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Soft theorems (aka consistency relations)

0 Theg arise from sPontaneouslg broken (nonlinearlg realized) symmetries. Recall: \/\/
Simple example N LSS: gravitational Potential s like a Goldstone in the sense "¢ Goldstone

that ¢ = p+c isa symmetry of the clgnamics (shift sgmmetrg).

What does it imply for correlation functions?
P'Y
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We are Famlllar Wlth how sgmmetrg xml:)hes invariant correlatlon ?unctlons (e. % sPatlal translatlon)
(¢ +
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lﬂsteacJ, we have soft theorems. Theg take the schematic form: hn%) m (p(q )C’)(kl) O(kn)) ~

A less trivial nonlinear realized symmetry is to shift @ bg a linear graclient e. 0 —>p+n-x

But tl’]é same can’t be true For somethmgl ke shi Ft symmetrg I.e. gbgb
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A less trivial nonlinear realized symmetry is to shift @ bg a linear graclient e. @ —=¢+n-xr (KRPP)

«  Softtheorems hold evenif 1. the hard modes are cleep in the nonlinear regime,
2. the hard mode observables are galaxies) 3. the observables are in redshift space.
To derive them, one needs to know how the initial conditions transtorm under the symmetry in ques’tion i.e. the form of the soft
theorems is initial condition clel:)enclent. Thus, Verhcging soft theorems with data becomes a way to Probe initial conditions.

It also can be thought of as Checking the sgmmetries of the clgnamics (e.g. ec]ui\/alence Principle for KRPP).
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e More concretelg: the squeezecl bisloectrum to power spectrum ratio should have no Pole I.e.
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" @.@ — fu=0 _’ A model of the squeezecl ,DisPectrum to power sPectrum with no Pole fits
the simulation results veru well thNL = Q, but not thNL‘—= 100.
Here, we use k up to 0.65 h/MPc (where variance is about 10), and qup to 0.06 h/MPc.
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But: error bar on f NL not comPetitive (i.e. around 10, fora 2.4 GPC/ h) b, box). This uses mass. If we use halos, shot-noise

will be important, but scale clepcnclent bias will also become relevant. 1o be explorecl: co”apsecl trisl:)ectrum: <>

See also LH, Joyce, Komissarov, Parmentier, Santon, Wong on spontaneouslg broken boost.
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tortoise radius
°*  We can use this to stuclg tidal deformationi. e. imagine an object N a static, external tidal field ¢ ~ - EM example:
(expanclmgm spherlcal harmomcs), tidal deformation induces a response tail: qb ~ 1/7°€Jr T Q T @
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3lack hole Per‘curbation theorg

Consider small Perturbations of a black hole: g=gpu+ ¢ > [(92 +V]g =0 (linearized Einstein equa‘cion) Y J\

We can use this to stucig tidal deformationi. e. imagine an object N a static, external tidal field ¢ ~ -

(expancling In spherical harmonics), tidal deformation induces a response tail: @ ~ 1/7“€+1
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tortoise radius
EM example:
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It has Iong been known that BH has Vanislning | ove numbers (F‘ang, Lovelace, Damour, Nagar, Foisson, Kol, 5mo||<ir1J Chia ..).

T~ T r — 00
>

b=#+#

Asgml:)totics:

Static Perturbations around BH turn out to have surprising amount of exact sgmmetries.

the Love number surPrise

For Schwarzschild: & symmetries of SO(™.,1). ForKerr: 2 symmetries. Tl’xey explain whg BH Love number vanishes.
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3lack hole Perturbation theorg

Consider small Perturbations of a black hole: g=gpu+ ¢ g [(92 -+ V]Cb =0 (linearized Einstein equation) Y J\

=
tortoise radius
We can use this to studg tidal deformation i. e. imagjne an objcct N a static, external tidal field ¢ ~ rt EM example:
(expancling In spherical harmonics) , tidal deformation induces a response tail: ¢ ~ 1/ it T T @
A :
O ~ rt + ..o 1 ... , A~ Love number ~v Slze%Jrl
r

It has Iong been known that BH has Vanislning | ove numbers (F‘ang, Lovelace, Damour, Nagar, Poisson, Kol, 5mo||<in, Chia ..).
r o~ T r — OO

b=H#+#

Asymptotics: ,
ymp the Love number surprise

Static Perturbations around BH turn out to have surprising amount of exact sgmmetries.

For Schwarzschild: & symmetries of SO(™.,1). ForKerr: 2 symmetries. T]’x69 explain whg BH Love number vanishes.

[ nteresting c]uestions to explore: What are the sgmmetries for dgnamical Perturbations? For nonlinear Perturbations’?

Can we understand [-l.ove-Q relations of neutron stars as consequence of WCBI(IH (or spontaneouslg) broken sgmmetries?

, , , , e ege o [ Pa® B [ eee »
Collaboration with Joyce, Fenco, Santon, Solomon, and with Berens, Sun. e % ' e o ==

— éﬂ%=éﬂ




» Consider small Perturbations of a black hole: g=gpu + ¢ > [(92 +Vi]ipg =0 (linearized Einstein equation} v J\

r

tortoise radius

« Another application of linear BH Perturbation tlﬁeorg (this time keeping time derivatives): ring»-clown.

r e~ T r — OO
< >
< >
L — Numerical relativity ~
ingoing wave at horizon outgoing wave at infi nity s Reconstructed tempate) - —>

rmg down



« Consider small Perturbations of a black hole: g=gpu + ¢ > [(92 +Vi]ipg =0 (linearized Einstein equation} v /\

r

tortoise radius

« Another application of linear BH Perturbation tlﬂeory (this time keeping time derivatives): ring-clown.

r o~ T r — OO
< >
< >
ingoing wave at horizon outgoing wave at inf nity m econtructed (template) - —>
» , R , , —1wt rng down
These bounclarg conditions are lmpossuble in generaL excePt at speoal jrﬂrec]uenaes ¢ ~ € 5
A
Imw Re w
- w labeled by £, m,n, e.g. waog
e
® o . Tgpica”y focus on Frec]uencies rather than amplitucles. The quasimormal mode (QNM) spectrum
@ o L tells us a lot about the BH space—-time, analogous to seismologg. See Chandrasekhar.
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r

tortoise radius

« Another application of linear BH Perturbation tlﬂeory (this time keeping time derivatives): ring-clown.

r o~ T r — OO
ingoing wave at horizon outgoing wave at infi nity m Reconstrycted template) - —>
i , 11 , , —iwt rng down
These bounclarg conditions are lmpossuble in general, excePt at speoal jrﬂrec]uenaes ¢ ~ € 5
Im w Re w
- w labeled by £, m,n, e.g. wagg
o
® o . Tgpica”y focus on Frec]uencies rather than amplitucles. The quasimormal mode (QNM) sPectrum
@ o L tells us a lot about the BH space—-’timeJ analogous to seismologg. See Chandrasekhar.
€
, , 2 (1)
» What it we go to second order: 0% + V]p ~ 07¢* Write ¢ = &) 4+ o2 4 . - 07+ Vo 0

[82 4 V]¢(2) -~ 82¢(1)2
Not surPrising that Pairs of linear QNMs source a quadratic QONM e.g.

—1 2 wa20t

¢(1) contains e *~220! g Cb(2> contains e

|inear QNM c]uaclratic QNM



Expect quaclratic quasimormal modes from Pairs of linear quasi—-normal modes.

e.g. from pairs of wyyy We get quadratic w = 2wss

We searched for quaciratic QNM in black hole merger simulations, and
verified (220)x(220) amplitucle goes as square of (220) amplitucle.

Upg = 15.00M

— 0.2 T
(-] 3
al TR ,
) Colllaboration with Mitman, Lagos, Stein, Ma et al.
X
6:/—\ O 1 - A 1
R A Colllaboration with Lagos.
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< See also Cheung et al.
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3lack hole Perturbation theorg: tidal deformation and (nonlinear} ring-clown

. With very goocl numerical relativitg simulations, Whg do we care about Pf:rturbation theorg?

I. Recall what is simulated: vacuum solutions of Einstein ec]uations. Perturbation theorg (because of its ﬂexibilitg) IS helpmcul
in testing the assuml:)tions, (a) GR (.e. testinggravitg), and (b) vacuum (.e. Probingthe BH environment).
An examl:)le of the latter is the Possibilitg of an axion cloud around the BH (From super radiance and/ or from dark matter).
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2. Extreme mass ratios are out of reach of numerical simulations. Perturbation theorg is the on|9 method we have to treat such cases.
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3lack hole Perturbation theorg: tidal deformation and (nonlinear} ring~clown

. With very goocl numerical relativitg simulations, whg do we care about Pf:rturbation théorg’?

I. Recall what is simulated: vacuum solutions of Einstein equations. Perturbation theorg (]:)ecause of its ﬂexibilitg) IS hell:ncul
in testing the assuml:)tions, (a) GR (.e. testinggravitg), and (b) vacuum (.e. Probingthe BH environment).
An example of the latter is the Possibilitg of an axion cloud around the BH (From super radiance and/ or from dark matter) .

2. Extreme mass ratios are out of reach of numerical simulations. Perturbation theorg is the on|9 method we have to treat such cases.

0 Unclerstancling nonlinear ringclown 1e|l:>s (a) Provicle a more accurate mocleling of the ring—-c:lownJ (b) getus closer to the

merger time where signal to noise i1s ﬁigl’)est, () test the nonlinear structure of Perturbations around BH (tlne relative
amplitude between (2) and (1) becomes useful to look at).
P



Wave dark matter

(1/mv)
«  When dark matter mass mis below about 30 eV, its de Broglie wavelengtﬂ > inter Particle separation.
axion WIMP BH
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Wave dark matter

(1/mv)
«  When dark matter mass mis below about 30 eV, its de Broglie wa\/elengtﬂ > inter Partic!e seParation.
axion WIMP BH
S e ,
1022 1076 1 100 10° 101! 1033 eV bosonic
—
50 eV

0—22

. The Fuzzy limit (Hu, Barkana, Gruzinov) is 1 eV . Aninteresting motivation is relic abundance of axion/axion-like Particle

from misalignment mechanism (Preski”, Wise, Wilczek; Abbo’c, Sikivie; Dine, Fischler): -

Qmatter ~ 0.1 ( > ( _ ) V ®
1017 GeV 10—22 eV (@) \‘\"j/\ ¢ ~ F' at early times until H ~m

m = axion mass, [ =axion ciecag constant




Wave dark matter

(1/mv)
«  When dark matter mass mis below about 30 eV, its de Brogiie wa\/eiengtﬂ > inter Particie seParation.
axion WIMP BH
e /
1022 1076 1 100 10" 10! 1033 eV bosonic
—
50 eV

o The tuzzg limit (Hu, Barkana, Gruzinov) is  107%%eV . An interesting motivation is relic abundance of axion/axion~|i|<e Particle

from misalignment mechanism (Presi(i”, Wise, Wilczek; Abbot, 5i|<ivie; Dine, Fischler): -

Qmatter ~ 0.1 ( ) ( _ ) V ®
1017 GeV 10—22 eV (@) \‘\t//\ ¢ ~ F' at early times until H ~m

m = axion mass, [ =axion ciecag constant

. Donr’t obsess about 10_22 eV ! Wave dark matter need not be tuzzy to be interesting

e.g. inevitable time \/arging wave interference substructure on de Brogiie scale:

y [kpc]




Wave dark matter: a few observations on existing constraints

The existing constraints should be taken seriouslg. This means one should understand the assumptions behind them.

e.g, from lensing (ﬂux anomalu):

Schutz 2020 rules out m < 2.1 x 1072 eV for Pre&icting too little substructure.

Laroche et al. 2022 rules outm< 3 x 10 %teV For Preclicting too much substructure.

Correctlu accounting For wave | ﬂtCﬂCCFCHCC substructure? Eﬁ%c‘c omc bargons’?

e.g. from stellar heating:
Dala , Kravtsov 2022 rules out m< 3 x 107192 eV based on Seguel, 2.
Efect of tidal striPPi ng?

e.g. from Lgman alpha Forest, ctc.



Wave dark matter: a few observations on existing constraints

The existing constraints should be taken seriouslu. This means one should understand the assumPtions behind them.

e.g, from lensing (Hux anomaly}:

Schutz 2020 rules out m < 2.1 x 1072 eV for Preciicting too little substructure.

Laroche et al. 2022 rulcs outm< 3 x 10 %teV tor Preclicting too much substructure.

Correctlu accounting tor wave | nterterence substructure? Ettect ot bargons’?

e.g. from stellar heating:
Dala , Kravtsov 2022 rules out m< 3 x 107192 eV based on Seguel, 2.

Efect of tidal striPPi ng?

e.g. from Lgman alpha torest) ctc.

Strategies:

e
o

Understand what wave dark matter rea”u Predicts.
Wave dark matter need not be tuzzu to be interesting. Thus keep Pushing the limits on m. Can theu be further im[:)roved?

Because each astrophgsical constraint comes with its own IimitationsJ more variety of constraints is useful (e.g. Kim’s talk).

AN

. From a string theorg Point of view, where axion-like Particles arise generica”g as zero-modes of higher form fields, there

could well be multiple axion/axion—-like Particles at Pl89 (e.g. Mateja s talk).

If interested, come to discussion organizecl bg Matéja) |_uis. Also, see ARAA review on wave dark matter-.
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