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Outline

▶ The golden age of cosmological surveys.
▶ We are gathering vast amounts of data that can inform us

about many interesting questions in physics and astrophysics
... given suitable models!

▶ Modeling the evolution of large-scale structure
▶ Analytic approaches.
▶ Numerical simulations (see O.Hahn’s talk).
▶ Better together!

▶ Concluding thoughts.



Golden age of surveys

We are living in the “golden age” of cosmological surveys, with
survey capabilities increasing exponentially ... (Moore’s law)

▶ DESI has completed 2 (of 5) years of operation.

▶ PFS is commissioning, WEAVE will begin soon.

▶ ACT has completed its ‘final’ observations.

▶ Euclid is at L2!

▶ Simons Observatory is under construction (Adv SO approved)

▶ LSST will be coming online in the next few years

▶ SPHEREx and Roman will launch later in the decade

▶ CMB-S4 will follow in the next decade

▶ ... and others.

Each is powerful in its own right, together they will be amazing!



Modeling challenge

We are gathering vast amounts of data that can inform us about
many interesting questions in physics and astrophysics ... given
suitable models!

Model requirements:

▶ complete, i.e. capable of modeling each of our tracers/probes
of large-scale structure including their cross-correlations,

▶ consistent (among different observables),

▶ accurate (to percent level or better),

▶ well-controlled (uncertainty quantification),

▶ with high dynamic range in redshift and scale, to break
degeneracies.



Models of large-scale structure (LSS)

How do people model measurements of large-scale structure?

▶ There are two broad classes of approaches to modeling LSS:
analytical and numerical.

▶ Analytic approaches based on perturbation theory (PT) –
which have seen a renaissance in recent years and will become
increasingly powerful with future surveys.

▶ Numerical approaches (simulations) – the workhorse.

▶ New ideas for combining the two: “best of both worlds”.



Perturbation theory (PT)

▶ Cosmology deals with relativistic gauge field theories, like
many other sub-fields of physics.

▶ The equations of motion are both non-linear and non-local.

▶ PT developed starting in the 1960’s, reached its “classical”
form in the early 1990’s (with important developments to this
day).

▶ Standard techniques familiar from QM, condensed matter or
particle theory
▶ Effective field theory
▶ Green’s functions, diagrams, tree level, loops, ...
▶ Regularization, renormalization, running, counter terms, IR

resummation, ...



Sort-of like QFT

We can make this look a lot like QFT (or stat.mech., fluid mech.!)

▶ Collect density, velocity, etc. into a vector φa.

▶ Can rewrite the EOM as ‘propagation’ and ‘interaction’.

▶ Now rather than a Feynman path integral for operator
expectation values, have ensemble averages of “initial” fields:

〈
φa · · ·φb

〉
=

∫
Dϕic φ

a[ϕic] · · ·φb[ϕic] exp

[
−1

2
ϕi
ic{P−1

ij }ϕj
ic

]

︸ ︷︷ ︸
S0[ϕic]

that can be obtained by functional derivatives of (log of)

Z [J] =

∫
Dϕic exp

{
S0[ϕic] + Jiφ

i [ϕic]
}

▶ Many techniques carry across directly, though there are some
technical differences.



A tale of two expansions

Note: in “standard” perturbation theory we are dealing with
two expansions – one for the dynamics and one for galaxy bias.

A full model requires both, but they are conceptually different.



Analytic models: PT

▶ Perturbation theory provides clean predictions for
▶ matter (lensing) and biased tracers (galaxies, QSOs, ...)
▶ in real and redshift space.
▶ pre- and post-reconstruction

▶ Robust to uncertainties in small-scale physics (“integrated
out”).
▶ No additional assumptions about halos, galaxies, etc. needed

beyond the (minimal) set of bias parameters dictated by
fundamental symmetries.

▶ Consistent predictions of Pℓ(k), ξℓ(s), C
κg
ℓ , Cκκ

ℓ , w(θ), ...
using the same parameters.

Widely used: most of the constraints on cosmological parameters
from galaxy redshift surveys over the last decade have come from

these kinds of analytic models!



Velocileptors
▶ We have a public, Python package

for these models.

▶ Being used in a number of surveys
and data analyses now.

▶ Many ways to combine velocities
and densities in power spectra:
direct PT expansion, moment
expansion, Gaussian streaming
model, Fourier streaming model.

▶ Available in both LPT and EPT
variants (allowing cross-checks!)

▶ Works in Fourier and configuration
space.

▶ Fast and “easy to use”; works with
several analysis packages.

http://github.com/sfschen/velocileptors



Models fit current (BOSS) data well
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DESI “full shape” modeling challenge
A comparison of Eulerian and Lagrangian models fit to mock
ΛCDM data:
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DESI “full shape” modeling challenge

Within DESI we are running an additional test on the PT codes:

▶ Each model fits a particular mock dataset, with the
cosmology fixed to ‘truth’.

▶ The best-fit model is then passed as ‘noiseless’ mock data to
the other codes.

▶ The other codes fit these data to provide the cosmology
contours.

The agreement between the different groups is very good so far!



PT blind challenge
Inferring parameters from fits to mock survey data 100× larger
than physically achievable volumes:
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3D vs 2D

▶ For 3D analyses PT is likely more than adequate for the
foreseable future.

▶ Have “plenty” of modes even at low k , and modeling to high
k is costly.
▶ Need to model ‘stochastic terms’ (fingers of god), including

satellites. Introduces many parameters, little cosmological
information left (?).

▶ Limited by redshift errors (for some tracers and some
experiments).

▶ For 2D measurements have a different problem:
Nmodes ∝ ℓ2max.

▶ No problem with FoG, but always “mode starved”.

▶ Want to push to as small a scale as can get cosmology from!

▶ PT is limited in reach – can never model small scales no
matter what order you compute to!



Numerical simulation

▶ The other approach is to simulate the formation of structure
through Monte-Carlo integration of the Vlasov equation
(N-body simulations).

▶ This is probably the dominant approach in the field right now,
and the most familiar!

▶ The N-body problem is well defined:
▶ Generate a (Gaussian) ‘initial’ density/potential field at some

suitable starting redshift, zinit.
▶ Use low-order LPT to compute positions and velocities for a

‘grid’ of particles (so they’re in the density field growing mode).
▶ Repeat as long as necessary:

▶ Use positions to compute accelerations.
▶ Use accelerations to update velocities
▶ Use velocities to update positions.

(See O. Hahn’s excellent talk from last week!)



Numerical simulation

▶ The addition of other collisionless species (e.g. neutrinos) is
conceptually straightforward, if numerically challenging.

▶ Non-radiative hydrodynamics is a well-posed problem, though
codes still disagree more than we’d like.

▶ Including cooling and feedback is the research frontier ... the
best way to deal with the complexities of galaxy formation, is
still an open research problem.
▶ hard to scale to cosmological volumes.
▶ hard to tune to match observations.
▶ use of phenomenological subgrid models poses interesting

questions of convergence and completeness.
▶ Uncertainty quantification an open problem.

▶ While more expensive simulations are a “UV complete” model
(of something) and can predict ‘any’ observable.

Simulation and analytic approaches are not in conflict – can we
gain anything from combining them?



Better together

We seek well-controlled methods for combining the strengths of
each approach (while mitigating the weaknesses?)

▶ New approaches to ICs (see O.Hahn’s talk)

▶ New ways of exploring the response surface

▶ New ways of modeling bias

▶ New ways of controlling sample variance

▶ New ways of emulating components



Example: modeling bias

▶ Different “tracers” of large-scale structure are related to the
underlying perturbations in density and potential differently.

▶ The connection between how the tracer clusters and how the
matter clusters is known as bias, and dealing with bias is one
of the big challenges in modeling large-scale structure.
▶ For example, more luminous galaxies tend to be more clustered

than less luminous galaxies, even though both trace the same
underlying density field.

How do the different ‘camps’ typically approach modeling the
connection between observable and dark matter when fitting data?



N-body approach: halo model

Most common approach for surveys is the halo model:

Recent review: Asgari, Mead & Heymans, arXiv:2303.08752

▶ The objects of interest (e.g. galaxies) live in halos.
▶ Likely true for galaxies, but Hi, kSZ, ... ?

▶ Occupancy depends only upon current properties.
▶ plus halo accretion history, mergers, ... ?

▶ Occupancy depends only upon halo mass.
▶ plus spin, concentration, environment, ... (‘assembly bias’)
▶ preferred mass definition (M200b, M200c , Mvir)?

▶ Galaxies can be broken up into centrals and satellites
(fly-throughs?).

▶ The full “halo occupation distribution” [HOD: P(Ngal|halo)],
can be derived from the mean e.g. ⟨N⟩(Mh).

▶ Radial and velocity profiles are universal/known.



N-body approach: halo model

▶ Run a simulation and identify halos
▶ ... and possibly subhalos

▶ Use HOD to populate halos with mock galaxies

▶ Perform any analysis you like on these galaxies, including
measuring their power spectra.

▶ Can also forward model observational effects like fiber
assignment, imaging systematics, complex selections.
▶ ... if you trust the model you put into the simulation for each

of these, e.g. small-scale clustering for fiber assignment in
redshift surveys or photo-z-IA interaction in lensing.

▶ As for PT, combine this with ‘emulators’ or ‘ML’.



PT approach: (symmetries based) bias expansion

Standard in PT is the ‘bias expansion’:

▶ Write δgal as a functional of the initial (long wavelength)
density, velocity and potential fields: δgal[δ, ∂v, ∂∂Φ, · · · ]

▶ Can’t compute this functional, so expand it ...

▶ Coefficients of an expansion in e.g. δ are bias coefficients
(e.g. J.Stadler’s talk!):

δgal(x) = b1δm(x) + b2δ
2
m(x) + · · ·+ stochastic+ · · ·

▶ Bias coefficients incorporate our uncertainty about
complicated galaxy formation physics in addition to UV
effects (automatically includes “assembly bias”).
▶ Dark matter halo formation, merger history, ...
▶ Chemistry and gas cooling.
▶ Star formation, SNe, AGN
▶ Thermal and kinetic feedback
▶ Background radiation



Bias and EFT

▶ Similar to “EFT” philosophy: keep all operators obeying the
symmetries in an expansion in derivatives.

▶ While the process that form and shape galaxies and other
objects are complex, all such objects arise from simple initial
conditions acted upon by physical laws which obey well-known
symmetries.

▶ For non-relativistic tracers these are
▶ the equivalence principle
▶ translational, rotational and
▶ Galilean invariance.

▶ This highly restricts the kinds of terms that can arise in a bias
expansion, no matter how complex the history. Often fewer
parameters than in HOD models!

Symmetry arguments are extremely powerful for bias since we
really don’t understand the small-scale physics of bias.



Simulations and Symmetries

▶ We can simulate structure formation in a DM-only Universe
pretty well.
▶ It’s the baryonic component that is “hard”!

▶ Symmetries-based thinking is very powerful.

▶ Both groups are trying to solve the same problems ...

▶ Can we have the best of both worlds?
▶ Use dynamics from N-body simulations, but the “galaxies”

(symmetries-based bias technique) from perturbation theory
▶ Modi+20, Kokron+21, Hadzhiyska+21, Zennaro+21,

Arico+21, Banerjee+22, Zennaro+22, Pellejero+22,
Maion+22, Wu+23, Pellejero+23, DeRose+23,...

Hybrid effective field theory (HEFT)



The hybrid EFT procedure in pictures

Generate initial conditions as per usual ... from δL you can also
compute δ2L and the shear field, sij :

Each particle is assigned the δL, ... at its initial position.

Kokron+21



The hybrid EFT procedure in pictures

Advect the particles to their final positions using the full N-body
dynamics (i.e. run the simulation), and bin using weights 1, δL, δ

2
L,

etc.

Particles δ δ2 s2

30 h−1Mpc 0.0

2.5

5.0

7.5

10.0

(No need for halo or subhalo finding, merger trees, etc.)

δgal(x) = b1δm(x) + · · · ⇒ Pgal(k) = b21Pmm + · · ·



The hybrid EFT procedure in pictures

Take all of the cross-spectra, PXY (k) using standard FFT
methods, e.g.

10−1 100

k [hMpc−1]

102

103

104

P
X
Y

(k
)

[M
p

c/
h

]3 〈1,1〉〈1,1〉〈1,1〉〈1,1〉
z = 0.0 z = 0.4 z = 1.0 z = 2.0

10−1 100

k [hMpc−1]

〈δ,1〉〈δ,1〉〈δ,1〉〈δ,1〉

10−1 100

k [hMpc−1]

〈δ,δ〉〈δ,δ〉〈δ,δ〉〈δ,δ〉

The power spectrum for any biased tracer, or the cross-spectrum
between any two tracers, is a linear combination of these “basis
spectra” (10 in all) with analytic “bias dependence”:

∑
ij bibjPij .



Can push into the non-linear regime

Can fit mock catalog data for “3× 2pt analyses” to 1-2% even for
samples with assembly bias and other complex selections and even
including hydrodynamics/“baryons”.

Kokron+21



But now we need an emulator

▶ Several investigations have now shown that this approach
works, and works well.
▶ Handles auto- and cross-correlations of even complex

selections (e.g. colors or SFR, ...).
▶ An additional advantage is that you are now using the same

parameters (and language) as the PT model(s) that are
routinely used to model BAO and RSD in 3D surveys!
Facilitates ‘joint’ analyses.

▶ But our ‘theory’ is now ‘simulation’ and so we need to know
the component spectra as a function of cosmology.

▶ Can’t run a simulation for every cosmology we wish to test!
▶ But the dependence on parameters is “smooth”, so we can

interpolate/emulate the spectra.
▶ No harder than what we already do for Pmm.



Aemulus-ν

▶ New emulator for galaxy-galaxy, galaxy-matter and
matter-matter clustering.

▶ 150× 1 h−1Gpc N-body simulations in wνΛCDM parameter
space.
▶ Neutrinos handled as a second particle species with PM forces
▶ Span wide range of σ8

▶ < 1% Pmm for k < 1 hMpc−1 over 0 ≤ z < 3

▶ To pull this off we’ve made use of a number of PT-dependent
‘tricks’ in addition to the bias expansion ...



Control Variates

▶ Simulations always have limited dynamic range
▶ In particular large scales are often “noisy” due to sample

variance (from the particular realization of the ICs).
▶ Especially true for simulations of high resolution, or including

hydrodynamics, or RT, where boxes tend to be ‘small’.

▶ These large scales contain very important cosmological
information that we want to get ‘right’, but ...

▶ If we are running grids of models, don’t want to have to run
many realizations for each cosmology to average down this
scatter.

▶ PT works very well on large scales!
▶ We shouldn’t need to simulate linear theory!!!

▶ Use control variates to reduce sample variance ...



Background: Control Variates

(First introduced into LSS by Chartier & Wandelt as “CARPool”)

▶ Imagine I want ⟨x⟩ but realizations of x are expensive to
produce.
▶ Example, the matter power spectrum or halo power spectrum.

▶ Further assume I can cheaply produce c, where c is correlated
with x and µc = ⟨c⟩ is known.
▶ c is known as the control variate.
▶ Example: c is the density power spectrum in the Zeldovich

approximation (lowest order LPT).
▶ Note: we need to know µc but we don’t require ⟨c⟩ = ⟨x⟩

▶ If we form
y ≡ x− β (c− µc)

then ⟨y⟩ is an unbiased estimator of ⟨x⟩ for any β.



Background: Control Variates

y ≡ x− β (c− µc) ⇒ ⟨y⟩ = ⟨x⟩

▶ Now choose

β⋆ =
Cov[x, c]

σ2
c

(really a matrix expression but frequently just approximate as
diagonal).

▶ Then

Var[y] = Var[x]
(
1− ρ2xc

)
, ρxc ≡ Cov[x, c]

Std[x]Std[c]

▶ If ρxc ≈ 1 then y is a very low noise/scatter quantity that
well-estimates ⟨x⟩.

▶ Heuristically if c fluctuates above µc then x probably also
fluctuated “up” so you should correct it down.



Control Variates

Can visualize CV as
shifting points
along their
degeneracy
direction to c = ⟨c⟩.
This tightens the
distribution and
makes it easier to
estimate the mean.
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Control Variates

▶ Need a control variate that is well correlated with final density
field.

▶ Want c to have a known mean – any error in µc leads to bias
in final result!
▶ Can estimate µc by Monte-Carlo, but expensive.
▶ Even if surrogate is 100× faster than full simulation getting to

10% relative error on µc doubles your CPU time!
▶ DESI team used 24M CPU hours and 400TB of storage

running FastPM simulations to estimate ⟨P⟩.
▶ Paying N

−1/2
sim price is bad when demanding high accuracy (e.g.

1% requires 104 ‘fast’ sims).
▶ What about ML? If can train something to correlate, then

could do mean via Monte-Carlo.

▶ Want to be able to include bias and redshift-space distortions.



Zeldovich and the cosmic web!

We have known for many decades that the Zeldovich
approximation (1st order LPT) ‘predicts’ the cosmic web with quite
high fidelity (i.e. ρ ≈ 1 on large scales):



Zeldovich Control Variates

▶ Predictions for the Zeldovich mean can be computed
analytically
▶ Corresponds to “free field theory” so don’t even need the

simplifications we normally employ for higher-order PT.
▶ With some cleverness can be done very efficiently with FFTs.
▶ Full run time is < minutes for analytical calculation and 10s of

CPU hours for P(k) of the Zeldovich ICs
(c.f. 24M CPU hours!).

▶ If you start your simulation using Lagrangian PT (e.g. the
Zeldovich approximation, or higher order) then you already
have Zeldovich field.

▶ No need to generate special ICs, rerun your simulation or do
anything ‘fancy’ !!

▶ This technique is mathematically rigorous, and works for all
spectra (including higher-order spectra, etc.) unlike
e.g. paired and fixed method.



Accurate predictions from small boxes!

An example of measuring Pgg and Pgm from a single 1 h−1Gpc
box, after applying CV and compared to the average of 100 such
boxes (light lines extend to low k using PT).
[Even better performance for Pmm; not shown to reduce clutter.]
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Almost noiseless predictions!

When we combine with perturbation theory at ultra-large scales the
result is (almost) noiseless predictions for the component spectra:
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Interpolation “error”
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Including theory “error”

We also provide a covariance matrix of the interpolator error that
can be included when performing fits!
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Forecasted performance
The emulator error (black line) should be much smaller than the
statistical errors of next-generation surveys:
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CV are very flexible

We have used control variates for

▶ Component spectra, PXY (k), for our emulator.

▶ Redshift-space power spectrum and correlation function
multipoles (actively used in DESI).

▶ Post-reconstruction Pℓ and ξℓ.

but the technique is super powerful.

▶ Not restricted to two-point functions – can be covariance
or higher order functions, mass functions, ...

▶ Not restricted to N-body simulations – can be noise bias
terms in survey mocks, instrument simulations, ...

You only need a correlated variable for which the mean can be
reliably estimated!



Conclusions

We are in the midst of the “golden age of cosmological surveys”.

▶ Desire for models capable of handling intra- and inter-survey
analysis.

▶ Increasing survey power is driving a renaissance in analytic
models of large-scale structure.

▶ Combinations of theory, ML and simulations increasingly used.

▶ These approaches can work very well together, in some cases
leading to the ‘best of both worlds’.

▶ We’ve combined many of these ideas to produce a modeling
framework capable of handling data from many different
surveys in a robust and theoretically well-controlled manner.

▶ Applications to various datasets are “in progress”.



.

The End!



The PT view of data

Constraining power comes from large scales ... but small scales
help constrain transition to non-linearity.
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Emulator design: wνΛCDM
Aemulus ν, Tier 1

Aemulus ν, Tier 2

Aemulus α

DES Y3 + BAO + SNe
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Initial conditions

Simulations are squeezed by needing to control errors from a
decaying mode and particle discreteness. Extremely challenging if
high accuracy is needed.
Starting as late as possible with high order LPT is the best
strategy!
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Enormous ‘effective’ volume at modest cost!

While we run only a single 1 h−1Gpc box at each cosmology, the
sample variance is as if we had run hundreds or thousands ...
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Eulerian PT

Expand δ(k) as a power series in the linear solution:

δ(n)(k) =

∫ n∏
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Eulerian PT

Taking the expectation value “joins” pairs of δ(1) together to form
a power spectrum. So the propagator at 1-loop contains a
contribution like e.g.:

Many other rules look similar to particle or condensed matter
physics – use path integrals, generating functions, cutoffs, EFT,
RG flows, etc.



IR resummation
▶ In addition to problems in the UV, there are issues in the IR.

▶ A lot of the difference between δ(non−lin)(x) and δ(1)(x)
comes from displacement (advection).

Initial

Final

▶ The displacement is driven by large-scale tidal fields.

▶ In “standard” perturbation theory this effect converges slowly.
▶ Need to “resum” the long-wavelength displacements

▶ The Lagrangian formulation of PT is ideally suited to
understanding “IR resummation”.

▶ Impacts topics like “reconstruction”, primordial features,
relative velocity effect, ...



Bias, peaks and EFT

▶ To make contact with galaxies, QSOs, 21 cm, Lyα, etc. we
need to include bias.

▶ Simplest (toy) model: galaxies form at peaks in the initial
density field:

x
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Massive neutrinos

▶ Galaxies probe the c + b field while lensing probes the matter.
▶ At linear level use Pcb(k) for galaxies and Pcb,m for

galaxy-lensing cross-correlation.
▶ Good to sub-percent level (e.g. Bayer+21)

▶ If care is taken with normal ordered bias operators, can use
Pcb,m in loops with corrections of order fνP

2
lin ≪ 1 and be

correct even in the “transition regime” from clustered to
free-streaming neutrinos.



Aside: PT and ML

▶ These PT models are fast to compute, but ‘fast’ means
seconds not milli-seconds.
▶ Running CAMB or CLASS takes 1− 10 s depending on

settings.

▶ ML can be used to generate emulators of the linear theory
and PT predictions which are then very fast to evaluate.
▶ Pay price once “up front” and future evaluations are very

cheap.

▶ Can be used to generate enormous training sets, so this is an
“easy” ML problem.
▶ Taylor series, polynomial chaos expansions, neural networks

with different architectures, ...

▶ Since PT contains much of the parameter response, can be
used in planning more complex campaigns – or comparing ML
methods.


