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rowth of structure (perturbations)

- In order to study the inhomogeneous Universe, we need to study
the evolution of perturbations of the metric and the energy
distributions + initial conditions
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Growth of structure (newtonian perturbations)

- By considering these 3 classical equations:

g’; -V - (pv) =0 Continuity equation
ov 1

Y | (V - V)V = —;Vp — Vo Euler equation
V2 = ArGp Poisson equation

and the equation of state: P = p(p)

we can solve the equations to get p, V, ¢, 9,



Growth of structure in a expanding Universe
(newtonian perturbations)

- We detine the background as the smooth and homogenous
Universe, given by:

p=p(t) v = a(t)x
- To perturbe the equations, we need to define the perturbed
guantities:

Perturbed density:  p(x,t) = p(t) +dp(x,t) = p(1 4+ d(x, 1))
Perturbed pressure: p = p + 0p

Perturbed velocity: v = a(t)x + v

Perturbed potential: ¢ = ¢ 4+ d@(x, t)




Growth of structure in a expanding Universe
(newtonian perturbations)

- Introducing the perturbations in the 3 dynamical equations:

p(x;t) = p(1+d(x,t)) %W.(pv)zo
p=p+dp I |
v =a(t)x + v EJF(V'V)V:_EVP_V(b
b=+ 0(x.1) Vi = dnGp
we reach (considering only linear terms as the perturbations are
small):
00
£ pVov +V(dpv) =0
ot
00 2
8: Fv(V)ov + (0vV)v + %V&o + Vip =0

V36¢ = 4rGdp



Growth of structure in a expanding Universe
(newtonian perturbations)

- Now, combining these equations and also changing to
coordinates that move with the expansion we can obtain the
growth history for density perturbations in an expanding Universe:

2
. . C
0 +2HS — —‘;A8 — 47 Gepd =0,
a
In Fourier space:
S(x.t) = Y O(t)e™®

k
1 . .,
O (t) = V/c?(w,t) e R Py
k<

L —

a?

(SA -+ 2[—[&, — (47TG/)()(?L) — ”) 0. For baryonic matter

Ok + 2H oy, — A7 Gy, (1), = 0 For dark matter



The full treatment

- It we want to do the full treatment, we need to do the
perturbations (assumed small) in the frame of General Relativity
and the tlat FLRW metric:

ds* = [Vgup + 8gup(x?)] dx*dx”

- This produces a set of scalar, vector and tensor fluctuations. The
tensor fluctuations are relevant for gravitational waves and
polarisation of the CMB photons but we focus on the scalar one.
We choose the Newtonian gauge in which:

ds* = a*[(1 + 2¢)dn* — (1 — 2¢;)8;;dx'dx’ |

The reason we choose this gauge is that because also the 2
potentials are the same, reducing to the standard Newtonian

potential.



The full treatment

- In this gauge, then the equations of scalar perturbations are:

A® — 3H(P' + HP) = 4w Ga’de,
(@®); = 4w Ga*(go + po) du,,,
" +3HP' +(2H' + H*)® = 4w Ga’Sp.
- Combining them we get:

" +3(1 +c})H® — AP +(2H +(1 +3c2) H*)® =0



Boltzmann equations

- In order to study the cosmic distribution of photons and matter
iInhomogeneities, we can use the Boltzmann equations in the

phase space
ﬁ — C [ f ] I Dark
dt \ @ / Matter
Compton
Scattering / \
@%oulomb =
Scattering

where C|[f] accounts for the collisions, in case there are.




Boltzmann equations for photons

- We need to solve the Boltzmann equations for the different
components of the Universe are for the zero-order and the perturbations
on the equilibrium distribution

ﬁ_@f - Of dzt  Of dp’ - df dp

dt Ot Oxt dt  Opt dt  Op dt
Using the metric perturbations:

d _of p*of  Of dp

dt Ot a drt  Op dt

df _of pof Of[, 00 oY

it ot  aox Top|T ot adr




Boltzmann equations for photons

- We need to address the photon distribution where the zero-th order is
the Bose-Einstein distribution function:

f(f7p7ﬁ7t) —

:‘”““p (T(tm +%<f, 7,0) ) .

- Zero- order equation (collision less):

| = H — > —
dt], Ot Py " g
- First- order equation:
00  p'oe  0p Pl oy
ot  a Ozt Ot a O

- And in Fourier space and conformal time:

O+ ikud + & + ikpl = —7 [éo—é+u5b]

(Compton scattering)

= Ne0oT |09 — O + P - Uy




Boltzmann equations for dark matter and baryons

- Similar derivation but for DM no collision term while for baryons there is
the Coulomb scattering proton-electron and the Compton scattering of
the electron-photons coupling. For both components, the zero-order

equation is just the same one as the density of both fluids in the
background model

O+ iku® = —& — ikpl — 7 [90 — O+ puvp — %'Pz(,u)ﬂ]

I =6,+0py+Opg Photons

. 1
Op + ikudp = —+ [—ep 51~ ’Pg(u))H]

Final set of eqgs is:

§ +ikv=—3%
DM
v+ -C-l-v = —1kW
7}
éb + kv, = 3
Baryons

Vb + ’Ub = —1k¥ + — [’Ub +- 3291]



Numerical solutions

- For the current model, the system of Einstein-Boltzmann
equations have to be solved numerically.

- Most used public software:
- CAMB: https://camb.info/ (Fortran)
Python wrapper: https://camb.readthedocs.io/en/latest/

Fast and widely used but difficult to modity from
theoretical point of view

- CLASS: https://lesgourg.qgithub.io/class public/
class.html

C++ code (also with python wrapper).

Fast, modular and with several theoretical model
implementations.


https://camb.info/
https://camb.readthedocs.io/en/latest/
https://lesgourg.github.io/class_public/class.html
https://lesgourg.github.io/class_public/class.html
https://lesgourg.github.io/class_public/class.html

Matter power spectrum

- The theoretical cosmological function we mostly use for the
analysis of large-scale structure Is the power spectrum:

P(k) =T(k)"Pini(k)

- We need to obtain the transfer function through the Boltzman -
Einstein equations. For scales that cross the horizon at matter
dominated time, there is an overall decrease in the potential but
for the modes that enter during radiation dominated phase, the
potential changes because of the interaction with the radiation
(photons or neutrinos)

- The growth during matter domination is decoupled from this and
grows only depending on the scale factor



Growth of structure

For scales larger than 10 Mpc, we can assume linear theory and estimate the growth for

different times

Universe dominated by matter:

Grows with

scale factor

0 = + B(a)t ™!

Universe dominated by radiation

5k(t) — A+ Blnt

Suppressed growth

We can only predict the statistical properties of the
distribution -> power spectrum P(k)

A

<5(/€)5*(E’)> — (27)* P(k)p (/Z - /2)

We model P(k) and growth of structure with the
transfer function T(k)
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Fig.7.5. A density perturbation that enters the horizon dur-
ing the radiation-dominated epoch of the Universe ceases to
grow until matter starts to dominate the energy content of the
Universe. In comparison to a perturbation that enters the hori-
zon later, during the matter-dominated epoch, the amplitude of
the smaller perturbation is suppressed by a factor (aeq /acmcr)z,
which explains the qualitative behavior (7.29) of the transfer
function

Po(k) = A K" T?(k)
—

Espectro inicial



Role of DM

If 0 ~ t23, and decoupling fluctuations size (z~1100) are of the order of 10-5, we

couldn’t reach the current amplitude. We need DM

DM ﬂuctuatiOnS Start L L) B L) L L BN LD B DL B B B ) L

1 LSS

growing before decoupling ¥
at: z~3300 o _q
o k = 1.0 Mpc
= i
After decoupling, the '% o
. i
baryons start following the 'g - Photons
DM fluctuations. é — Baryons
RZ
5 |
O
A
O llllllll l llllllll | llllllll 11 llll L L it L L L 1 11118
i

10°° 107 107™* 10™° 107* 107!

(1+2)7 !

This 1s another evidence for the existence of DM



Large-scale structure

Universe filled with density
fluctuations

Structure only only visible
through galaxies (distribution)
and photons (weak lensing)

Galaxies and photons here are
functioning as test particles -
tracing out the gravitational
field

Most low-redshift surveys have
measured the transfer
function.

Need very large volumes to
measure primordial power
spectrum and determine initial
conditions (independently
from CMB)
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Large-scale structure

- Universe filled with density
fluctuations

- Structure only only visible
through galaxies (distribution)
and photons (weak lensing)

- Galaxies and photons here are

functioning as test particles - < L
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Large-scale structure

- Universe filled with density
fluctuations

- Structure only only visible 100 b
through galaxies (distribution) /|
and photons (weak lensing) !
- Galaxies and photons here are N N
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measured the transfer

function.
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- Need very large volumes to
measure primordial power
spectrum and determine initial
conditions (independently
from CMB)
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Initial conditions

- Besides the equations that describe the evolution of metric perturbations and energy
perturbations, we need to set the initial conditions.

- The initial distribution of scalar perturbations is almost scale invariant and inflationary
models tend to predict some deviations from the pure scale-free spectrum.

- These modes leave the horizon and then they enter the Universe later on in radiatior
and matter dominated phases depending on the scale.

— — — v— — — -

ng—1
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Horizon Crossing Inflation Ends

Time -



Inflationary constraints from CMB

- Nns=1 has been ruled out by Planck.

- Inflation also predicts an initial spectrum for tensor modes of the
metric perturbations -> GW imprint and primordial polarisation of
CMB would be a direct probe of inflation.

Natural inflation

o
a
= c ' ' v W TT,TE,EE+lowE-+lensing
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Correlation function

- The Fourier transtorm of the power spectrum is given by the
correlation function:

£(r) = (2‘;)3 / 5] 2e Tk

- For an isotropic Universe this is:

-V sinkr =,
E(r) = 273 /P(k) . Amk*dk

- The physical meaning is that it measures the excess with respect
to a uniform distribution.









Galaxy bias

A particular problem i1s that we observe
galaxies as tracers of the matter field, but
the distribution of baryonic matter is Millenn Simulaton
biased with respect to the total matter '
field (dominated by dark matter).

Galaxies grow in the peaks of the density
field.

We parametrize linearly the bias with:

0g(k,2z) = b(k,2z)D(2)d(k)

Bias 1s degenerated with the
growth factor D(z). % Y
1. ‘ ‘ ‘ vy ‘ s B ¥

Galaxies




Linear redshift space distortions

Actual
shape

their peculiar velocities.
Kaiser 1987 . Ap parent
shape
(viewed from
gal(k “) — b5ma83(k) —|—p, GmasS(k) below)

- 3D maps of the Universe are in redshift
space where galaxy redshift positions
differ from the real space positions due to

550,! ogal
f=—-V . -v/H \‘/ observer
Omass f(z) mass RSD break degeneracy between
@ +V-v=0 growth and bias

oT
RSD 1s a test of Growth History : how

: . does structure form and grow within
Anisotropic

8 . 2 . .
) = O s userimg. e Ry

Linear Growth factor: D(z) = 0(2)/d(z =0)

Linear Growth rate:  f(z) = 81(;11D(z) f ( z) =Q., ( 2)7 7Y growth rate index | Linder 2005
na




Linear redshift space distortions

- RSD introduce an anisotropy we should include in the power spectrum or correlation
function:

§(o,m) = &o(s)Po(p) + Ea(s)Pa(p) + &a(s)Pa(pt)

+1
where 66(3) = 26;— L B f(ﬂ,a)Pg(N)du,
fo(s) = b <1+?+%> £(s) .
’ 2 r) = r’ T'2d'r’,
bals) = ¥ (% + %) £(s) — &(s)] <) 7'53 0. )
i = = 3 ) = — E(r' '
als) = B 66)+ 560 - 58] () = 5] €0)

OO0

Monopole Quadrupole @ Hexadecapole



Linear redshift space distortions

Amplitude
§(r5’ rjt)
8.0
- W e can
decompose the 4.0
radial and
transverse 2.0
directions Iin order
1.0
to measure the
redshift space 05
specirum
0.3
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Linear redshift space distortions

- RSD offer us a great GR test as we can measure the growth rate of structure for
several populations.
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Non-linear evolution

- When using the information from small scales, we need to include the information
from non-linear evolution of the growth of structures.

- This can be done with non-perturbative methods but usually done with N-body
simulations.

- Once the simulation is done, we can try
to produce fitting formulas to include in
our theory (e.g, Halofit).

- Also, ensemble of simulations for
different cosmological and astrophysical
parameters allows us to create emulators
as we sample the space of simulations

- Simulations + Artificial intelligence can
allow us to determine the best model
without the need of fitting -> likelihood
free inference




