

Cosmological constraints from the 3rd observing run of Advanced LIGO, Virgo and KAGRA

Rachel Gray

University of Glasgow

Understanding Cosmological Observations

Benasque, Spain, 25th July 2023

Outline

- The third observing run
- Cosmological analyses with standard sirens
- Using galaxy catalogues for cosmological inference
- Using the black hole mass distribution for cosmological inference
- A new way forward
- What's next?

The third observing run

The third LVK observing run

The third observing run from April 2019 to March 2020 with a 1 month break for commissioning.

Total number of gravitational waves observed to date (with probability of astrophysical origin > 0.5): 90

GWTC-3 catalogue: arXiv:2111.03606

Detector sensitivity

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Nov 2021, arXiv:2111.03606

											Cre	edit: Carl Kno>
01 2015 - 2016	20		02 2016 - 2017		-	La					03a+b 2019 - 2020	
• • • • • • • • • • • • • • • • • • •	23 14	14 7.7	• • 31 20	11 7.6	50 34	35 24	• • 31 25	• • 1.5 1.3	35 27	40 29	88 • ²²	25 18
63 GW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 cw170809	53 GW170814	≤2.8 cw170817	60 GW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
• · · · · · · · · · · · · · · · · · · ·	* * 35 24	48 • 32	41 32	• • 2 1.4	107 77	43 28	23 13	36 18	3 9 2 8	37 25	66 • 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 cw190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 cw190514_065416	59 cw190517_055101	101 GW190519_153544	156 GW190521
• • • • • • • • • • • • • • • • • • •	* 37 23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 CW190521_074359	56 CW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 cw190701_203306	99 GW190706_222641	19 CW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	• • 42 • 29	• • 37 27	48 32	23 2.6	• • • • • • • • • • • • • • • • • • •	24 10	• 44 • 36	35 24	• • 44 • 24	9.3 2.1	89 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
• • 40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	• • 53 • 24	11 6.7	27 19	12 8.2	25 18
61 CW190926 050336	102 GW190929 012149	19 GW190930 133541	19 GW191103 012549	18 GW191105 143521	107 GW191109 010717	34 GW191113 071753	20 GW191126 115259	76 CW191127 050227	17 CW191129 134029	45 GW191204 110529	19 CW191204 171526	41 GW191215 223052
12 7.7	31 1.2	• • 45 • 35	49 3 7	• 9 19	36 28		42 33	• • 34 29	10 7.3	38 27	• • 51 12	36 27
19 GW191216_213338	32 cwi9i2i9_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 cw200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
0 24 2.8	51 O ³⁰	* * 38 * ²⁸	87 61	* * 39 28	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27 GW200210_092254	78 GW200216_220804	62 GW200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 cw200302_015811	42 GW200306_093714	47 GW200308_173609	59 GW200311_115853	20 GW200316_215756	53 GW200322_091133

A selection of interesting events

- **GW190425**: the second binary neutron star to be detected. Around 160 Mpc away. Detected by L1, V1.
- GW191219, GW200105, GW200115: first confident NSBH detections
- **GW190814**: an asymmetric mass compact binary. Only 240 Mpc away, and localised to 18.5 deg².

The LIGO Scientific Collaboration and the Virgo Collaboration, Astrophysical Journal Letters 892 (2020) L3

Cosmological analyses with standard sirens

The Hubble tension

Currently there is a tension between early (model-dependent) and late-time (local) measurements of H_0 .

Possible causes:

- 1. Systematics?
- 2. New, unknown physics?

Tension lies at 4 - 6σ .

Hu, J.-P.; Wang, F.-Y. https://doi.org/10.3390/universe9020094

Eleonora Di Valentino et al https://doi.org/10.1088/1361-6382/ac086d

Gravitational waves as standard sirens

Signal amplitude is (inversely) proportional to luminosity distance to source, and independent of the cosmic distance ladder:

$$A = \frac{\mathcal{M}_z}{d_L} f(\mathcal{M}_z, t)$$

Redshifted chirp mass:

$$\mathcal{M}_z = (1+z) \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

The LIGO Scientific Collaboration and Virgo Collaboration, *Phys. Rev. Lett.* **116**, 061102 – Published 11 February 2016

Bright sirens

The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration *et al.* Nature **551**, 85–88 (2017).

Cosmological analyses with standard sirens

"Bright sirens"

An **EM counterpart** is observed and used to obtain the host galaxy redshift.

AKA the EM counterpart method

"Dark sirens"

No EM counterpart observed. **Galaxy surveys** are used to provide redshift estimates for potential host galaxies.

AKA the galaxy catalogue method

"Spectral sirens"

No EM counterpart or galaxy survey is used. Features in the **mass distribution** of the GW population break the mass-redshift degeneracy.

AKA the redshifted masses method

Using galaxy catalogues for cosmological inference

The dark siren + galaxy catalogue method

Don't know the true host galaxy, so treat all galaxies in the GW localisation as potential hosts and marginalise over them

(see, e.g. Schutz 1986, Del Pozzo 2012, Chen+ 2018, Soares-Santos+ 2019, Gray+ 2020, Finke+ 2021...)

The dark siren + galaxy catalogue method

The galaxy catalogue

The galaxy catalogue analysis made use of the GLADE+ galaxy catalogue [1], constructed from the GWGC, 2MPZ, 2MASS XSC, HyperLEDA, and WISExSCOSPZ galaxy catalogues, and the SDSS-DR16Q quasar catalogue.

[1] G Dálya et al. MNRAS, Volume 514, Issue 1, July 2022, Pages 1403–1411

Galaxy catalogue incompleteness

Catalogue completeness is computed on a pixel-by-pixel basis:

$$P(G|z, H_0) = \frac{\int_{L_{\text{thr}}(m_{\text{thr}}, z, H_0)}^{L_{\text{max}}} \phi(L) L dL}{\int_{L_{\text{min}}}^{L_{\text{max}}} \phi(L) L dL}.$$

The LIGO, Virgo and KAGRA collaborations, Sept 2021, arXiv:2111.03604

 $H_0[km s^{-1} Mpc^{-1}] = H_0[km s^{-1} Mp$

GW190814: the most informative dark siren so far

The LIGO, Virgo and KAGRA collaborations, Sept 2021, arXiv:2111.03604

Results from galaxy catalogues

Uses 42 BBH detections, GW190814, two BNS events and two NSBH events.

All are analysed with the GLADE+ galaxy catalogue in the K-band (apart from GW170817).

$$H_0 = 68^{+8}_{-6} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

The LIGO, Virgo and KAGRA collaborations, Sept 2021, *arXiv:2111.03604*

Impact of population assumptions

Changing the population parameters which correlate most strongly with $H_0 (m_{\max}, \mu_g, \gamma)$, leads to a significant shift in the posterior.

The galaxy catalogue analysis is not separable from redshifted masses.

The LIGO, Virgo and KAGRA collaborations, Sept 2021, *arXiv:2111.03604*

Using the black hole mass distribution for cosmological inference

Cosmological + population inference with N_{obs} GW events

Black hole mass distribution

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X **13**, 011048, March 2023

Correlation of cosmological and population parameters

 $m_{\rm max}$ (maximum black hole mass)

 $\mu_{_g}$ (position of the peak in the primary mass distribution)

 γ (low-z power-law slope of a Madau-Dickinson-like merger rate)

Sharp features in the mass distribution are correlated with H0.

(See e.g. Farr+ 2019, Mastrogiovanni+ 2021)

The LIGO, Virgo and KAGRA collaborations, Sept 2021, arXiv:2111.03604 26

Results from redshifted masses

Marginal posteriors on H_0 , Ω_m and w_0 using 42 binary black holes with SNR > 11, for 3 different mass models. $H_0 = 68^{+12}_{-8} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$

27

A new way forward

Integrating galaxy information to a population analysis

$$p(\Lambda|\{x_{\rm GW}\}, \{D_{\rm GW}\}, I) \propto p(\Lambda|I)p(N_{\rm det}|\Lambda, I) \left[\iint p(D_{\rm GW}|\theta, \Lambda, I)p(\theta|\Lambda, I) \sum_{j}^{N_{\rm pix}} p(z|\Omega_j, \Lambda, I)d\theta dz \right]^{-N_{\rm det}} \\ \times \prod_{i}^{N_{\rm det}} \left[\iint \sum_{j}^{N_{\rm pix}} p(x_{\rm GWi}|\Omega_j, \theta, \Lambda, I)p(\theta|\Lambda, I)\underline{p(z|\Omega_j, \Lambda, I)}d\theta dz \right]$$

LOS redshift prior: can pre-compute this to include galaxy catalogue information and the out of catalogue correction.

R. Gray et al 2023 (in prep), see also Mastrogiovanni et al 2023

The line-of-sight redshift prior

Galaxy catalogue contribution

$$p(z|\Omega_{i},\Lambda,s,I) = \frac{p(s|z,\Lambda_{\text{rate}},I)}{p(s|\Omega_{i},\Lambda,I)} \left[p(G|\Omega_{i},\Lambda,I) \frac{1}{N_{\text{gal}}(\Omega_{i})} \sum_{k}^{N_{\text{gal}}(\Omega_{i})} p(z|\hat{z}_{k})p(s|M(z,\hat{m}_{k},\Lambda_{\text{cosmo}}),I) \right] + p(z|\Lambda_{\text{cosmo}},I) \left(\Theta[z_{\text{cut}}-z] \int_{M(z,m_{\text{th}}(\Omega_{i}),\Lambda_{\text{cosmo}})}^{M_{\text{max}}(H_{0})} p(M|z,\Lambda_{\text{cosmo}},I)p(s|M,I) \, dM + \Theta[z-z_{\text{cut}}] \int_{M_{\min}(H_{0})}^{M_{\max}(H_{0})} p(M|z,\Lambda_{\text{cosmo}},I)p(s|M,I) \, dM \right) \right].$$

Out of catalogue contribution

R. Gray et al 2023 (in prep)

LOS redshift prior (example pixel)

R. Gray et al 2023 (in prep)

Case study of GW190814

Impact of resolution choices on the posterior for GW190814.

A new result

42 BBHs, 2 NSBHs, GW190814, GW190425 analysed with GLADE+, and GW170817+counterpart.

Full population+cosmological inference, then marginalisation over population params.

R. Gray et al 2023 (in prep)

What's next?

The gravitational wave data side

The galaxy survey side

So far have used GLADE+ because it covers majority of the sky, and it's **incompleteness** in K band is well understood.

In the coming years we need to make use of current surveys with **large sky areas** which go to **higher redshifts** (e.g. the DESI Legacy surveys, DES, etc. (see e.g. Palmese et al 2023)), as well as prepare for upcoming surveys such as LSST.

Ideally we need

- Reliable redshift estimates
- Source-frame luminosity information

No confirmed EM counterparts during O3, so two methods were used for cosmological inference on the detected events:

- Black hole mass distribution
- Galaxy catalogue

Cosmological results provide interesting hints of what is to come, but are not yet competitive with non-GW measurements.

O4 has started and will last for 18 months, which will greatly expand the catalogue of GW detections.

Estimates which combine mass distribution and galaxy catalogue information (plus use of more complete catalogues) will maximise the cosmological information gained.

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Extra slides

Photometric redshifts

Spectroscopic redshifts are costly/time-consuming, so most galaxy surveys provide photometric redshifts.

These are much cheaper, but come with larger uncertainties and can be unreliable at faint magnitudes/high redshifts.

Zhou et al. MNRAS, Volume 501, Issue 3, March 2021, Pages 3309–3331

Redshifting of galaxy luminosities

Galaxies don't emit uniformly in all bands. We observe in some band *b*, but the light detected has been redshifted.

Solution? K corrections

$$M_a = m_b - DM - K$$

Chilingarian et al. MNRAS, Volume 405, Issue 3, July 2010, Pages 1409–1420

More dark siren measurements

A. Finke et al, JCAP 08 (2021) 026

A. Palmese et al 2023 ApJ 943 56

Cumulative detections to date

BNS

GW190425 is the second binary neutron star to be detected, after GW170817. Around 160 Mpc away.

The LIGO Scientific Collaboration and the Virgo Collaboration, Astrophysical Journal Letters 892 (2020) L3

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, GWTC-3 webinar

Events from O3a

The LIGO Scientific Collaboration and Virgo Collaboration, arXiv:2108.01045

Events from O3b

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Nov 2021, arXiv:2111.03606

Lower mass gap

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X 13, 011048, March 2023

Evolution of merger rate with redshift

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X **13**, 011048, March 2023

Population only result

42 BBHs with network SNR > 11.

Good agreement with GWTC-3 cosmology paper.

Fixed population results

42 BBHs, 2 NSBHs, GW190814, GW190425, analysed with empty catalogue, K band weighted and uniform weighting (GLADE+).

Good agreement with GWTC-3 cosmology paper.

Mth map: nside 32 vs 64

Summary

- This version of gwcosmo is ~1000 times faster than the one used during O3.
- The amount of memory the LOS redshift prior requires is **not** dependent on the number of galaxies in the galaxy catalogue (good for large surveys in the future!)
 - But it does depend on the pixel resolution
 - And also on the redshift resolution required to accurately capture redshift uncertainties
- Can carry out inference on H₀, MG parameters (see Anson's talk) and GW population parameters.
 - $\circ~$ Other cosmological parameters ($\Omega_{_M}\!,\,w_{_0}\!,\,w_{_A}\!)$ remain a as a challenge to be implemented in the future.