of

Neural Networks e
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e Sequential model (MLP): regression and classification

input hidden output
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ial neural networks architectures

Some examples of neural network popular architectures:

e Recurrent neural networks: neural networks where connections between nodes form a
directed cycle.
e built-in internal state memory
e built-in notion of time ordering for a time sequence

19



ial neural networks architectures

e Recursive neural networks: a variation of recurrent neural network where pairs of layers or
nodes are merged recursively.
e successful applications on natural language processing.
e some recent applications for model inference.
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ial neural networks architectures

e Recursive neural networks: a variation of recurrent neural network where pairs of layers or
nodes are merged recursively.
e successful applications on natural language processing.
e some recent applications for model inference.
S

Wscore
|
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e Long short-term memory: another variation of recurrent neural networks composed by
custom units cells:

e LSTM cells have an input gate, an output gate and a forget gate.
e powerful when making predictions based on time series data.
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ificial neural networks architectures

e Convolutional neural networks: multilayer perceptron designed to require minimal
preprocessing, i.e. space invariant architecture.
e the hidden layers consist of convolutional layers, pooling layer, fully connected layers and
normalization layers
e great successful applications in image and video recognition.

Feature maps

"\
*.. Output
e

-

Convolutions Subsampling Convolutions Subsampling  Fully connected
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ial neural networks architectures

e Generative adversarial network: unsupervised machine learning system of two neural
networks contesting with each other.

e one network generate candidates while the other discriminates.

Training set ZV

NN Discriminator
Real
Random /I @ E— {Fa ke

Generator Fake image
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Hyperparameter tune



Outline

Data

Cost function Training —— Cross-validation —»

Optimizer
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Hyperparameters summary

So far we have encountered the following problems:

e Model:

e model architecture / size
e if NN: layers, nodes, activation functions
e regularization techniques including early stopping techniques, weight decay, etc.

e Training:
e performance metrics
e optimizer configuration, e.g.: 7, scheme, etc.
e cross-validation split fractions

e Dataset:

e size (gather more data?)
e unbalanced data

24



Hyperparameters summary

So far we have encountered the following problems:

e Model:

e model architecture / size
e if NN: layers, nodes, activation functions
e regularization techniques including early stopping techniques, weight decay, etc.

e Training:
e performance metrics
e optimizer configuration, e.g.: 7, scheme, etc.
e cross-validation split fractions

e Dataset:

e size (gather more data?)
e unbalanced data

Each choice should be tested — large space — difficult / time consuming.

24



Practical methodology



Don’t get lost!

Designing a practical pipeline process:

e Estimate current state-of-the-art performance.
e Define realistic project goals, simplify / accelerate algorithms.
e Propose initial performance metrics matching the project goals.

e Perform incremental changes iteratively (data, hyperparameter, algorithms, etc.).

25



Example 1: auto-tuning model’s capacity

How to simplify model capacity selection? Early stopping techniques

J(w) validation

J(w) training

Stop

Iteration

Monitor the cost function for the validation set and stop when it stops improving:

e |look at the variation in a moving window
e stop at the minimum of the validation set (lookback method),

26



Example 2: auto-tuning model’s capacity

How to simplify model capacity selection? Neural Network Dropout
At each training stage:

e individual nodes and related incoming and outgoing edges are dropped-out of the neural
network with a fixed probability.
e the reduced NN is trained on the data.

e the removed nodes are reinserted in the NN with their original weights.

(a) Standard Neural Net (b) After applying dropout.
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Data considerations



Data considerations

Step 1: Understand your data, extract correlations, perform minimal feature extraction.

51 4 ome M2 AR Ew 8N o8 0 4m o AW

L 4H 4m a4m (]
- ..m

r AP aXos OEM A1 £y Do 3N

nc'.: am on .

- b 1 (R

N4 B Am

@ om
on s B

o 4m
e S lnmamu CEE E az

e TR TRt

Frian: - 626 SR 93 am o1 (B8 e 031 ne oss RN s o

X B0 e

an
LSTAT = " oma A o
am

1

e o am n
=

E U LT st

a8

[+ a1 [
qu om0 gar
e “m""

DE BAL AN FTRAT B ASTAT

28



Data considerations

Gathering more data is usually crucial but before:
Step 2:

e check the performance with the current training set, if its performance is:
e poor — increase model size and tune the optimizer.
e acceptable — check test set performance.

Step 3:

e if tuned models fail — check data for noise or inconsistencies, collect new data
e if test set performance is poor — gather more data if possible
e if not possible reduce the size of the model or improve hyperparameter tuning.

Step 4:

e estimate how much additional training data is needed.
e if gathering much more data is not feasible — improve the learning algorithm itself.

29



Data considerations

Error (MSE)

Optimal capacity (polynomial degree)

— - Bayes error

P Train (quadratic)
FH Test (quadratic)
H

Test (optimal capacity)

Train (optimal capacit

Number of training examples
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Unbalanced data

Unbalanced datasets are common issues:

Females Males

1200
1000
800
600

400

Number of radiographs

200

20 0
Bone age, years

Solution — perform class weighting, oversampling, data augmentation.
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Hyperparameter tune




Manual hyperparameter tuning

Manual approach goal — achieve good performance on the test set.
Some examples of effect of hyperparamaters on model capacity:

e Number of layers/nodes — increases capacity when increased.
e Learning rate — increases capacity when tuned optimally.

e Weight decay — increases capacity when decreased.

e Dropout rate — increases capacity when decreased.

Training error
I SR O TR o
T
!

0-2 10—t 100

Learning rate (logarithmic scale)
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omatic hyperparameter optimization algorithms

Hyperparameter tuning is an optimization problem thus we can automate the process.

Common approaches:
e grid search

e random search

Loss

e bayesian optimization

gradient-based optimization

evolutionary optimization

)

1 S S—
Adam  RMSprop  Adadelta 10~ 107 10 glorot_uniform glorot_normal 10000 20000 30000 40000
optimizer learning rate initializer epochs
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Grid search: searching through a manually subset range of the hyperparameter space.

e Train model for every grid point of the hyperparameter space.

e Allocate initial grids following a logarithmic scale, perform zoom in another round.

e Monitor the best validation set error — best hyperparameter values.

The disadvantage: with n values and m
parameters the number of trials is O(n™)

34



Random search

Random search: sample trial points from a marginal distribution for each hyperparameter.

e Do not discretize or bin the values of the hyperparameters.

e The marginal distribution will perform independent explorations of hyperparameters.

Random

35



Model-based hyperparameter optimization

Idea:

e Perform a training using a set of hyperparameters.
e Define the cost function to be optimize as the validation set error.
e Use sequential model-based optimization (SMBO) approach, or algorithms which monitors

the numerical gradient from the loss function.

Example: Tree-structured Parzen Estimator (TPE)

0.30 eeo Random

]
(]
_0.28 eoo TPE
o
Lo.26
5 °
co §§8808888g0000
5022/ 880000000000000000
EoAzo--—*—a ——————————
Sos (Pinto and Cox, 2011)
o0
0.16 0o000000Q0OQCOOOQOOO0
0 200 400 600 800

n. trials
36



SMBO minimizes functions f : X — R where each evaluation is very expensive.
The f function is replaced by a surrogate function, f, easier to manage.

The surrogate function proposes a new search point x;;1, f(X;41) is computed and f updated
or recomputed to approximate better the true loss function.

Data: loss function f, initial surrogate f,, number of trials T
Result: Candidate Xpeq for the minimum of f
Set trials history H = {);
for i=1to T do
¥« argmin, L(X, f;_,);
Compute f(z*);
H — HU{x", J(x)}:
Model a new surrogate function f; using H;
end

Where L(x, f), the criterion, and f depend on the specific algorithm.
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The Tree-structured Parzen Estimator (TPE) algorithm is a SMBO where the surrogate model

is a probabilistic model p(y|x), which chooses the next trial point by optimizing the Expected
Improvement criterion:

ElL;(x) = /700 max(y* — y,0)p(y|x)dy

which measures how much the loss function is expected to be lower than a threshold value y*,
chosen so that p(y < yx) = v where + is a parameter of the algorithm.
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The p(y|x) is computed via Bayes' theorem through p(x|y)

p(xly) =Ux) ify<ys  g(x) ify=>y”
where [(x) and g(x) are probability distributions estimated by using the trials x; such that
f(x;) is respectively lower and higher or equal y*.
The Expected Improvement for the TPE admits a closed form solution:

/ max(y* — y)” plx 3(/))( )dy0<<v+?((§))(1—v))_l
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Code libraries and algorithms

HYPEROPT

‘fewm

machine learning in Python

e scikit-learn: grid and random search.

Hyperopt: grid, random and TPE.
Optuna: grid, random, TPE, CMAES.
Ray Tune: grid, random, bandit, blended, cost-frugal, TPE, gradient-free, etc.

40



Cross-validation




Cross-validation

The hyperparameter tune procedure still requires the training/validation /test split to choose for
the best model.

Total number of examples

Training Set Test Set

Problems:

e how to perform the data split when the available data set is small?

e how to define a suitable split?
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Cross-validation

The hyperparameter tune procedure still requires the training/validation /test split to choose for
the best model.

Total number of examples

Training Set Test Set

Problems:

e how to perform the data split when the available data set is small?
e how to define a suitable split?
Solution:

Use cross-validation algorithms to access the quality of your model + hyperparameter choice.

41



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

42



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions
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Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets
2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the model performance
Common approaches to cross-validation:

e Exhaustive cross-validation: test all possible ways to divide the original sample into a
training and a validation set.

e Leave-p-out: uses p observations as validation set.
e Leave-one-out: set p = 1.

e Non-exhaustive cross-validation: do not test all possible ways to divide the original sample
but use discrete subsamples.

e k-fold cross-validation.
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Example k-fold cross-validation

k-fold cross-validation:
1. the original data is randomly partitioned into k equal sized subsamples.
2. from the k subsamples, a single subsample is used as validation data and the remaining

k — 1 subsamples are used as training data.
3. repeat the process k times by changing the validation and training partitions.

4. compute the average over the k results.

Example of k-fold with & = 4:

[erston 11000001009 009009000000000
90000050010000000000
00000000000000700000

20000000000000000000
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Complete recipe

Perform hyperparameter tune coupled to cross-validation:

Runl

Run Il

Runn

1]

Cross-validation

Cross-validation

Cross-validation

Test set

Test set

Test set

Easy parallelization at search and cross-validation stages.
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Closure testing




Closure tests

Validation and optimization of fitting strategy performed on closure test with known
underlying law.

Define Underlying Law

Generate pseudo-data

Perform Training

\J

Fails OK
————— Validate results by comparing to law —b-
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ML in practice




Most popular public ML frameworks

For experimental HEP:

e TMVA: ROOT's builtin machine learning package.
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Most popular public ML frameworks

For experimental HEP:
e TMVA: ROOT's builtin machine learning package.
For ML applications:

e Keras: a Python deep learning library.
e Theano: a Python library for optimization.

PyTorch: a DL framework for fast, flexible experimentation.

Caffe: speed oriented deep learning framework.
e MXNet: deep learning frameowrk for neural networks.
e CNTK: Microsoft Cognitive Toolkit.
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Most popular public ML frameworks

For experimental HEP:
e TMVA: ROOT's builtin machine learning package.
For ML applications:

e Keras: a Python deep learning library.
e Theano: a Python library for optimization.

PyTorch: a DL framework for fast, flexible experimentation.

Caffe: speed oriented deep learning framework.
e MXNet: deep learning frameowrk for neural networks.
e CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

e TensorFlow: libray for numerical computation with data flow graphs.
e scikit-learn: general machine learning package.

Why use public codes? — builtin models and automatic differentiation 3



Keras is a high-level deep learning framework in Python which runs on top of TensorFlow,
CNTK or Theano.
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Keras is a high-level deep learning framework in Python which runs on top of TensorFlow,
CNTK or Theano.

Pros:

e fast prototyping, user friendly, common code for multiple backends.
e support several NN architectures out-of-the-box.

e runs seamlessly on CPU and GPU.
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Keras is a high-level deep learning framework in Python which runs on top of TensorFlow,
CNTK or Theano.

Pros:

e fast prototyping, user friendly, common code for multiple backends.
e support several NN architectures out-of-the-box.

e runs seamlessly on CPU and GPU.
Cons:

e more tricky to extend when custom ML setups are required

e runs only in Python
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TensorFlow

TensorFlow is a library for high performance numerical computation.
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TensorFlow

TensorFlow is a library for high performance numerical computation.

Pros:

e solves optimization problems with
automatic differentiation.

e can be extended in python and c¢/c++.

e runs seamlessly on CPU and GPU, and
can uses JIT technology.

Cons:

e do not provides builtin models from the
core framework

e less automation for cross-validation

and hyperparameter tune
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Scikit-learn

scikit-learn.

Classification

Identifying to which category an object
belongs to.

Applications: Spam detection, Image
recognition.

Algorithms: SVM, nearest neighbors,
random forest, Examples

Dimensionality reduction

Reducing the number of random variables to
consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, non-

negative marix factorization. Examples
htm -shift

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute

associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso,
Examples

Model selection

Comparing, validating and choosing
parameters and models.

Goal: Improved accuracy via parameter
tuning

Modules: grid search, cross validation,
metrics. Examples

Clustering

Automatic grouping of similar objects into
sets.

Applications: Customer segmentation,
Grouping experiment outcomes

Algorithms: k-Means, speciral clustering,
mean-shi, .. Examples

Preprocessing

Feature extraction and normalization.
Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.
Examples
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Scikit-learn

Scikit-learn contains the most popular algorithms for:

e Supervised learning: neural networks, decision trees, etc.

e Unsupervised learning: density estimate, clustering, etc.

e Model selection: cross-validation, hyperparameter tune, etc.

e Dataset transformations: feature extractions, dim. reduction, etc.
e Dataset loading

e Strategies to scale computationally

e Computational performance
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