

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme) 1

Conclusions

An Implicit Regularization Approach to chiral models NLO QCD corrections to Z₀ and (pseudo)scalar decays

Ricardo J. C. Rosado

Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Excited QCD 2024 Workshop, January 2024

¹Based on the paper "Rosado, R. J., Cherchiglia, A., Sampaio, M., Hiller, B. (2023). Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis. EPJC 83 (2023) 9 879, arXiv:2305.07129." www.epsteritation.org

FCT Pandação para a Ciêno e a Tecnolog

Table of Contents

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

1 Implicit Regularization Scheme

- Motivation
- Rules for IReg

Pirst order Calculation Results

- Tree level Decay
- Real NLO Contributions
- Virtual NLO Contributions
 - Self-Energy Corrections

• Comparison with FDH (Dimentional Reduction Scheme)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

FCT Pandação para a Ciênt e a Tecnolog

Motivation for Alternative Schemes

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

(Desired) Properties of Regularization Schemes² ³:

- Mathematical Consistency
- Unitarity and Causality
- Symmetry preservation
- Quantum Action Principle
- Computational Efficiency

²C Gnendiger, A Signer, D Stöckinger, A Broggio, AL Cherchiglia, F Driencourt-Mangin, AR Fazio, B Hiller, P Mastrolia, T Peraro, et al. To d, or not to d: recent developments and comparisons of regularization schemes. The European Physical Journal C, 77(7):1–39, 2017.

³WJ Torres Bobadilla, GFR Sborlini, P Banerjee, S Catani, AL Cherchiglia, L Cieri, PK Dhani, F Driencourt-Mangin, T Engel, G Ferrera, et al. May the four be with you: Novel ir-subtraction methods to tackle NNLO calculations. The European Physical Journal C, 81:1–61, 2021() → (+) +

What is Implicit Regularization?

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Non-Dimensional framework

- it deals with UV divergences through a minimal-subtraction equivalent scheme.
- It is compatible with the BPHZ theorem, assuring locality, causality and Lorentz invariance. ⁴ ⁵
- It complies with Abelian gauge symmetry at arbitrary loop level.

 $^{^4}$ N. N. Bogoliubov and O. S. Parasiuk. On the Multiplication of the causal function in the quantum theory of fields. Acta Math., 97:227–266, 1957.

⁵A. Cherchiglia, M. Sampaio and M. Nemes, Systematic Implementation of Implicit Regularization for Multi-Loop Feynman Diagrams, Int. J. Mod. Phys. A 26 (2011) 2591–2635, [1008.1377].

⁶A. R. Vieira, A. L. Cherchiglia, and Marcos Sampaio. Momentum Routing Invariance in Extended QED: Assuring Gauge Invariance Beyond Tree Level. Phys. Rev. D, 93(2):025029, 2016

	Rules for IReg
An Implicit Regularization Approach to chiral models Ricardo J. C. Rosado	
Implicit Regularization Scheme Motivation Rules for IReg	
First order Calculation Results Tree level Decay Real NLO Contributions Virtual NLO Contributions Self-Energy Corrections	
Dimensional Schemes Comparison with FDH (Dimentional Reduction Scheme) Conclusions	

Rules for IReg

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

• Perform the Dirac algebra in the physical dimension

・ロト ・ 同ト ・ ヨト ・ ヨト

э

FCT Pandação para a Ciên e a Tecnolo

Rules for IReg

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatior Scheme

- Rules for IReg
- First order Calculation Results
- Tree level Decay Real NLO Contributions
- Virtual NLO Contributions
- Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme

Conclusions

• Perform the Dirac algebra in the physical dimension

Use the numerator-denominator consistency to remove squared internal momenta terms

$$\int_{k} \frac{k^{2}}{k^{2}(k-p)^{2}} = \int_{k} \frac{1}{(k-p)^{2}} \neq g_{\mu\nu} \int_{k} \frac{k^{\mu}k^{\nu}}{k^{2}(k-p)^{2}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FCT Pundação para a Ciên e a Tecnolo

Rules for IReg

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatior Scheme

Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

• Perform the Dirac algebra in the physical dimension

Use the numerator-denominator consistency to remove squared internal momenta terms

$$\int_{k} \frac{k^{2}}{k^{2}(k-p)^{2}} = \int_{k} \frac{1}{(k-p)^{2}} \neq g_{\mu\nu} \int_{k} \frac{k^{\mu}k^{\nu}}{k^{2}(k-p)^{2}}$$

Add a regulator mass to massless propagators

$$rac{1}{(k\pm p)^2}
ightarrow rac{1}{(k\pm p)^2-\mu^2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FCT Fundação para a Ciêr e a Tecnolo

Rules for IReg

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatior Scheme

Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

• Perform the Dirac algebra in the physical dimension

Use the numerator-denominator consistency to remove squared internal momenta terms

$$\int_{k} \frac{k^{2}}{k^{2}(k-p)^{2}} = \int_{k} \frac{1}{(k-p)^{2}} \neq g_{\mu\nu} \int_{k} \frac{k^{\mu}k^{\nu}}{k^{2}(k-p)^{2}}$$

Add a regulator mass to massless propagators

$$rac{1}{(k\pm p)^2}
ightarrow rac{1}{(k\pm p)^2-\mu^2}$$

Separation of UV Divergences; Apply as needed.

$$\frac{1}{(k\pm p)^2 - \mu^2} \to \frac{1}{k^2 - \mu^2} - \frac{p^2 \pm 2p \cdot k}{(k^2 - \mu^2)[(k\pm p)^2 - \mu^2]}$$

FCT Pundação para a Ciênc e a Tecnolog

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatior Scheme Motivation

Rules for IReg

First order Calculation Results Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Define a Set of BDIs

$$I_{log}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{2+x}} \frac{d^4 k}{(2\pi)^2}$$
$$I_{quad}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{1+x}} \frac{d^4 k}{(2\pi)^2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

ж

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Define a Set of BDIs

$$I_{log}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{2 + x}} \frac{d^4 k}{(2\pi)^2}$$
$$I_{quad}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{1 + x}} \frac{d^4 k}{(2\pi)^2}$$

Surface Terms

$$\Upsilon^{\mu\alpha_{1}\alpha_{2}...\alpha_{2x-1}} = \int \frac{d}{dk_{\mu}} \frac{k^{\alpha_{1}}k^{\alpha_{2}}...k^{\alpha_{2x-1}}}{(k^{2}-\mu^{2})^{2+x}} \frac{d^{4}k}{(2\pi)^{2}}$$

・ロト・日本・日本・日本・日本・日本

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Define a Set of BDIs

$$I_{log}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{2 + x}} \frac{d^4 k}{(2\pi)^2}$$
$$I_{quad}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{1 + x}} \frac{d^4 k}{(2\pi)^2}$$

Surface Terms

$$\Upsilon^{\mu\alpha_{1}\alpha_{2}...\alpha_{2x-1}} = \int \frac{d}{dk_{\mu}} \frac{k^{\alpha_{1}}k^{\alpha_{2}}...k^{\alpha_{2x-1}}}{(k^{2}-\mu^{2})^{2+x}} \frac{d^{4}k}{(2\pi)^{2}}$$

Gauge Invariance $\rightarrow \mathsf{Momentum}$ Routing Invariance \rightarrow

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Define a Set of BDIs

$$I_{log}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{2+x}} \frac{d^4 k}{(2\pi)^2}$$
$$I_{quad}^{\alpha_1 \alpha_2 \dots \alpha_{2x}} = \int \frac{k^{\alpha_1} k^{\alpha_2} \dots k^{\alpha_{2x}}}{(k^2 - \mu^2)^{1+x}} \frac{d^4 k}{(2\pi)^2}$$

Surface Terms

$$\Upsilon^{\mu\alpha_{1}\alpha_{2}...\alpha_{2x-1}} = \int \frac{d}{dk_{\mu}} \frac{k^{\alpha_{1}}k^{\alpha_{2}}...k^{\alpha_{2x-1}}}{(k^{2}-\mu^{2})^{2+x}} \frac{d^{4}k}{(2\pi)^{2}}$$

Gauge Invariance $\rightarrow Momentum$ Routing Invariance $\rightarrow Surface$ Terms = 0

FCT ^{Fundação} e a Tecnolog

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Use Surface Relations: Tensor Reduction (Examples)

r _

$$0 = \int \frac{d}{dk_{\nu}} \frac{k^{\nu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} =$$
$$= \int \frac{g^{\mu\nu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} - 4 \int \frac{k^{\mu}k^{\nu}}{(k^2 - \mu^2)^3} \frac{d^4k}{(2\pi)^2} \to$$

Lu

.141.

FCT ^{Fundação} e a Tecnolog

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Use Surface Relations: Tensor Reduction (Examples)

$$0 = \int \frac{d}{dk_{\nu}} \frac{k^{\mu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} =$$
$$= \int \frac{g^{\mu\nu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} - 4 \int \frac{k^{\mu}k^{\nu}}{(k^2 - \mu^2)^3} \frac{d^4k}{(2\pi)^2} \rightarrow$$
$$\rightarrow g^{\mu\nu} I_{log} = 4 I_{log}^{\mu\nu}$$

FCT Pundação para a Ciênc e a Tecnologi

Rules for IReg: Basic Divergent integrals (BDIs)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Use Surface Relations: Tensor Reduction (Examples) $0 = \int \frac{d}{dk_{\nu}} \frac{k^{\mu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} =$

$$\int \frac{g^{\mu\nu}}{(k^2 - \mu^2)^2} \frac{d^4k}{(2\pi)^2} - 4 \int \frac{k^{\mu}k^{\nu}}{(k^2 - \mu^2)^3} \frac{d^4k}{(2\pi)^2} \to$$

$$ightarrow g^{\mu
u}I_{log}=4I^{\mu
u}_{log}$$

$$g^{\mu
u}I_{quad}=2I^{\mu
u}_{quad}$$

$$g^{\mu
u}I^{
ho\sigma}_{
m log}+g^{\mu
ho}I^{
ho\sigma}_{
m log}+g^{\mu\sigma}I^{
ho\rho}_{
m log}=6I^{\mu
u
ho\sigma}_{
m log}
ightarrow$$

$$(g^{\mu\nu}g^{\rho\sigma} + g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})I_{log} = 24I^{\mu\nu\rho\sigma}_{log}$$

FCT Pandação para a Ciênt e a Tecnolog

Rules for IReg: Some Remarks

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme

Conclusions

Renormalization scale

A renormalization group scale can be introduced by disentangling the UV/IR behavior of BDI's under the limit $\mu \rightarrow 0$. This is achieved by employing the identity

$$I_{log}(\mu^2) = I_{log}(\lambda^2) + b \cdot ln\left(\frac{\lambda^2}{\mu^2}\right), \quad b = \frac{i}{(4\pi)^2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FCT Pundação para a Ciêne e a Tecnolog

Rules for IReg: Some Remarks

Renormalization scale

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

A renormalization group scale can be introduced by disentangling the UV/IR behavior of BDI's under the limit $\mu \rightarrow 0$. This is achieved by employing the identity

$$I_{log}(\mu^2) = I_{log}(\lambda^2) + b \cdot ln\left(rac{\lambda^2}{\mu^2}
ight), \quad b = rac{i}{(4\pi)^2}$$

It is possible to absorb the BDI's in the renormalization constants (without explicit evaluation), and renormalization functions can be readily computed using

$$\lambda^2 \frac{\partial I_{log}(\lambda^2)}{\partial \lambda^2} = -b$$

FCT Fundação para a Ciên e a Tecnolog

Rules for IReg: γ^5

n Implicit gularization pproach to iral models
Ricardo J. C. Rosado
mplicit Regularization Scheme
Motivation
Rules for IReg
First order Calculation Results
Tree level Decay
Real NLO Contributions
Virtual NLO Contributions
Self-Energy Corrections
Dimensional Schemes
Comparison with FDH (Dimentional Reduction Scheme)
Conclusions

FCT Pandação para a Ciêno e a Tecnolog

Rules for IReg: γ^5

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Chiral models require a few remarks

• The γ^5 is a strictly 4-dimensional object.

⁸Rosado, R. J., Cherchiglia, A., Sampaio, M., Hiller, B. (2023). Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis. arXiv preprint arXiv:2305.07129; ArXiv et al. (2014) arXiv:2305.07129; Ar

Rules for IReg: γ^5

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Chiral models require a few remarks

- The γ^5 is a strictly 4-dimensional object.
- The use of the $\{\gamma^{\alpha}, \gamma^5\} = 0$ can lead to certain ambiguities in UV divergent integrals. ⁸

⁸Rosado, R. J., Cherchiglia, A., Sampaio, M., Hiller, B. (2023). Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis. arXiv preprint arXiv:2305.07129. 2014. (2014) (201

Rules for IReg: γ^5

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Chiral models require a few remarks

- The γ^5 is a strictly 4-dimensional object.
- The use of the $\{\gamma^{lpha},\gamma^5\}=0$ can lead to certain ambiguities in UV divergent integrals. ⁸

γ^5 inside traces are re-defined

$$\gamma^5 = i \frac{\epsilon_{\alpha\beta\delta\sigma}}{4!} \gamma^{\alpha} \gamma^{\beta} \gamma^{\delta} \gamma^{\sigma}$$

⁸Rosado, R. J., Cherchiglia, A., Sampaio, M., Hiller, B. (2023). Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis. arXiv preprint arXiv:2305.07129. 20 + (2) +

Rules for IReg: γ^5

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

The Right(left)-most-position

similar to the T'Hooft-Veltman scheme, we also employ the right(left)-most-position method ^{*a*} ^{*b*}. The appearing γ^5 are moved all the way to the right(left)-most-position before performing the Dirac algebra.

^aEr-Cheng Tsai. Gauge invariant treatment of 5 in the scheme of t hooft and veltman. Physical Review D, 83(2):025020, 2011.

^bEr-Cheng Tsai. Maintaining gauge symmetry in renormalizing chiral gauge theories. Physical Review D, 83(6):065011, 2011.

FCT Pundação para a Ciênci e a Tecnologi

The Z_0 Calculations

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

- The Z_0 decay is a prototype for Chiral Theories
- For a more complete model we also study the decay of a general Scalar and Pseudo-Scalar
- At the Energy Scale of Z₀ the strong coupling becomes weak ⁹

⁹Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, Marko Dragicevic, Janos Erő, A Escalante Del Valle, Martin Flechl, Rudolf Fruehwirth, et al. Determination of the strong coupling constant α_s (m_Z) from measurements of inclusive w^{\pm} and z boson production cross sections in proton-proton collisions at $\sqrt{s}=7$ and 8 Tev. Journal of High Energy Physics, 2020(6):1–50, 2020:

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

We use massless quarks in order to verify the KLN theorem 10

 10 Toichiro Kinoshita. Mass singularities of feynman amplitudes. Journal of Mathematical Physics, 3(4):650–677, 1962.

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

We use massless quarks in order to verify the KLN theorem 10

Kinoshita–Lee–Nauenberg (KLN) Theorem

The IR divergences coming from loop integrals cancel with the ones coming from phase space integrals.

¹⁰Toichiro Kinoshita. Mass singularities of feynman amplitudes. Journal of Mathematical Physics, 3(4):650–677, 1962.

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

We use massless quarks in order to verify the KLN theorem 10

Kinoshita–Lee–Nauenberg (KLN) Theorem

The IR divergences coming from loop integrals cancel with the ones coming from phase space integrals. \rightarrow SM Perturbation theories have to be IR finite.

¹⁰Toichiro Kinoshita. Mass singularities of feynman amplitudes. Journal of Mathematical Physics, 3(4):650–677, 1962.

¹¹Tsung-Dao Lee and Michael Nauenberg. Degenerate systems and mass singularities.Physical Review, 133(6B):B1549, 1964.

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

We use massless quarks in order to verify the KLN theorem $^{10}_{\ 11}$

Kinoshita–Lee–Nauenberg (KLN) Theorem

The IR divergences coming from loop integrals cancel with the ones coming from phase space integrals. \rightarrow SM Perturbation theories have to be IR finite. \rightarrow no $ln(\mu_0)$ with $\mu_0 \rightarrow 0$ in the end of the calculations of all terms up to any order. With $\mu_0 = \frac{\mu^2}{m_0^2}$.

¹⁰Toichiro Kinoshita. Mass singularities of feynman amplitudes. Journal of Mathematical Physics, 3(4):650–677, 1962.

¹¹Tsung-Dao Lee and Michael Nauenberg. Degenerate systems and mass singularities.Physical Review, 133(6B):B1549, 1964.

Z_0 Tree Level

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

 $M_{ts/5} = \underbrace{h}_{q + \overline{q}}$

 $=\overline{u}(q)\cdot\frac{-\imath e\gamma^{\mu} \mathcal{Z}_{-}}{\sin(2\omega)}\cdot v(\overline{q})\epsilon_{\mu}(z)$

$$\begin{split} M_{ts} &= \overline{u}(q) \cdot \frac{-iem_q}{2sin(\omega)w} \cdot v(\overline{q}) \\ M_{t5} &= \overline{u}(q) \cdot \frac{-iel_3\gamma^5m_q}{sin(\omega)w} \cdot v(\overline{q}) \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

FCT Pundação para a Ciênc e a Tecnologi

Some more information ¹²

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

۵

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculatior Results

Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

 $Z_{\pm} = g_V \pm \gamma^5 g_A$ $g_V = I_3 - Q' \sin^2(\omega)$ $g_A = I_3$

 $\begin{aligned} \xi_s &= \frac{em_q}{2sin(\omega)m_W}\\ \xi_5 &= \frac{el_3m_q}{sin(\omega)m_W} \end{aligned}$

Tree Level

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatio Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme

Conclusions

Z_0 tree level decay

$$\Gamma_t = \frac{e^2(g_V^2 + g_A^2)z}{4\pi sin^2(2\omega)}$$

Scalar tree level decay

$$\Gamma_{ts/5} = \xi_{s/5}^2 \frac{h}{8\pi}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

FCT Pundação para a Ciênci e a Tecnologi

NLO Real Contributions Diagrams

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculatior Results

Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\begin{split} M_{1r} &= \epsilon_{\mu}(z)\overline{u}(q) \left[\left(-ig\gamma^{\alpha}t^{a} \right) \cdot \frac{-i}{g+k} \cdot \frac{-ie\gamma^{\mu}Z_{-}}{\sin(2\omega)} + \right. \\ &\left. + \frac{-ie\gamma^{\mu}Z_{-}}{\sin(2\omega)} \cdot \frac{i}{g+k} \cdot \left(-ig\gamma^{\alpha}t^{a} \right) \right] v(\overline{q}) \epsilon_{\alpha}^{*}(k) \end{split}$$

$$\left\{ \begin{array}{c} M_{rs} = \overline{u}(q) \begin{pmatrix} (-ig\gamma^{\alpha}t^{a}) \cdot \frac{-i}{g+k} \cdot -i\xi_{s} \\ -i\xi_{s} \cdot \frac{i}{g+k} \cdot (-ig\gamma^{\alpha}t^{a}) \end{pmatrix} \nu(\overline{q})\epsilon_{\alpha}^{*}(k) \\ M_{r5} = \overline{u}(q) \begin{pmatrix} (-ig\gamma^{\alpha}t^{a}) \cdot \frac{-i}{g+k} \cdot -i\xi_{5}\gamma^{5} \\ -i\xi_{5}\gamma^{5} \cdot \frac{i}{g+k} \cdot (-ig\gamma^{\alpha}t^{a}) \end{pmatrix} \nu(\overline{q})\epsilon_{\alpha}^{*}(k) \end{array} \right.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

FCT ^{Fundação} e a Tecnolog

NLO Real Contributions

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Z_0 NLO Real Contributions to the decay rate

$$\Gamma_{1r} = \Gamma_t \frac{(t^a)^2 g^2}{(4\pi)^2} [2\ln^2(\mu_0) - 2\pi^2 + 6\ln(\mu_0) + 17]$$

Scalar NLO Real Contributions to the decay rate

$$\Gamma_{rs/5} = \Gamma_{ts/5} \frac{(t^a)^2 g^2}{(4\pi)^2} [2\ln^2(\mu_0) - 2\pi^2 + 6\ln(\mu_0) + 19]$$

イロト 不得 トイヨト イヨト

= 9Q@

FCT Pundação para a Ciênc e a Tecnolog

NLO Virtual Contributions Diagrams

Ricardo J. C. Rosado

Implicit Regularizatior Scheme Motivation Rules for IReg

First order Calculation Results Tree level Deca

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\begin{split} \mathcal{M}^{\mu}_{\nu} &= \int \overline{u}(q) \cdot (-ig\gamma^{\alpha}t^{a}) \cdot \frac{-i}{q+\overline{k}} \cdot \frac{-ie}{\sin(2\omega)}\gamma^{\mu}Z_{-} \cdot \\ & \cdot \frac{i}{\overline{q}-\overline{k}} \cdot (-ig\gamma^{\beta}t^{b}) \cdot \frac{-ig_{\alpha\beta}\beta_{ab}}{k^{2}} \cdot v(\overline{q}) \frac{d^{4}k}{(2\pi)^{4}} \end{split}$$

 $\left\{ \begin{array}{c} M_{\rm vs} = \int \overline{u}(q) \cdot (-ig\gamma^{\alpha}t^{a}) \cdot \frac{-i}{g+k} \cdot -i\xi_{\rm s} \cdot \frac{i}{\overline{g}-\overline{k}} \cdot \\ \cdot (-ig\gamma^{\beta}t^{b}) \cdot \frac{-ig_{\alpha}\delta_{ab}}{k^{2}} \cdot v(\overline{q}) \frac{d^{4}k}{(2\pi)^{4}} \\ M_{\rm v5} = \int \overline{u}(q) \cdot (-ig\gamma^{\alpha}t^{b}) \cdot \frac{-i}{g+\overline{k}} \cdot -i\xi_{5}\gamma^{5} \cdot \frac{i}{\overline{g}-\overline{k}} \cdot \\ \cdot (-ig\gamma^{\beta}t^{b}) \cdot \frac{-ig_{\alpha}\delta_{ab}}{k^{2}} \cdot v(\overline{q}) \frac{d^{4}k}{(2\pi)^{4}} \end{array} \right.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

FCT Pundação para a Ciêne e a Tecnolog

NLO Virtual Contributions

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme ^{Motivation}

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Z_0 NLO Virtual Contributions to the decay rate

$$\Gamma_{1\nu} = -\Gamma_t \frac{(t^a)^2 g^2}{(4\pi)^2} [2\ln^2(\mu_0) + 6\ln(\mu_0) + 14 - 2\pi^2]$$

Scalar NLO Virtual Contributions to the decay rate

$$\Gamma_{vs/5} = -\Gamma_{vs/5} \frac{(t^a)^2 g^2}{(4\pi)^2} [2\ln^2(\mu_0) - 2\pi^2]$$

イロト 不得 トイヨト イヨト

= 9Q@

FCT Pundação para a Ciênc e a Tecnolog

NLO Decay Rate (Preliminary)

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\Gamma_{1} = \Gamma_{t} + \Gamma_{1\nu} + \Gamma_{1r} =$$

$$= \Gamma_{t} \left(1 + 3 \frac{(t^{\alpha})g^{2}}{(4\pi)^{2}} \right) =$$

$$= \Gamma_{t} \left(1 + 3 \frac{(t^{\alpha})\alpha_{s}}{4\pi} \right) =$$

$$=\Gamma_t\left(1+rac{lpha_s}{\pi}
ight)$$

$$\begin{split} \Gamma_{1s/5} &= \\ &= \Gamma_{ts/5} + \Gamma_{vs/5} + \Gamma_{rs/5} = \\ &= \Gamma_{ts/5} \left(1 + \frac{(t^{\alpha})g^2}{(4\pi)^2} (6\ln(\mu_0) + 19) \right) \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

ж

FCT Pundação para a Ciênc e a Tecnolog

Self-Energy Diagrams

Self-Energy

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results Tree level Deca

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$i\Sigma^{(1)}(p) = g^2(t^{\alpha})\{b(3p - m_q) + (p - 4m_q)\left[b \cdot ln\left(\frac{\mu^2}{m_q^2}\right) + l_{log}(\mu^2)\right]\}$$

ヘロト 人間ト 人間ト 人間ト

FCT Pundação para a Ciênc e a Tecnologi

Self-Energy

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results Tree level Decay Real NLO

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$i\Sigma^{(1)}(p) = g^{2}(t^{\alpha})\{b(3p - m_{q}) + (p - 4m_{q})\left[b \cdot ln\left(\frac{\mu^{2}}{m_{q}^{2}}\right) + l_{log}(\mu^{2})\right]\}$$
$$m_{0} = m\left(1 + \frac{g^{2}}{4\pi}\delta_{m}\right) = m\left(1 + \frac{\alpha_{s}}{(4\pi)^{2}}\delta_{m}\right) = m(1 - ibg^{2}\delta_{m})$$

<ロト <回ト < 注ト < 注ト

FCT Pundação para a Ciênci e a Tecnologi

Self-Energy

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation Rules for IReg

First order Calculation Results Tree level Decay

Real NLO Contributions

Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$i\Sigma^{(1)}(\not p) = g^{2}(t^{\alpha})\{b(3\not p - m_{q}) + (\not p - 4m_{q})\left[b \cdot ln\left(\frac{\mu^{2}}{m_{q}^{2}}\right) + l_{log}(\mu^{2})\right]\}$$
$$m_{0} = m\left(1 + \frac{g^{2}}{4\pi}\delta_{m}\right) = m\left(1 + \frac{\alpha_{s}}{(4\pi)^{2}}\delta_{m}\right) = m(1 - ibg^{2}\delta_{m})$$
$$\delta_{m} = -(t^{\alpha})\left\{5 + 3\left[ln\left(\frac{\mu^{2}}{m_{q}^{2}}\right) + \frac{1}{b}l_{log}(\mu^{2})\right]\right\}$$

ヘロト 人間ト 人間ト 人間ト

FCT Pundação para a Ciênci e a Tecnologi

Self-Energy

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme ^{Motivation} Rules for IReg

First order Calculation Results Tree level Deca

Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\begin{split} i\Sigma^{(1)}(\not p) &= g^{2}(t^{\alpha}) \{ b(3\not p - m_{q}) + \\ &+ (\not p - 4m_{q}) \left[b \cdot ln \left(\frac{\mu^{2}}{m_{q}^{2}} \right) + l_{log}(\mu^{2}) \right] \} \\ m_{0} &= m \left(1 + \frac{g^{2}}{4\pi} \delta_{m} \right) = m \left(1 + \frac{\alpha_{s}}{(4\pi)^{2}} \delta_{m} \right) = m(1 - ibg^{2}\delta_{m}) \\ &\delta_{m} &= -(t^{\alpha}) \left\{ 5 + 3 \left[ln \left(\frac{\mu^{2}}{m_{q}^{2}} \right) + \frac{1}{b} l_{log}(\mu^{2}) \right] \right\} \\ M_{t} \to M_{t}(m_{h}) \left[1 - ig^{2}(t^{\alpha})^{2}b \left(3ln \left(\frac{m_{h}^{2}}{m_{q}^{2}} \right) + 4 \right) + O(g^{4}) \right] (1 - ibg^{2}\delta_{m}) \end{split}$$

<ロト <回ト < 注ト < 注ト

Self-Energy

1

An Implicit Regularization Approach to chiral models

Self-Energy Corrections

$$\begin{split} i\Sigma^{(1)}(\not p) &= g^2(t^{\alpha}) \{ b(3\not p - m_q) + \\ &+ (\not p - 4m_q) \left[b \cdot ln \left(\frac{\mu^2}{m_q^2} \right) + l_{log}(\mu^2) \right] \} \\ m_0 &= m \left(1 + \frac{g^2}{4\pi} \delta_m \right) = m \left(1 + \frac{\alpha_s}{(4\pi)^2} \delta_m \right) = m(1 - ibg^2 \delta_m) \\ &\delta_m = -(t^{\alpha}) \left\{ 5 + 3 \left[ln \left(\frac{\mu^2}{m_q^2} \right) + \frac{1}{b} l_{log}(\mu^2) \right] \right\} \\ M_t \to M_t(m_h) \left[1 - ig^2(t^{\alpha})^2 b \left(3ln \left(\frac{m_h^2}{m_q^2} \right) + 4 \right) + O(g^4) \right] (1 - ibg^2 \delta_m) \end{split}$$

$$\Gamma_{vs/5} = -\Gamma_{ts/5} \frac{(t^{\alpha})^2 g^2}{(4\pi)^2} (2\ln^2(\mu_0) - 2\pi^2 + 2 + 6\ln(\mu_0))$$

<ロト <回ト < 注ト < 注ト æ

FCT Pundação para a Ciên e a Tecnolog

NLO Decay Rate

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatio Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\Gamma_1 = \Gamma_t + \Gamma_{1\nu} + \Gamma_{1r} = = \Gamma_t \left(1 + 3 \frac{(t^{\alpha})g^2}{(4\pi)^2} \right) = = \Gamma_t \left(1 + 3 \frac{(t^{\alpha})\alpha_s}{4\pi} \right) =$$

$$= \Gamma_t \left(1 + \frac{\alpha_s}{\pi} \right)$$

$$\Gamma_{1s/5} =$$

$$= \Gamma_{ts/5} + \Gamma_{ms/5} + \Gamma_{vs/5} + \Gamma_{rs/5} =$$

$$= \Gamma_{ts/5} \left(1 + 17 \frac{(t^{\alpha})g^2}{(4\pi)^2} \right) =$$

$$= \Gamma_{ts/5} \left(1 + \frac{17\alpha_s}{3\pi} \right)$$

ヘロト ヘロト ヘヨト ヘヨト

FCT Pundação para a Ciênc e a Tecnolog

Examples of Dimensional Schemes

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme ^{Motivation}

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

Dimensional Regularization Schemes

(HV) 't Hooft-Veltman: Internal Vectors are treated inD-dimension, External Vectors are strictly 4-dimensional.(CDR) Conventional Dimensional Regularization: Both internal and External Vectors are treated in D-dimension.

Dimensional Reduction Schemes

(DREG) Dimensional Reduction: Both internal and External Vectors are quasi-4-dimensional.

(FDH) Four Dimensional Helicity: Only The Internal Vectors are Treated in the quasi-4-dimensional space, External Vectors are strictly 4-dimensional.

Considerations of DS: Evanescent Fields in Dimentional Reductions schemes ¹³

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularizatior Scheme Motivation Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$d_s = d + n_\epsilon = 4 - 2\epsilon + n_\epsilon$$

QED

$$D^{\mu}_{[d_s]}\psi_i = \partial^{\mu}_{[d]}\psi_i + i\left(eA^{\mu}_{[d]} + e_eA^{\mu}_{[n_e]}\right)Q\psi_i$$

QCD

$$D^{\mu}_{[d_s]}\psi_i = \partial^{\mu}_{[d]}\psi_i + i\left(g_s A^{\mu}_{k[d]} + g_e A^{\mu}_{k[n_e]}\right) T^{ijk}\psi_j$$

FCT Pundação para a Ciênc e a Tecnologi

Scalar Contributions¹⁴

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\Gamma_{s/5(FDH)}^{(v)} =$$

$$= \Gamma_{s/5(FDH)}^{(t)} C_f \left[\frac{\alpha_s}{4\pi} \left(-\frac{4}{\epsilon^2} - \frac{6}{\epsilon} - 4 + 2\pi^2 + O(\epsilon) \right) + \frac{\alpha_\epsilon}{4\pi} \left(\frac{n_\epsilon}{\epsilon} + O(\epsilon) \right) \right]$$

$$\Gamma_{s/5(FDH)}^{(r)} =$$

$$= \Gamma_{s/5(FDH)}^{(t)} C_f \left[\frac{\alpha_s}{4\pi} \left(\frac{4}{\epsilon^2} + \frac{6}{\epsilon} + 21 - 2\pi^2 + O(\epsilon) \right) + \frac{\alpha_\epsilon}{4\pi} \left(-\frac{n_\epsilon}{\epsilon} + O(\epsilon) \right) \right]$$

$e^-e^+ ightarrow Z_0 ightarrow q\overline{q}$ Contributions¹⁵

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

Rules for IReg

Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensional Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

$$\sigma_{\gamma(FDH)}^{(v)} = \sigma^{(0)} C_f \left[\frac{\alpha_s}{4\pi} \left(-\frac{4}{\epsilon^2} - \frac{6}{\epsilon} - 16 + 2\pi^2 + O(\epsilon) \right) + \frac{\alpha_\epsilon}{4\pi} \left(\frac{n_\epsilon}{\epsilon} + O(\epsilon) \right) \right] \\ \sigma_{\gamma(FDH)}^{(r)} = \sigma^{(0)} C_f \left[\frac{\alpha_s}{4\pi} \left(\frac{4}{\epsilon^2} + \frac{6}{\epsilon} + 19 - 2\pi^2 + O(\epsilon) \right) + \frac{\alpha_\epsilon}{4\pi} \left(-\frac{n_\epsilon}{\epsilon} + O(\epsilon) \right) \right]$$

FCT Pundação para a Ciência e a Tecnologia

Conclusions

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme Motivation

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

- In this work we have verified that the KLN theorem is satisfied in our framework.¹⁶
- It is not necessary to introduce evanescent particles, unlike in partially dimensional methods such as FDH and DRED.
- We also compared IReg with these methods, showing that, regarding IR divergences, there is a precise matching rule between IReg and dimensional results at NLO.
- γ_5 right-most-position approach is sufficient to render IReg a gauge invariant procedure in this case while reproducing the results obtained with more involved schemes literature.

¹⁶Rosado, R. J., Cherchiglia, A., Sampaio, M., Hiller, B. (2023). Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis. arXiv preprint arXiv:2305.07129. Control of the second statement o

Thank You

An Implicit Regularization Approach to chiral models

Ricardo J. C. Rosado

Implicit Regularization Scheme ^{Motivation} Rules for IReg

First order Calculation Results

Tree level Decay Real NLO Contributions

Virtual NLO Contributions

Self-Energy Corrections

Dimensiona Schemes

Comparison with FDH (Dimentional Reduction Scheme)

Conclusions

For more information check out the main article "Infrared Subtleties and Chiral Vertices at NLO: An Implicit Regularization Analysis" https://arxiv.org/abs/2305.07129

・ロット (雪) ・ (日) ・ (日) ・ (日)