eQCD, @Benasque, Eno 2024

Evolution of genuine states to molecular states with one channel/coupled channels: $T_{cc}(3875)/X(3872)$

Jing Song (宋晶)

In Collaboration with: Prof. L-R.Dai, Prof. E.Oset

School of Physics, Beihang University Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC

Introduction

- **D** Theoretical formalism
- **D** Results and discussion
- **D** Summary

□ Introduction

- **Theoretical formalism**
- **C** Results and discussion
- **D** Summary

Introduction

• Motivation: What is the component of $T_{cc}(3875)/X(3872)$?

Couplings and Probabilities: stressing the molecular nature of a state

Scattering length and effective range: determining the compositeness of a state

Outline

□ Introduction

D Theoretical formalism

- 1. One channel of *DD*^{*} (*T_{cc}(3875)*)
- 2. Couple channels of $\overline{D}{}^{0}D^{*0}\& D^{-}D^{*+}(X(3872))$

Formalism | DD*

➢ DD* amplitude

$$\tilde{t}_{DD^*,DD^*}(s) = \frac{\tilde{g}^2}{s - s_R} \qquad \qquad D \longrightarrow R \qquad \qquad D^* \longrightarrow D^*$$

➤ Iterated diagram of unitarity of the *DD** amplitude

> The *DD** amplitude insert the self-energy
$$t_{DD^*,DD^*}(s) = \frac{\tilde{g}^2}{s - s_R - \tilde{g}^2 G_{DD^*}(s)}$$

 \succ Function G is regularized with a sharp cutoff,

$$G_{DD^*}(s) = \int_{|\mathbf{q}| < q_{\max}} \frac{d^3q}{(2\pi)^3} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{1}{s - (\omega_1 + \omega_2)^2 + i\epsilon}$$

 \succ Function G is regularized with a sharp cutoff,

$$G_{DD^*}(s) = \int_{|\mathbf{q}| < q_{\max}} \frac{d^3q}{(2\pi)^3} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{1}{s - (\omega_1 + \omega_2)^2 + i\epsilon}$$

> The molecular probability

$$P = -\frac{\widetilde{g}^2 \frac{\partial G}{\partial s}}{1 - \widetilde{g}^2 \frac{\partial G}{\partial s}}\Big|_{s=s_0}$$

• Several limits of molecular probability

 $\begin{cases} \tilde{g}^2 \to 0, & P \to 0, & \text{the genuine state survives} \\ \tilde{g}^2 \to \infty, & P \to 1, & \text{the state becomes pure molecular} \\ s_0 \to s_{\text{th}}, & \frac{\partial G}{\partial s} \to -\infty, & P \to 1, & \text{the state becomes pure molecular} \end{cases}$

Formalism $\overline{D}^0 D^{*0} \& \overline{D}^- D^{*+}$

 $\blacktriangleright \overline{D}D^*$ amplitude

$$t_{D^*\bar{D}}(I=0) = \frac{\tilde{g}^2}{s-s_R}$$

> Iterated diagram of unitarity of the $\overline{D}D^*$ amplitude

> The $\overline{D}D^*$ amplitude insert the self-energy

$$T = \tilde{V}_R + \tilde{V}_R G \tilde{V}_R + \tilde{V}_R G \tilde{V}_R G \tilde{V}_R + \dots = \tilde{V}_R + \tilde{V}_R G T$$
$$\tilde{V}_R = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \frac{\tilde{g}^2}{s - s_R} \equiv \begin{pmatrix} \frac{1}{2} V_R & \frac{1}{2} V_R \\ \frac{1}{2} V_R & \frac{1}{2} V_R \end{pmatrix}, \quad \text{with } V_R = \frac{\tilde{g}^2}{s - s_R}.$$

 \succ Function G is regularized with a sharp cutoff,

$$G_i(s) = \int_{|\mathbf{q}| < q_{\max}} \frac{d^3 \mathbf{q}}{(2\pi)^3} \frac{w_1^{(i)} + w_2^{(i)}}{2w_1^{(i)}w_2^{(i)}} \times \frac{1}{s - (w_1^{(i)} + w_2^{(i)})^2 + i\epsilon}$$

Formalism $\overline{D}^0 D^{*0} \& D^- D^{*+}$

➤ The diagonal *G*-loop matrix

$$G = egin{pmatrix} G_{D^{*0}ar{D}^0} & 0 \ 0 & G_{D^{*+}D^-} \end{pmatrix}$$

> The molecular probability

$$P_{1} = -g_{1}^{2} \frac{\partial G_{1}}{\partial s} \bigg|_{s_{0}} = -\frac{\frac{1}{2} \tilde{g}^{2} \frac{\partial G_{1}}{\partial s}}{1 - \frac{1}{2} \tilde{g}^{2} \frac{\partial}{\partial s} (G_{1} + G_{2})} \bigg|_{s_{0}},$$
$$P_{2} = -g_{2}^{2} \frac{\partial G_{2}}{\partial s} \bigg|_{s_{0}} = -\frac{\frac{1}{2} \tilde{g}^{2} \frac{\partial G_{2}}{\partial s}}{1 - \frac{1}{2} \tilde{g}^{2} \frac{\partial}{\partial s} (G_{1} + G_{2})} \bigg|_{s_{0}}.$$

Several limits of molecular probability at $s_0 \rightarrow s_{th1}$

$$\begin{cases} \tilde{g}^2 \to 0, & P_1 \to 0, P_2 \to 0, \text{ genuine state} \\ \tilde{g}^2 \to \infty, & P_1 + P_2 = 1, \text{ completely molecular} \\ s_0 \to s_{\text{th}1}, & \frac{\partial G_1}{\partial s} \to -\infty, & \frac{\partial G_2}{\partial s} \to \text{finite}, P_1 \to 1, P_2 \to 0, \text{ completely molecular state} \end{cases}$$

Formalism $| a \text{ and } r_0 |$

> The relationship of *T*-matrix and scattering matrix in Quantum mechanics

$$T = (-8\pi\sqrt{s})f^{QM} \simeq (-8\pi\sqrt{s})\frac{1}{-\frac{1}{a} + \frac{1}{2}r_0k^2 - ik}$$

 $\rightarrow \overline{D}D^*$ amplitude

$$T_{jj} = \frac{1}{\frac{s - s_R}{\frac{1}{2}[\tilde{g}^2 + \beta V(s - s_R)]} - G_1 - G_2}, \qquad j = 1, 2$$

Scattering length and effective range of couple channel

$$\begin{aligned} & -\frac{1}{a_1} = (-8\pi\sqrt{s}) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_1 - G_2 \right] \Big|_{s_{\text{th1}}}, \\ & r_{0,1} = 2 \frac{\sqrt{s}}{\mu_1} \frac{\partial}{\partial s} \left\{ (-8\pi\sqrt{s}) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_1 - G_2 \right] \right\} \Big|_{s_{\text{th1}}}, \end{aligned}$$

$$-\frac{1}{a_2} = (-8\pi\sqrt{s}) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_2 - G_1 \right] \bigg|_{s_{\text{th}2}},$$

$$r_{0,2} = 2\frac{\sqrt{s}}{\mu_2} \frac{\partial}{\partial s} \left\{ \left(-8\pi\sqrt{s}\right) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_2 - G_1 \right] \right\} \right|_{s_{\text{th}2}},$$

Outline

Introduction

Theoretical Formalism

D Results and discussion

- 1. Molecular probability
- 2. Scattering length and effective range
- 3. Mixture of compact and molecular components

• *P*: molecular probability as a function of $\sqrt{s_0}$ at $\Delta\sqrt{s_R} = 102$ MeV

- 1. *P* goes to 1 at $s_0 \rightarrow s_{\text{th}}$;
- 2. $P(\sim 0.9)$ at T_{cc} depends a bit of q_{max} : genuine state \rightarrow molecular state.

• *P*: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 10$ MeV

- 1. *P* goes to 1 at $s_0 \rightarrow s_{\text{th}}$;
- 2. The value *P* at T_{cc} smaller than before, of the order of 0.5.

• *P*: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 1$ MeV

- 1. *P* shows the same trend at $s_0 \rightarrow s_{\text{th}}$;
- 2. The value *P* at T_{cc} smaller than 0.15 : mostly nonmolecular.

• *P*: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 0.1$ MeV

- 1. *P* goes to 1 at $s_0 \rightarrow s_{\text{th}}$;
- 2. The value P at T_{cc} smaller than 0.05 : basically nonmolecular.

Conclusion1.

The value of the binding energy alone cannot prove the nature of the state.

P: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 100$ MeV

1. $P_1 \rightarrow 1, P_2 \rightarrow 0 \text{ at } s_0 \rightarrow s_{\text{th1}}; P_1 + P_2 \rightarrow 1.$

- 2. The value $P_1 \sim 0.9$, $P_2 \sim 0.05$ at X(3872) depend a bit on q_{max} .
- 3. The total molecular probability is around 0.95 at X(3872) energy.

G.-J. Wang, Z. Yang, J.-J. Wu, M. Oka, and S.-L. Zhu. arXiv:2306.12406

P: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 10$ MeV

- 1. $P_1 \rightarrow 1, P_2 \rightarrow 0 \text{ at } s_0 \rightarrow s_{\text{th1}}; P_1 + P_2 \rightarrow 1.$
- 2. The value $P_1 \sim 0.6-0.7$, $P_2 \sim 0.03$ at X(3872).
- 3. $P_1 + P_2 \sim 0.6-07$ at X(3872) energy: molecular component is smaller.

P: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 1$ MeV

- 1. $P_1 \rightarrow 0.15 0.2, P_2 \rightarrow 0.01 \text{ at } s_0 \rightarrow s_{\text{th}1}; P_1 + P_2 \rightarrow 0.15 0.2.$
- 2. $P_1 + P_2 \sim 0.15$ -0.2 at the X(3872) energy: very small.

P: molecular probability as a function of $\sqrt{s_0}$ at $\Delta \sqrt{s_R} = 0.1$ MeV

• $P_1 + P_2 \sim 0.02$ at the X(3872) energy: molecular component is negligible.

• Conclusion2.

The binding energy itself does not give a molecular probability.

Results | Scattering length and effective range of *Tcc(3875)*

The	results	of a	and r_0	as a	function	of $\Delta $	\overline{S}_R	at T_{c}
-----	---------	------	-----------	------	----------	--------------	------------------	------------

$\Delta \sqrt{s_P}$ [MeV]	$q_{\rm max} = 450$	MeV	$q_{\rm max} = 650 { m MeV}$		
	<i>a</i> [fm]	<i>r</i> ₀ [fm]	<i>a</i> [fm]	<i>r</i> ₀ [fm]	
0.1	0.87	-114.07	0.61	-168.39	
0.3	1.19	-79.33	0.85	-117.23	
1	2.10	-38.20	1.56	-56.68	
2	3.04	-21.77	2.36	-32.49	
5	4.62	-9.26	3.85	-14.07	
10	5.74	-4.51	5.07	-7.08	
30	6.94	-1.16	6.54	-2.14	
50	7.25	-0.47	6.95	-1.13	
70	7.39	-0.17	7.15	-0.69	
102	7.51	0.06	7.31	-0.34	

Experimental values: $a \sim 6-7$ fm, $r_0 \sim -3.9$ fm

- R. Aaij, et al., LHCb Collaboration, Nat. Phys. 18 (2022) 751, Nat. Commun. 13 (2022) 3351
- 1. $\Delta \sqrt{s_R} >$, a > and $r_0 \rightarrow \infty$, decreasing the molecular probability;

2. *a* and r_0 are very useful to determine the molecular probability of the state.

• The results of a and r_0 as a function of $\Delta \sqrt{s}_R$ at $s_{\text{th1}}(\overline{D}^0 D^{*0})$

	$q_{\rm max} = 450 { m ~MeV}$					$q_{\rm max} = 650 { m ~MeV}$				
$\Delta \sqrt{s_R}$ (MeV)	a_1 (fm)	$r_{0,1}$ (fm)	a_2 (fm)	$r_{0,2}$ (fm)	a_1 (fm)	$r_{0,1}$ (fm)	a_2 (fm)	$r_{0,2}$ (fm)		
0.1	1.42	-663.61	0.0073 - i0.00003	-664.79 - <i>i</i> 1.56	0.954	-1011.3	0.0048 - i0.00002	-1014.0 - i1.56		
0.3	3.16	-273.51	0.0176 - i0.00020	-273.04 - i1.56	2.181	-416.86	0.0116 - i0.00009	-417.03 - i1.56		
1	7.48	-89.71	0.0530 - i0.00180	-88.46 - i1.56	5.544	-136.78	0.0350 - i0.00078	-135.77 - i1.56		
2	11.09	-45.95	0.1014 - i0.00660	-44.52 - i1.56	8.760	-70.098	0.0674 - i0.00292	-68.81 - i1.56		
5	15.80	-18.86	0.2305 - i0.03475	-17.31 - i1.56	13.67	-28.816	0.1571 – <i>i</i> 0.01597	-27.35 - i1.56		
10	18.45	-9.68	0.3957 - i0.10756	-8.10 - i1.56	16.87	-14.837	0.2827 - i0.05290	-13.31 - i1.56		
20	20.16	-5.07	0.5902 - i0.26910	-3.47 - i1.56	19.11	-7.8049	0.4593 - i0.14915	-6.25 - i1.56		
50	21.35	-2.29	0.7558 - i0.58190	-0.68 - i1.56	20.79	-3.5725	0.6801 <i>- i</i> 0.39616	-2.00 - i1.56		
70	21.59	-1.76	0.7761 - i0.68790	-0.15 - i1.56	21.14	-2.7652	0.7296 - i0.50085	-1.19 - i1.56		
100	21.78	-1.37	0.7818 <i>- i</i> 0.78157	0.25 - i1.56	21.41	-2.1595	0.7611 <i>- i</i> 0.60330	-0.58 - i1.56		

- 1. $\Delta \sqrt{s_R} >$, a > and $r_0 \rightarrow \infty$, decreasing the molecular probability;
- 2. *a* and r_0 are very useful to determine the molecular probability of the state.

Results | Mixture of compact and molecular components of *Tcc(3875)*

- ◆ Add local hidden gauge potential between *DD**
- Scattering amplitude

Т

$$V' = V + \frac{\tilde{g}^2}{s - s_R}$$

$$= \frac{V}{1 - VG} \qquad \qquad V = \beta V_{\text{LHG}} = \beta (-1) \frac{1}{2} g^{\prime 2} \left[3s - \left(M^2 + m^2 + M^{\prime 2} + m^{\prime 2} \right) - \frac{1}{s} \left(M^2 - m^2 \right) \left(M^{\prime 2} - m^{\prime 2} \right) \right] \frac{1}{M_{\rho}^2}$$

P: molecular probability at threshold of DD^*

$$P = -\frac{\left[\widetilde{g}^2 + (s - s_R)V\right]\frac{\partial G}{\partial s}}{1 - \left[\widetilde{g}^2 + (s - s_R)V\right]\frac{\partial G}{\partial s} - VG}\Big|_{s=s_0}$$

$\Delta \sqrt{s_P}$ [MeV]	$q_{\rm max} = 450$	0 MeV	$q_{\rm max} = 65$	$q_{\rm max} = 650 { m MeV}$		
	$\beta = 0$	$\beta = 0.74$	$\beta = 0$	$\beta = 0.52$		
10	0.58	0.94	0.49	0.94		
20	0.73	0.97	0.65	0.97		
50	0.87	0.99	0.82	0.99		

- 1. The potential is strong enough, but not enough to bind by itself.
- 2. The bigger $\sqrt{s_R}$, the relative increase in the compositeness is smaller.
- 3. Its effect is to increase the molecular probability bringing it close to unity.

Results | Mixture of compact and molecular components of *X*(3872)

• *P*: molecular probability as a function of $\sqrt{s_0}$ at $\Delta\sqrt{s_R} = 100 \& 1 \text{ MeV}$

2. Meson-meson interaction increases the molecular probability.

	$q_{\rm max} = 450 { m ~MeV}$				$q_{\max} = 650 \mathrm{MeV}$			
$\Delta \sqrt{s_R}$ (MeV)	a_1 (fm)	<i>r</i> _{0,1} (fm)	a_2 (fm)	$r_{0,2}$ (fm)	a_1 (fm)	$r_{0,1}$ (fm)	a_2 (fm)	$r_{0,2}$ (fm)
0.1	15.60	-24.97	0.7068 - i1.116	1.17 – <i>i</i> 1.56	15.84	-25.74	0.7476 - i1.011	0.82 - i1.56
0.3	19.65	-7.13	0.7060 - i1.118	1.16 - i1.56	19.50	-7.55	0.7470 - i1.012	0.81 - i1.56
1	21.38	-2.30	0.7024 - i1.125	1.14 - i1.56	21.23	-2.64	0.7448 - i1.019	0.78 - i1.56
2	21.79	-1.35	0.6957 - i1.139	1.08 - i1.56	21.64	-1.68	0.7406 - i1.032	0.72 - i1.56
5	22.05	-0.81	0.6394 - i1.232	0.23 - i1.56	21.90	-1.13	0.7035 - i1.128	-0.11 - i1.56
10	22.13	-0.63	0.7818 - i0.780	-3.62 - i1.56	21.98	-0.94	0.7767 - i0.693	-4.32 - i1.56
20	22.17	-0.54	0.7514 - i0.998	0.92 - i1.56	22.02	-0.85	0.7731 - i0.898	0.56 - i1.56
50	22.20	-0.48	0.7410 - i1.031	1.12 - i1.56	22.05	-0.80	0.7677 - i0.930	0.77 - i1.56
70	22.21	-0.47	0.7396 - i1.035	1.14 - i1.56	22.05	-0.79	0.7669 - i0.934	0.79 - i1.56
100	22.21	-0.47	0.7385 - i1.038	1.15 - i1.56	22.06	-0.78	0.7663 - i0.937	0.80 - i1.56

Experimental values: $a_1 = 28$ fm, $r_{0,1} = -5.34$ fm, -2.78 fm $< r_{0,1} < 1$ fm

- R. Aaij et al. (LHCb), Phys. Rev. D 102, 092005 (2020), A. Esposito, et al, PRD 105, L031503 (2022)
- V. Baru, et al., PLB 833, 137290 (2022, V. Baru, private communication (2023)
- 1. Comparing the **experiments**: a_1 and r_{01} still unacceptable at $\Delta\sqrt{s_R} = 0.1$ MeV, case of $\Delta\sqrt{s_R} = 1$ MeV they are agree within the uncertainty, and $P_1 + P_2 \sim 0.95$.
- 2. Comparing the **genuine state**: the direct meson-meson interaction effects the increase of *a* and the decrease of the size of r_0 .

Outline

Introduction

Theoretical Formalism

C Results and discussion

D Summary

Summary

- 1. The binding energy of the state goes to the meson-meson threshold, the state becomes 100% molecular.
- 2. If the bare mass of the genuine state is very close to threshold, the raise of the molecular probability to unity occurs at even smaller distances to this threshold.
- 3. The value of the binding energy together with the measurement of scattering length and effective range can provide an answer to the compositeness of a state.
- 4. The mixture of a genuine state and an additional direct attractive meson-meson interaction, the state becomes clearly molecular.
- 5. With present experimental values of scattering length and effective range, both the $T_{cc}(3875)$ and X(3872) are molecular states.
- 6. The results and conclusions are general, and the method employed in the analysis can be easily extrapolated to any other hadronic cases.

Thanks for your attention!