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Recommended resources

Most of the contents of this presentation have been extracted from the following introductory
books:

István Montvay & Gernot Münster, “Quantum Fields on a Lattice”, Cambridge
Monographs on Mathematical Physics (1994).

Christof Gattringer & Christian B. Lang “Quantum Chromodynamics on the lattice”,
Lecture Notes in Physics, Springer (2010).

M. Creutz “Quarks, gluons and lattices”, Cambridge Monographs on Mathematical
Physics (1985).

M. Lüscher notes at Les Houches summer school 1997.

youtube.com

Also M. Creutz lectures online at youtube.com. Links: I, II, III, and IV.
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https://luscher.web.cern.ch/luscher/lectures/LesHouches97.pdf
https://www.youtube.com/watch?v=FsN34Sm6Ldo
https://www.youtube.com/watch?v=IfEx-VCvRK0
https://www.youtube.com/watch?v=DxHSojg-kVo
https://www.youtube.com/watch?v=jVBrYEfSuDU
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Lattice QCD: an introduction

Parts:

I. The basics.

II. Gauge and fermion fields.

III. Phenomenology from lattice QCD.
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Part I:

Lattice QCD: an introduction

I. The basics.
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Outline

1 Motivation: why lattice-QCD?

2 Scalar lattice field theory
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The Standard Model
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QCD

QCD Lagrangian depends on a few parameters: one coupling, αs , and quark masses (mu, md ,
ms , mc , mb and mt).

LQCD = −1

4
Fµνa F a

µν +
∑

f =u,··· ,t
ψ̄f

(
i /D −mf

)
ψf

αs acquires a renormalization scheme dependent running with the
momentum.

The running of αs(µ2) = g2(µ2)
4π is controlled by its RGE,

dαs
d lnµ2 = β(αs)

It is usually expressed either by its RGE boundary condition, ΛMS,
or by its value at a reference scale, typically mZ : αMS(m2

Z )
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QCD

QCD Lagrangian depends on a few parameters: one coupling, αs , and quark masses (mu, md ,
ms , mc , mb and mt).

LQCD = −1

4
Fµνa F a

µν +
∑

f =u,··· ,t
ψ̄f

(
i /D −mf

)
ψf

Emergent phenomena:

Confinement.

Hadron masses

Spontaneous chiral symmetry breaking.

Require non-perturbative methods.

Cannot be described using αs as an
expansion parameter (perturbation
theory).
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Confinement and the linearly rising potential

Interaction potential among static quarks:

V (r) ∼ −4

3

αs

r
+ σr

[Image from webific.ific.uv.es]
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Confinement and the linearly rising potential

Quarks or gluons have never being observed isolated.

Particle Data Group:

[Particle Data Group]

Initial and final states are hadrons, which are not the
fundamental degrees of freedom of QCD!

[Image from cerncourier.com]
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Dimensional transmutation

The large-momentum running of the coupling is determined by

αs(µ) ∼ 1

log(µ/Λ)

Perturbation theory provides the dependence on the Λ-parameter, but does not fix its value!

Dimensional transmutation

Masless QCD is a dimensionless theory, but a scale Λ emerges as a result of the interaction!

The coupling constant in gauge theories acquires a dependence on the renormalization scale
encoded in the beta-function of the renormalization group.
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Mass gap puzzle

Empirical finding: except pions (quasi-Nambu-Goldstone boson), light hadrons acquire a
mass much larger than their corresponding quark masses!

For the lightest baryon, the proton:

mproton

2mu + md
∼ 100
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Chiral limit

The mq = 0 limit is dimensionless... but not so different from nature!

Mπ = 0 ;
Mρ

Mp
∼ phys

Chiral transformation
ψ → e iφγ5/2ψ ; ψ → ψe iφγ5/2

is a symmetry of the Lagrangian in the m→ 0 limit.

It allows to separate left- and right-modes ψL = 1−γ5
2 ψ , ψR = 1+γ5

2 ψ as:

ψ /Dψ = ψL /DψL + ψR /DψR

ψmψ = ψLmψR + ψRmψL

Symmetry → Nambu-Goldstone bosons: π±, π0 (mπ ≈ 0).
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Spontaneous chiral symmetry breaking

For massless quarks u and d quarks, mu = md = 0, there is a chiral symmetry
SU(2)L × SU(2)R in QCD.
is broken in QCD:

spontaneously 〈ψψ〉
explicitly for mu,d 6= 0.

by the U(1) anomaly (η′ mass).

Chiral limit

Very rich phenomenology related to the chiral
properties of QCD!

Gell-Mann–Oakes–Renner relation:

M2
π = (mu + md )

〈ψψ〉
F 2
π

shows that the pion mass is very sensitive to quark masses.
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Take away message: Why lattice QCD?

Why non-perturbative methods?

Perturbative expansions not useful in low-energy QCD.

Only demonstration of confinement from QCD Lagrangian.

QCD bound states not accessible in perturbation theory.

Quarks and gluons do not correspond to the initial/final
states.

Flavour physics and new physics searches require precision
QCD calculations.

..
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Outline

1 Motivation: why lattice-QCD?

2 Scalar lattice field theory
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Green functions

Let us start with a real scalar field φ:

Lφ =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − U(φ) ; U(φ) = λφ4

Solving a QFT implies computing its Green functions:

〈O〉 =
1

Z

∫
[dφ]O(φ)e−iS(φ) with S =

∫
d4x Lφ

[Image from Peskin & Schroeder.]
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Lattice formulation: Wick rotation

Path integral in imaginary time:

〈O〉 =
1

Z

∫
[dφ]O(φ)e−S(φ) with Z =

∫
[dφ]e−S(φ)

is weighted by a real exponential, that can be used as a
probability distribution.

The integral has ∞∞ degrees of freedom... → requires a
finite-discrete spacetime!

Wick rotation

t → iτ
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Lattice formulation: discrete spacetime

The positions are discretized in a H4 lattice:

xµ = anµ , nµ = 1, · · · ,N

with a known as lattice spacing. The momentum-space
is then limited to |kµ| < π

a .

With a number of degrees of freedom finite, the path
integral:

〈O〉 =
1

Z

∫
[dφ]O(φ)e−S(φ) → 1

N

N∑
i=1

Oi

can be evaluated as a Monte Carlo sum.

A discrete lattice
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Lattice formulation: discrete action

In order to write a discrete action we need:

a discrete derivative:

∂µφ→
φx+µ − φx

a

some boundary conditions, e.g., periodic:

φ0 = φNa , ∀directions

The momenta are then discrete, k = 2π
Nan with

n = 0, 1, · · · ,N − 1 and p.b.c.

Regularization

The lattice field theories are regularized, the inverse lattice spacing a−1 working as a cutoff.
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Lattice formulation: discrete action

With this we have a (free) discrete action:

S =
a2

2

∑
x

[(
8− a2m2

)
φ2

x − 2
∑
µ

φxφx+µ

]
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Lattice formulation: discrete action

With this we have a (free) discrete action:

S =
1

2

∑
x

[(
8− µ2

)
ϕ2

x − 2
∑
µ

ϕxϕx+µ

]
where the lattice spacing a has been included in the definition of the dimensionless field
ϕ = aφ and mass µ = am.

Dimensionless

The action is dimensionless, the lattice spacing a is only fixed a posteriori, after comparison
with physical quantities.

Different values of µ correspond to different lattice spacings a, for the same physical mass m.
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Monte Carlo

Our purpose is to find field configurations {ϕx} with probability distribution

P({ϕx}) ∝ e−S(ϕ) .

Monte Carlo:

Start with any initial configuration {ϕ0
x}

Propose some update strategy defined by a transition probability P(ϕx → ϕ′x ) satisfying
detailed balance:

P(ϕ→ ϕ′)

P(ϕ′ → ϕ)
= e−∆S with ∆S = S(ϕ′)− S(ϕ)

Repeat the update process until convergence.
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Monte Carlo

Within MC, the field value at each lattice site has to be updated.

Update strategies

Metropolis: propose some new (random) field ϕ′ and accept/reject with probability
P = max

(
1, e−∆S

)
.

Heatbath: Choose ϕ′ with probability e−S(ϕ′) (independent of the old field ϕ). May be
expensive, but guarantees acceptance.

Multi-hit metropolis: as original Metropolis but make several hits for each site.

Overrelaxation: chooses ϕ′ = α− ϕ with S(ϕ′) = S(ϕ).

Monte Carlo generated configurations are necessarily correlated, i.e., a number of MC update
sweeps is required to produce statistically pseudo-independent results (autocorrelation).
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Monte Carlo

Once you have a set of
configurations, you can compute any
Green function of the theory as a
Monte Carlo sum

〈O〉 → 1

N

N∑
i=1

Oi

Autocorrelation

Only decorrelated configurations to
be used in the average (for
appropiate uncertainty evaluations).
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Computing masses

For example, an operator O = J(~x , t)J†(~0, 0) that
creates an state at (~0, 0) and destroys it at (~x , t):

C (t) =
∑
~x

〈0|J(~x , t)J†(~0, 0)|0〉

=
∑
~x ,P

〈0|eHtJ(~x , 0)e−Ht |P〉〈P|J†(~0, 0)0|〉

=
∑

P

cPe
−MP t → c0e

−M0t (large t)

The mass of the lightest particle is extracted from
the asymptotic behavior of time-correlators. 0 12 24 36 48 60 72

1e-30

1e-24

1e-18

1e-12

1e-06

1
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Renormalization

For any Green function of the theory, G̃ (p), one has to set a renormalization scheme so that:

G̃R,µ(p) = lim
a→0

Z−1
G (µ, a)G̃ (p, a)

When am→ 0, the correlation length ξ ∼ 1/(am) diverges (criticality)... and one should
warranty that

a� m−1 � L

Continuum limit

We are interested in the a→ 0 limit,
where the spacing goes to zero and the
momentum cutoff to infinity.

Thermodynamic limit

After calculations with different box sizes,
one is interested in the L→∞ limit,
corresponding to an infinite volume.
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Take away message: lattice field theories

QFT in a lattice

Wick rotation (imaginary time) + lattice.

Discrete action and boundary conditions.

Preserve symmetries!

Dimensionless (a fixed a posteriori).

Monte Carlo

Unphysical time evolution → masses.

Continuum and thermodynamic limit.

...
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Part II:

Lattice QCD: an introduction

Gauge and fermion fields.
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Outline

3 Gauge fields
Yang-Mills action: gauge invariance
Parallel transporters & Wilson action

4 Fermion fields
Grasmann variables
Naive fermions: doublers
Nielsen-Ninomiya theorem
Chiral fermions

5 Monte Carlo for lattice-QCD
Updating the gauge fields
Hybrid Monte Carlo
Topology
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Towards a discrete gauge action

The Yang-Mills action in Euclidean space is written as:

SYM =
1

2g2

∫
d4x tr (Fµν(x)Fµν(x))

where Fµν is the field strength tensor:

Fµν =
∑

a

F a
µνT

a , F a
µν = ∂µA

a
ν − ∂νAa

µ + g f abcAb
µA

c
ν ,

Aa
µ is the gauge field, g the coupling and T a the generators of the SU(NC ) group.

The Yang-Mills action is invariant under local gauge transformations:

Aµ → A′µ = ΩxAµ(x)Ω†x + igΩx∂µΩ†x ,

Fµν → F ′µν(x) = ΩxFµν(x)Ω†x

where Ωx is a SU(NC ) group element associated to site x .
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Towards a discrete gauge action

The Yang-Mills action in Euclidean space is written as:

SYM =
1

2g2

∫
d4x tr (Fµν(x)Fµν(x))

where Fµν is the field strength tensor:

Fµν =
∑

a

F a
µνT

a , F a
µν = ∂µA

a
ν − ∂νAa

µ + g f abcAb
µA

c
ν ,

Aa
µ is the gauge field, g the coupling and T a the generators of the SU(NC ) group.

Gauge invariance

The lattice action has to preserve gauge symmetry exactly, i.e., it cannot generate
dimension-two terms in the gauge fields such as Aa

µA
b
ν .
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Towards a discrete gauge action

Wilson action

Kenneth Wilson showed in 1974 how to write a discrete action for a gauge group SU(NC ) that
is gauge invariant in a lattice using parallel transporters.

The continuum gauge transporter has the form:

G (x , y) = P exp

(
i

∫
Cxy

A · dl

)
x x + µ̂

Uµ(x)

In a lattice, the the lattice gauge transporter is associated to the link betweeen two
neighboring sites x and x + µ̂.

Uµ(x) = exp(iaAµ(x)) ; Aµ(x) =
∑

b

Ab
µ(x)Tb

where Tb are the N2
C − 1 generators of the SU(NC ) Lie group.
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Towards a discrete gauge action

Wilson action

Kenneth Wilson showed in 1974 how to write a discrete action for a gauge group SU(NC ) that
is gauge invariant in a lattice using parallel transporters.

The link Uµ(x) ∈ SU(NC ) transforms under gauge transformations Ωx as:

Uµ(x) → U ′(x) = ΩxUµ(x)Ω†x+aµ̂

Wilson loop: the product of links along any closed path
is gauge invariant, as Ω†x = Ω−1

x . The smallest Wilson
loop, termed plaquette, is defined by:

Πµν(x) = Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x) x x + µ̂

x + µ̂+ ν̂x + ν̂
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Towards a discrete gauge action

Wilson action

Kenneth Wilson showed in 1974 how to write a discrete action for a gauge group SU(NC ) that
is gauge invariant in a lattice using parallel transporters.

The plaquette Πµν(x) behaves for a→ 0 as:

Tr [Πµν(x)] ≈ NC +
a4

2
Tr [FµνF

µν ] +O(a5)

Homework

Show this limit by using the Campbell-Baker-Hausdorff formula (eX eY ≈ eX +Y + 1
2

[X ,Y ]) and
Aµ(x + aµ̂) = Aµ(x) + a∆µAν(x)...
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Towards a discrete gauge action

Wilson action

Kenneth Wilson showed in 1974 how to write a discrete action for a gauge group SU(NC ) that
is gauge invariant in a lattice using parallel transporters.

From the plaquette, the Wilson gauge action is defined as:

SW =
β

2NC

∑
x

∑
µ<ν

ReTr (1− Πµν(x))

where for SU(3), β = 6/g2
0 to match the continuum action in the a→ 0 limit.

Improved versions of the action (in the sense of smaller lattice errors) can be constructed
including larger Wilson loops (Symanzik’s improvement).
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Outline

3 Gauge fields
Yang-Mills action: gauge invariance
Parallel transporters & Wilson action

4 Fermion fields
Grasmann variables
Naive fermions: doublers
Nielsen-Ninomiya theorem
Chiral fermions

5 Monte Carlo for lattice-QCD
Updating the gauge fields
Hybrid Monte Carlo
Topology
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Fermions...

Quark fields are Grasmann variables (anticommute) and therefore cannot be described by
numbers!

Instead, we will use the fact that the fermion action is a bilinear in the fermion fields:

Sfermionic =

∫
d4x L(ψ,ψ)→

∑
xy

∑
αβ

ψ
α
x D

αβ
xy ψ

β
y ≡ ψDψ

to integrate out the fermion field variables formally as:∫
[dψdψ̄]e−ψDψ = det(D) ,

∫
[dψdψ̄]ψxψye

−ψDψ = D−1
xy det(D) ,

and so on.
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Fermions...

Quark fields are Grasmann variables (anticommute) and therefore cannot be described by
numbers!

For example, quark propagator will be given by:

〈ψxψy 〉 =
1

Z

∫
[dU][dψdψ̄]ψxψye

−Sgauge−ψDψ =

∫
[dU]D−1

xy det(D)e−Sgauge∫
[dU]det(D)e−Sgauge

Quenched approximation amounts to set det(D) = 1 and the dynamical effect of fermion
loops in the path integral is neglected...
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Discretizing the fermionic action

Including a discrete derivative in the fermionic part of the action:

S =
∑

x

ψx (∂µγµ + m)ψx

would generate terms like ψxψy , that is not gauge-invariant for x 6= y .

In order to build a gauge invariant action, we need to introduce a parallel transporter field
Uµ(x) so that quark bilinears are gauge invariant written as:

ψx

∏
z∈Cxy

Uµ(z) ψy

where Cxy is a path that connects x to y . [Covariant derivative in the continuum]
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Naive fermion discretization

The simplest discretization for the quark sector originates from a using a discrete derivative
such as in the gluon sector:

Slatt = a4
∑

x

ψx

(
γµ

Uµ(x)∆µ + ∆∗µUµ(x)†

2
+ m

)
ψx = a4

∑
x ,y

ψx Dxy ψy

With this discrete action, the free quark propagator in
momentum-space S = D−1 results:

Sp =
1

i
∑

µ γµ
1
a sin(apµ) + m

which has poles not only for momenta p = (0, 0, 0, 0), but
also for (πa , 0, 0, 0), (πa ,

π
a , 0, 0), (πa ,

π
a ,

π
a , 0), (πa ,

π
a ,

π
a ,

π
a ) and

pp. In total there are 16 poles termed doublers.

|S−1|
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Doublers and chirallity

The m→ 0 limit of QCD is invariant under

ψ → e iφγ5/2ψ ; ψ → ψe iφγ5/2

i.e.
lim

m→0
[D, γ5]+ = 0

The 16 poles that appear with a naive discretization behave as 8 left-handed + 8 right-handed
fermions (commute with P± = 1±γ5

2 )

Doublers and chirallity

There is a deep connection between doubling problem and chirality!

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 35 / 94



Nielsen-Ninomiya ‘no-go’ theorem.

The problem of doublers is inherent to any lattice discretization of fermion fields.

No-go

[Nielsen, Ninomiya 1981] demonstrated that it is not possible to write a
discrete fermion action that satisfy simultaneously:

Invariant under space-time traslations.

Quadratic in the fermionic fields.

Local.

Chirally symmetric.

There are different possibilities to overcome the difficulties derived from this theorem.
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Wilson discretization

Wilson discretization introduces a term a∆µ∆∗µ in the action:

Slatt = a4
∑

x

ψx

(
γµ

Uµ(x)∆µ + ∆∗µUµ(x)†

2
− r∆µ∆∗µ + m

)
ψx

which vanishes in the continuum limit.

The doublers acquire now a mass O(a−1) and therefore
dissapear in the continuum limit:

S(p) =
1

i
∑

µ γµ
1
a sin(apµ) + r

a

∑
µ(1− cos(apµ)) + m
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Wilson discretization

Up to an irrelevant normalization factor, Wilson-Dirac action can be written as:

Slatt =
∑
x ,y

ψxDx ,yψy

with

Dx ,y = 1− κH , H =
±4∑

µ=±1

(1− γµ)Uµ(x)δx+µ̂,y , κ =
1

2am + 8

H and κ are referred to as hoping matrix and parameter resp.
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Other discretizations

Most of the fermion discretizations use different strategies to tame the doubling problem:

Staggered fermions (Kogut-Susskind)

Twisted-mass Wilson fermions.

at the price of more time-consuming calculations.

More sophisticated fermion discretizations overcome the ‘no-go’ theorem by using the
Ginsparg-Wilson relation:

[D, γ5]+ = aDγ5D .

The fermion discretizations that satisfy this relation, such as:

Overlap

Domain-Wall

have a remanent of the chiral symmetry (Ward-Takahashi identities).
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Outline
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Quenched approximation

An update of the gauge fields (without quarks) can be done as in the scalar case:

Start with any initial set of SU(NC ) matrices,
{Uµ(x)}
For each link x , µ propose a new matrix U ′µ(x)
using

Metropolis
Heatbath
Overrelaxation
Microcanonical – Hamiltonian (U-Π)
...

Measure every n global updates (to avoid
autocorrelation issues)
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Grassmann variables

The path integral

〈O〉 =
1

Z

∫
[dUdψdψ̄]O(U, ψ, ψ̄)e−S(U,ψ,ψ̄) → 1

N

N∑
i=1

Oi

is done in a Monte Carlo but while gauge fields are associated to links, quark fields
anticommute, and cannot therefore be described by numbers!

Fermionic Gaussian integrals
∫

[dψ][dψ̄]e−ψ̄Dψ = det(D) imply that for each quark flavour:

〈O〉 =
1

Z

∫
[dU]O(U, ψ, ψ̄)e−SG (U)det(D)
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Grassmann variables

The path integral

〈O〉 =
1

Z

∫
[dUdψdψ̄]O(U, ψ, ψ̄)e−S(U,ψ,ψ̄) → 1

N

N∑
i=1

Oi

is done in a Monte Carlo but while gauge fields are associated to links, quark fields
anticommute, and cannot therefore be described by numbers!

Fermionic Gaussian integrals
∫

[dψ][dψ̄]e−ψ̄Dψ = det(D) imply that for each quark flavour:

〈O〉 =
1

Z

∫
[dU]O(U, ψ, ψ̄)e−SG (U)det(D)
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Hybrid Monte Carlo

Introducing the fermion determinant would imply that for any update of the gauge fields
{U} → {U ′}, one has to evaluate detD[U] and detD[U ′], with the acceptance rate:

P ∝ detD[U ′]

detD[U]

something that is computationally costly and very inefficient.

Instead, one can introduce a complex scalar field φ (termed pseudo-fermion), and write the
Boltzmann weight factor as:

e−SG detD =

∫
[dφ†][dφ]e−SG +φ†D−1φ

with φ a bosonic (pseudo-fermion) field.
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Hybrid Monte Carlo

The effective action Seff

e−SG detD = e−Seff , Seff = SG − log detD

is real only if detD is positive.

For a single quark flavour, we need a formulation with detD ≥ 0 to avoid sign problems!

For a pair of degenerate quarks, detDu detDd = (detD)2 ≥ 0

For NF = 2, as detD = detD†,

e−SG detD2 =

∫
[dφ†][dφ]e−SG−φ†(D†D)−1φ

and

〈O〉 =
1

Z

∫
[dUdφ†dφ]O(U, ψ, ψ̄)e−SG (U)−φ†(D†D)−1φ
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Hybrid Monte Carlo

The effective action becomes non-local in this case!

Seff = SG + φ†(D†D)−1φ

(D†D)−1 is non-local, thus making the update process of the gauge link variables {Uµ(x)} and
pseudo-fermion fields φ(x) computationally costly.

The acceptance for the Metropolis update process with this non-local action is negligible
except for infinitesimal updates. A different approach is required.
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Hybrid Monte Carlo

Hybrid Monte Carlo

For a scalar field, S(ϕ) we can introduce an artificial Hamiltonian H = 1
2

∑
Θ2 + S(ϕ) with Θ

the conjugate variable of ϕ. Then:

〈O〉ϕ =

∫
[dϕ]O(ϕ)e−S∫

[dϕ]e−S
=

∫
[dϕ][dΘ]O(ϕ)e−H∫

[dϕ][dΘ]e−H
= 〈O〉ϕ,Θ

as the Gaussian integral in Θ factors out.

Hybrid algorithms proceed in the following way:

Choose some random conjugate momenta Θ with P(Θ) = e−Θ2/2

Integrate the Hamilton’s EOM for Θ, ϕ (microcanonical).

Accept or reject the update with P = min
(
1, e−∆H).
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Hybrid Monte Carlo

Molecular Dynamics evolution is given by:

dϕ

dτ
= Θ ,

dΘ

dτ
= −dH

dϕ
= − dS

dϕ
;

the artificial evolution-time variable τ is called the trajectory length.

With an exact integration scheme ∆H = 0 and the acceptance of the update process

P = min
(

1, e−∆H
)
→ 1 .

It can be shown that the update process satisfies detailed balance, and thus generates a
Markov chain for ϕ.
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Hybrid Monte Carlo

The equations of motion for this Hamiltonian can be integrated in discrete steps ∆τ using a
symplectic, reversible integrator (leapfrog).

Leapfrog integration:

Initial half-step: Θ ∆τ
2

= Θ0 − dS
dϕ

∣∣∣
0

∆τ
2

τ = 0 ∆τ 2∆τ 3∆τ

ϕ

Θ

ϕτ = ϕτ−∆τ + Θτ−∆τ
2

∆τ

Θτ+ ∆τ
2

= Θτ−∆τ
2
− dS

dϕ

∣∣∣∣
τ

∆τ

Leapfrog integration has errors O(∆τ3), for each step, allowing a high acceptance rate, which
is controlled by the value of ∆τ .
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Hybrid Monte Carlo for QCD

Introducing conjugate momenta P (for U) and π (for φ), one can write a Hamiltonian:

H[P, π,U, φ] =
1

2

∑
P2 +

1

2

∑
π†π + S [U, φ]

where the action S plays the role of a potential and

dP

dτ
= − dS

dU
,

dU

dτ
= P ;

dπ

dτ
= −dS

dφ
,

dφ

dτ
= π .

The process requires inverting DD† at each step and computing D-derivatives, which make the
whole process rather time-consuming...
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Hybrid Monte Carlo Algorithm

The HMC pseudo-algorithm for QCD would be:

Init: start with Gaussian fields χ and P. Compute φ = Dχ and integrate first half-step.

Integrate the molecular dynamics trajectory (leapfrog).

Acceptance: accept the update with probability P = min
(
1, e−∆H).

Each one of these steps forms a trajectory. Each trajectory is determined by the initial set
{χ,P} (ergodicity requires many trajectories. . . ).

τ = 0 ∆τ 2∆τ 3∆τ

U, φ

P, π
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Berlin Wall Plot

The cost of unquenched lattice simulations
grows when approaching continuum limit and
physical point due to:

Dirac matrix condition number increases
as mq → 0 (larger times for inversion).

Autocorrelation times increase.

Step-size ∆τ has to be reduced to
maintain constant acceptance rates.

Cost ∝
(
mπ

mρ

)6

· L5 · a−7

making the physical point impossible to reach.
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Strategies to tame the “Berlin Wall problem”

Preconditioning with multiple time-scale integrations [Hasenbusch, 2001]

detD2 =
detD2

det(D2 + ρ2)
· det(D2 + ρ2) → Seff = ψ†

1

D2 + ρ2
ψ︸ ︷︷ ︸

small ∆τ

+φ†
D2 + ρ2

D2
φ︸ ︷︷ ︸

large ∆τ

Smaller forces in MD, separation of scales, compatible with other preconditioners (such as
even-odd). . .

Deflated multi-grid solvers [Lüscher, 2007]
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Strategies to tame the “Berlin Wall problem”

Preconditioning with multiple time-scale integrations [Hasenbusch, 2001]

Deflated multi-grid solvers [Lüscher, 2007]

Approximate the inverse D−1 in terms of its lowest eigenvectors, and use it as a
preconditioner.
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The axial anomaly

The axial singlet current j5µ = ψγµγ5ψ is conserved by in a massless Dirac Lagrangian,

∂µj
5µ = 2imψγ5ψ

but the gauge symmetry implies the appearance of an anomalous term:

∂µj
5µ = −g2NF

16π2
F̃µνa Fµνa , F̃µνa = εµνρσF

ρσ
a

Gauge field configurations with 〈F̃µνa Fµνa 〉 6= 0 produce an anomalous divergence of the axial
current.

η − η′ puzzle

The axial anomaly is responsible for the mass difference between η and η′ mesons.
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Topology and zero modes

The anomalous term can be written as total
divergence:

− NF

16π2
F̃ a
µνF

µν
a = ∂µK

µ

whose integral over the whole space vanishes except
for topologically non-trivial configurations:

Q =
1

64π2

∫
d4x F̃µνa Fµνa

Dirac zero modes Dψ = 0 can be chosen
with defined chirality. Let us call the
number of fermion zero modes with right
n+ and left n−.

The Atiyah–Singer Index Theorem
relates Q to the number of zero modes
through:

Q = n+ − n−

Topological freezing

Different topological sectors are difficult to sample in lattice-QCD calculations.
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Topological freezing

Topological charge is difficult to sample correctly with HMC.

D. Albandea et al. 2111.05745

Some strategies to overcome this difficulty: open boundary conditions [Schaefer, 2011], or
modified HMC through windings [Albandea, 2021].
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Nf = 0, 2, 2 + 1, 2 + 1 + 1, · · ·

Lattice-QCD simulations can be done at different number of dynamical fermions:

NF = 0 : without dynamical quarks, the action is driven by the gauge
sector solely [quenched lattice QCD]

NF = 2 : typical situation with degenerate u and d quarks. For years
the challenge was to achieve physical pion masses.

NF = 2 + 1 : including s quark requires some modifications of the HMC
algorithm.

NF = 2 + 1 + 1 : the dynamical role of c quark is small but sizable.

Price motivates collaboration

Fine lattices with realistic pion masses are possible, but expensive. It is done by large
collaborations such as BMW, ETMC, MILC, UKQCD, RBC, HPQCD, ALPHA, . . .
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Open lattice-QCD collaborations

The prize of large-scale simulations close both to the physical pion mass and continuum limit
has triggered the appearance of international collaborations such as

OPEN LATtice iniciative

Effort for the production and sharing of dynamical gauge field
ensembles (2+1 flavour QCD gauge field ensembles produced
with the stabilised Wilson fermion action) to study physical
phenomena of the strong interaction.

ILDG

The International Lattice Data Grid (ILDG) was born with the aim of
making the basic data sets from Lattice QCD simulations available to
the international scientific community using defined standardized
metadata and data formats.
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Spanish lattice-QCD collaboration: latticeNET

Red Española de Lattice Gauge Theory: latticeNET

U. Zaragoza, Granada, Pablo de Olavide, Barcelona, Valencia, Autónoma de Madrid, IFIC,
IFCA, IFT, . . .

Organized:

Latticenet Meeting Jan. 2022 Zaragoza University.

First LatticeNET workshop on challenges in Lattice field theory 2022, Sep 11 – Sep 17.

LatticeNET School on Computing in HEP Exascale 2022, Sep 18 – Sep 24.

. . .

Born in 2020 funded by the Ministry of Science and Innovation, has been renewed for two
years (until 2024).
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Take-away message: lattice QCD formulation.

Lattice QCD action:

Gauge action (parallel transporters):
plaquete, clover... Improvement
program a la Symanzik

Quark action much more involved,
specially in the chiral limit.

Preventing doublers introduce O(a)
artifacts.

Chiral fermions are much more
expensive!

Monte Carlo:

Dynamical simulations (non-local
updates) done by Hybrid Monte
Carlo.

Key improvements (preconditioning)
allow physical pion masses.

Topology hard to sample correctly.

Expensive MC runs.
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Part III:

Lattice QCD: an introduction

Phenomenology from lattice-QCD.
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Outline

6 Fundamental physics from lattice-QCD
The static quark potential
Hadron spectrum
Strong coupling αs

Muon (g − 2)

7 Hadron structure
The spectrum: decay constants
Scattering states: phase shifts
EM form factors, PDFs, GPDs,...

8 The phase diagram of QCD
Columbia plot
Finite temperature in the lattice
Finite µ in the lattice

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 61 / 94



Wilson loops

Wilson loop (gauge invariant)

L = Tr

 ∏
x ,µ∈L

Uµ(x)


In temporal gauge (A4 = 0),

〈L〉 = 〈L〉temp = 〈Tr
(
S(~n, ~m, nt)S†(~n, ~m, 0)

)
〉 (~n, 0) (~n, nt)

( ~m, nt)( ~m, 0)

S† S

and inserting a complete set of states,

〈L〉 =
∑

k

〈0|S(~n, ~m, 0)|k〉e−nt Ek 〈k|S†(~n, ~m, 0)〉 ∼ e−nt E1

with E1 the energy of a static quark-antiquark pair placed at positions ~n and ~m.
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Wilson loops

Indeed, a Wilson line, S(~n, ~m, 0), corresponds to the infinite-mass limit of quark propagator. In
the infinite mass limit (κ→ 0), the inverse of the Dirac operator

Dx ,y = 1− κH , H =
±4∑

µ=±1

(1− γµ)Uµ(x)δx+µ̂,y , κ =
1

2am + 8

is dominated by the shortest line among two sites, the Wilson line!

lim
κ→0

D−1(~n, ~m, 0) ∼
∏

p,µ∈C
Uµ(p) ∼ S(~n, ~m, 0)

where C is the shortest path that connects (~n, 0) and ( ~m, 0).
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Wilson loops

Thus, for Wilson loops:

〈L(~n, ~m)〉 ∼ e−ant V (~n− ~m)

allows to obtain the static quark potential V (r).

The potential shows a linearly rising behavior for
large distances with σ ≈ (0.4GeV)2.

Confinement

The existence of a linear term in the inter-quark
potential

V (r) =
a

r
+ b + σr

shows that QCD is a confining theory.

[Gunnar Bali, Phys.Rept. 343 (2001) 1]
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Wilson loops

Sommer parameter

The sommer parameter, r0, is defined by:

r2 dV

dr

∣∣∣∣
r=r0

= 1.65

It allows for a relative calibration of lattice
calculations at different β’s, but we need to
compute a dimensional quantity and compare with
Nature to have the value of r0 (r0 ≈ 0.5 fm).

Most contemporary callibrations use the Gradient
Flow scales t0 or ω0 which have smaller uncertainty
[M. Lüscher, JHEP 08 (2010) 071].

[Gunnar Bali, Phys.Rept. 343 (2001) 1]
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Hadron masses

If we build an operator J that satisfies 〈0|J|k〉 6= 0
for a set of states |k〉,

〈J(nt)J†(0)〉 =
∑

k

〈0|J|k〉e−Ek nt 〈k|J†|0〉

and then:

lim
nt→∞

〈J(nt)J†(0)〉 → c0e
−E0nt

with E0 the mass of the lowest lying state (in units
of a).

Excited states (beyond first exponential) are more
difficult to extract... 0 12 24 36 48 60 72

1e-30

1e-24

1e-18

1e-12

1e-06

1
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Interpolating fields

For any hadron we need to search for an interpolating field based in the symmetries of the
action, according to the quantum numbers of the state.

For pions, for example, we have J = 0, negative parity P = −1 and isospin I = 1, that can be
built as:

Jπ+(~n, nt) = d(~n, nt) γ5 u(~n, nt)

Jπ−(~n, nt) = u(~n, nt) γ5 d(~n, nt)

while for π0 and η they would be:

Jπ0(~n, nt) =
1√
2

(
u(~n, nt) γ5 u(~n, nt)− d(~n, nt) γ5 d(~n, nt)

)
Jη(~n, nt) =

1√
2

(
u(~n, nt) γ5 u(~n, nt) + d(~n, nt) γ5 d(~n, nt)

)
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Interpolating fields

For charged pions, for example:

〈Jπ(x)J†π(y)〉conf = 〈(u γ5 d)x

(
d γ5 u

)
y
〉conf

= −tr [γ5S(x , y)dγ5S(y , x)u]conf

and

〈Jπ(x)J†π(y)〉 = − 1

Z

∫
[dU]tr [γ5S(x , y)dγ5S(y , x)u] e−Sgauge

∏
nf

detD

Then, pion mass is extracted from:

lim
t→∞

∑
~x

〈Jπ(x)J†π(0)〉 ∼ e−mπt
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Extracting masses

With

C (t) ∝ coshMt

one can define an effective
mass

aMeff (t) = ln
C (t)

C (t + 1)

[Figure from C. Gattringer “Quantum Cromodynamics on the lattice”]
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Calibrating the lattice and computing quark masses.

The lattice spacing is determined as:

amphys = Mlatt → a =
Mlatt

mphys

for some dimensional parameter m.

If we think in QCD with Nf = 2 + 1 there are three parameters: g0, mud and ms that can be
fixed using three measurements from the lattice (Eg. Mp, Mπ and MK ...).

Continuum limit

For any other quantity, the limit a→ 0 has to be thoughtfully taken.

Nature is a bit more complicated, and precision measurements require taking into account
heavy quark contributions and QED effects.

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 69 / 94



Continuum limit

Ratio mc/ms :

1606.08798

Pion decay constant Fπ:

Comparison with improved actions, 1911.04533
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Light hadron spectrum

[Figure from S. Dürr et al., Science 322, 1224 (2008)]
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Quark masses.

Report on lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with the aim of
making them easily accessible to the nuclear and particle physics communities.
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Strong coupling constant

The strong coupling acquires upon renormalization
a runnning with the momenta controlled by its RGE:

dαs

d lnµ
= β(αs)

Experimental HEP

The incertitude in αs has a large impact over the
analysis of the experients in colliders. For example,
it dominates in the analysis of H → gg processes
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Strong coupling constant

The strong coupling acquires upon renormalization
a runnning with the momenta controlled by its RGE:

dαs

d lnµ
= β(αs)

Experimental HEP

The incertitude in αs has a large impact over the
analysis of the experients in colliders. For example,
it dominates in the analysis of H → gg processes
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Strong coupling constant

Any observable Q(µ2) can be expanded in terms of αs as:

Q(µ2) = c1αs(µ2) + c2α
2
s (µ2) + · · ·+NP

both experimental and lattice estimates of Q(µ2) serve to fix αs(µ2) in, for example, MS
scheme.

Experimental:

τ -decays, jets, DIS, structure functions. . . (See PDG)

Lattice:

Wilson loops, Schrodinger Functional method, Static potential, qq̄ correlators, vertices, . . .
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Strong coupling constant: lattice determinations.

Schrödinger Functional methods are
specially well suited because they reach
very high energies where NP contributions
are negligible.

Current lattice + experimental average

αMS(mZ ) = 0.1184(8)

below 1% uncertainty.
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Strong coupling constant: lattice determinations.

Schrödinger Functional methods are
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(g − 2)µ

New physics?

Current measurements signal BSM physics in the muon anomalous magnetic moment

a =
g − 2

2
, aSM

µ = aQED
µ + aweakµ + ahadµ

with ∼ 4σ deviation between the SM result and the experimental one.

The hadronic contribution ahadµ is dominated by the hadronic vacuum
polarization

ahvp
µ =

(α
π

)2
∫ ∞

0
dQ2 f (Q2)︸ ︷︷ ︸

QED kernel

Π̂(Q2)

with Π̂(Q2) the polarization tensor.
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HVP contribution to (g − 2)µ

ahvp
µ is evaluated in the lattice through:

ahvp
µ =

(α
π

)2
∫ ∞

0
dt K̃ (t)︸︷︷︸

QED kernel

G (t)

G (t) = −a3

3

∑
~x

〈~j(~x , t) · ~j(~0, 0)〉

with the electromagnetic current:

jµ =
∑

f

Qf ψ̄f γµψf

or evaluated using the R-ratio.

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 77 / 94



HVP contribution to (g − 2)µ

The R-ratio determination uses

R(s) =
σ0(e+e− → hadrons)

σ(e+e− → µ+µ−)

with center of mass energy
√
s to compute

ahvp
µ as:

ahvp
µ =

α2

3π2

∫ ∞
m2

π

ds
K (s)R(s)

s
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HVP contribution to (g − 2)µ

Work to be done for a significant reduction of
the dominant uncertainties:

light (u − d) contributions (large-t
behavior, ...).

Finite-volume effects.

Disconnected contributions.

Isospin breaking terms.

Continuum a→ 0 extrapolations.

Scale setting.

. . .

See Kuberski’s@lattice2023
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Pion decay constant

Consider a flavor doublet ψ = (u, d) (NF = 2) and the flavor nonsinglet axial vector current:

Aa
µ =

1

2
ψγµγ5τ

aψ

and pseudoscalar interpolator:

Pa =
1

2
ψγ5τ

aψ .

∂µA
a
µ has the same quantum numbers, and thus it works as an interpolating field for π.

FΠ

The π → eνe decay constant Fπ is given by

〈0|∂µAa
µ|πb(~p = 0)〉 = δabM2

πFπe
−Mπt

(with F exp
π = 92.4(3)MeV).
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Pion decay constant

PCAC

The partial conservation of the axial
current leads to the relation:

〈∂0A
a
µ(x)Pa(0)〉 = −2mf 〈Pa(x)Pa(0)〉

with mf the unrenormalized quark mass,
known as the PCAC mass.

AWI

The Axial Ward identity allows to relate
Fπ, quark masses and the condensate
through the Gell–Mann–Oakes–Renner
(GMOR) relation:

F 2
πM

2
π = −m〈uu + dd〉
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Phase-shifts

Resonances...

We have seen how to obtain masses for asymptotic states. What about excited states,
resonances, scattering, etc?
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Phase-shifts

Resonances...

We have seen how to obtain masses for asymptotic states. What about excited states,
resonances, scattering, etc?

Excited states are already hard to extract because∑
~x

〈J(x)J†(0)〉 ∼ c0e
−E0t + c1e

−E1t + c2e
−E2t + · · ·

Ground state dominates for large-t.

Excited states only accesible at small-t.

Fits with several exponentials usually unstable.

Using several interpolators and diagonalize...
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Phase-shifts

Resonances...

We have seen how to obtain masses for asymptotic states. What about excited states,
resonances, scattering, etc?

Scattering parameters are only accessible in the lattice as finite-volume effects (Luscher
formalism) that establishes a relation between the finite-volume energy and the Low Energy
parameters.

Finite volume effects:

For stable particles are exponentially small m −m(L) ∼ e−mL.

For scattering states there is a polynomial suppression O(1/L3).

Lüscher Nucl. Phys. B 354, 531 (1991) & Nucl. Phys. B 364, 237 (1991).
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Lüscher mechanism

In a lattice with a finite spatial volume (assume periodic boundary conditions), particles can
propagate across the borders:
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Lüscher mechanism

The ground-state energy for a pair of pions
keeping just the s-wave scattering length a0

contribution has the form:

W ≈ 2Mπ−
4πa0

ML3

(
1 + c1

a0

L
+ c2

(a0

L

)2
+ · · ·

)
where the coefficients c1 and c2 are related to
the lattice shape and generalized zeta function.

P. Bühlmann and U. Wenger. PoS 396 (2022).
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Phase-shifts

The most widely studied cases are
π − π scattering in the p-wave
I = 1 channel (ρ) or the I = 0
s-wave (σ).

The I = 0 s-wave channel has
been very challenging because it
implies disconnected contributions,
and shows that the nature of the σ
strongly depends on the pion
mass, being a bound state for
large pion masses.

[Figure from R. Briceño et al 1706.06223]
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EM form-factors

Electromagnetic form factors F can be evaluated from the matrix elements such as:

〈π(pf )|Vµ|π(pi )〉 = (pi + pf )µF
π(Q)

with Vµ =
∑

f Qf ψγµψ and Q2 = (pi + pf )2 the momentum transfer.

Pion mean charge radius can be extracted from its low-Q2 behavior:

F π(Q2) = 1− 1

6
〈r2〉Q2 +O(Q4) .
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Parton distribution functions

Deep inelastic scattering allows to gather information on the the internal
structure of hadrons, such as their momentum distributions q(x).

In the lattice, we cannot access the light-cone correlation functions, so one
use their operator product expansion and evaluates their Mellin moments:

〈xn〉 =

∫
dx xnq(x)

2201.00884

From Mellin moments one has to reconstruct q(x).

Pseudo-PDF from the lattice...

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 86 / 94



Outline

6 Fundamental physics from lattice-QCD
The static quark potential
Hadron spectrum
Strong coupling αs

Muon (g − 2)

7 Hadron structure
The spectrum: decay constants
Scattering states: phase shifts
EM form factors, PDFs, GPDs,...

8 The phase diagram of QCD
Columbia plot
Finite temperature in the lattice
Finite µ in the lattice
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Exploring the phase diagram of QCD

The phase diagram of QCD is represented in the Columbia plot:

At T = 0 there are
both χSB and
confinement (hadronic
phase).

Current studies at
physical quark masses
suggest a continuous
crossover at low
chemical potential up
to a Critical Endpoint,
being first order at
larger µ’s.
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Finite T in the lattice

Quantum statistics’ partition function Z = tr
(
e−Ĥ/T

)
vs Euclidean evolution operator e−Ĥt .

Finite T

The time extent of the lattice β = Nta plays the role of the inverse temperature.

T =
1

β

Finite T is obtained with a smaller lattice extent in the time-direction, typically with a smaller
number of lattice points Nt � N. In Fourier-space, only energy levels multiple of ∆ = 2π/β
(Matsubara frequencies) are allowed.
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Finite T in the lattice: Polyakov loop

Polyakov loop (or thermal Wilson line) is a Wilson loop closed
along the T-direction boundary:

P = tr

NT−1∏
j=0

U4( ~m, j)

 , 〈P〉 ∼ e−Fq/T

Center symmetry

Pure Yang-Mills in a finite lattice with PBC is invariant under a center symmetry, i.e., if all
links in a given time-slice are multiplied by the elements of the SU(3) center symmetry z :

z =
{

1, e2πi/3, e−2πi/3
}
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Finite T in the lattice: Polyakov loop

Polyakov loop (or thermal Wilson line) is a Wilson loop closed
along the T-direction boundary:

P = tr

NT−1∏
j=0

U4( ~m, j)

 , 〈P〉 ∼ e−Fq/T

Order parameter

The deconfinement transition can be characterized in terms of the Polyakov loop:

〈|P|〉 = 0; confined phase, Fq →∞.

〈|P|〉 6= 0; deconfined phase, Fq finite.

with Fq a quark’s free energy.
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Finite T in the lattice: Polyakov loop

F. de Soto Lattice QCD: an introduction TAE 2023, Benasque 91 / 94



Finite µ in the lattice

The thermodynamics of QFT’s are conventiently described within the grand canonical
ensemble by adding a term to the action

S → S − µf nf

with nf = ψf γ0ψf the quark numbers for each quark flavour f .

The partition function results:

Z =

∫
[dU][dψ][dψ]e−SQCD +

∑
f ψf γ0ψf

with thermodynamic properties computed as:

F = −T lnZ , P =
∂(T lnZ )

∂V
, Qf =

∂(T lnZ )

∂µf
· · ·

[Philipsen, 2007]
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Finite µ in the lattice

The Monte Carlo evaluation of the partition function encounters a sign problem because of
the finite chemical potential.

Sign problem

Writing the modified Dirac operator (including the µ-term) as:

M(µ) = /D + mf − γ0µf

the determinant of M becomes complex, thus not allowing to use it in the importance
sampling process. The problem is related to the γ5-hermiticity of Dirac operator

M(µ)† = γ5M(−µ∗)γ5

Some proposals such as reweighting, Taylor expanding around µ = 0 or working at negative µ2

and extrapolating to µ2 > 0 try to circumvent this problem.
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Take away message: QCD phenomenology in the lattice.

QFT phenomenology

Modern calculations at a . 0.1fm and physical mπ.

Static quark potential (confinement).

Hadron spectrum.

αMS

(g − 2)µ

Decay constants

Scattering LEPs

Form factors, PDF, GPDs,...

Finite T and Polyakov loop.

Finite µ in the lattice...

...
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