Use of dispersive meson-meson analyses in Giant CP Violation in B to three light mesons at lhc beyond leading order

J.R. Peláez and A. Reyes-Torrecilla, in progress

Supported by: Institute of Particle & Cosmos Physics (IPARCOS)

Departamento de Física Teórica Universidad Complutense de Madrid

Overview

- **1. 2-body decays** vs **3-body decays**
- 2. How can we approach these 3-body decays? Can we simplify them?
- **3.** Into the simplest FSI model at LHCb
 - **O** Two unnecessary and crude estimates
 - Using dispersive $\pi \pi \longrightarrow KK$ parameterizations
- **4**. How can we improve this?

Let's start with a brief introduction...

• CP violation (CPV) relevant for bariogenesis and other open questions within the SM

CP forbidden processes

O CPV observed through

Asymmetries between CP-conjugated decays $\mathcal{A}_{CP} \equiv \Delta \Gamma_f = \Gamma \left(M \to f \right) - \Gamma \left(\bar{M} \to \bar{f} \right)$

○ In the SM quark/hadron CPV due to "weak" phase in the CKM matrix

To observe such CP phase in an asymmetry we need interference between at least two mechanisms/diagrams with different weak and strong phases

Standard CPV framework

[2] L. Wolfenstein, Phys. Rev. D 43, (1991) 151
[3] M. Suzuki and L. Wolfenstein, Phys. Rev. D 60, (1999) 074019
[4] M. Suzuki, Phys. Rev. D 77, (2008) 054021

O CPV (weak) phase appears in the quark CKM matrix

• Strong imaginary part is due to the loop, which are not physical states

However, strong phases can be generated at the "hadron level" via Hadronic FSI

2-body decyas vs 3-body decays

- Hadronization/FSI is just a number after angular integration
- Simpler to estimate

LHCb intense research program involving large CPV asymmetries in $B \rightarrow 3M$...

PRL 111, 101801 (2013) PHYSICAL REVIEW LETTERS

ဖွာ

Measurement of *CP* Violation in the Phase Space of $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 5 June 2013; published 3 September 2013)

The charmless decays $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 1.0 fb⁻¹, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as $A_{CP}(B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}) = 0.032 \pm 0.008(\text{stat}) \pm 0.004(\text{syst}) \pm 0.007(J/\psi K^{\pm})$ and $A_{CP}(B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}) = -0.043 \pm 0.009(\text{stat}) \pm 0.003(\text{syst}) \pm 0.007(J/\psi K^{\pm})$, where the third uncertainty is due to the *CP* asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode. The significance of $A_{CP}(B^{\pm} \rightarrow K^{\pm}K^{+}K^{-})$ exceeds three standard deviations and is the first evidence of an inclusive *CP* asymmetry in charmless three-body *B* decays. In addition to the inclusive *CP* asymmetries, larger asymmetries are observed in localized regions of phase space.

LHCb intense research program involving large CPV asymmetries in $B \rightarrow 3M$...

LHCb intense research program involving large CPV asymmetries in $B \rightarrow 3M$...

PHYSICAL REVIEW D 90, 112004 (2014)

Measurements of *CP* violation in the three-body phase space of charmless B^{\pm} decays

R. Aaij et al.* (LHCb Collaboration) (Received 25 August 2014; published 11 December 2014)

The charmless three-body decay modes $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$, $B^{\pm} \to K^{\pm}K^{+}K^{-}$, $B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb⁻¹, collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be

> FSI experimental signs $A_{CP}(B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007,$ $A_{CP}(B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007,$ $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007,$ $A_{CP}(B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007,$

where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the Dalitz plot and suggest contributions from rescattering and resonance interference processes.

 $(stat)\pm$

 $B^{\pm} \rightarrow$

erved in

ERS 123, 231802 (2019)

THE LARGES CP ASYMMETRY REPORTED TO DATE Amplitude Analysis of $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ Decays

R. Aaij et al.* (LHCb Collaboration)

(Received 12 June 2019; revised manuscript received 15 October 2019; published 6 December 2019)

The first amplitude analysis of the $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$ decay is reported based on a data sample corresponding to an integrated luminosity of 3.0 fb⁻¹ of pp collisions recorded in 2011 and 2012 with the LHCb detector. The data are found to be best described by a coherent sum of five resonant structures plus a nonresonant component and a contribution from $\pi\pi \leftrightarrow KK$ S-wave rescattering. The dominant contributions in the $\pi^{\pm} K^{\mp}$ and $K^+ K^-$ systems are the nonresonant and the $B^{\pm} \rightarrow \rho (1450)^0 \pi^{\pm}$ amplitudes, respectively, with fit fractions around 30%. For the rescattering contribution, a sizable fit fraction is observed. This component has the largest CP asymmetry reported to date for a single amplitude of $(-66 \pm 4 \pm 2)\%$, where the first uncertainty is statistical and the second systematic. No significant CP violation is observed in the other contributions.

of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the Dalitz plot and suggest contributions from rescattering and resonance interference processes.

of pp / LHCb $\pi^{\pm}) =$ (stat)± $B^{\pm} \rightarrow$ rved in

PHYSICAL REVIEW LETTERS 123, 231802 (? Looking forward to the whole RUN2 data

PHYSICAL REVIEW LETTERS 124, 031801 (2020)

Observation of Several Sources of *CP* Violation in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ Decays

R. Aaij et al.* (LHCb Collaboration)

(Received 16 September 2019; published 21 January 2020)

Observations are reported of different sources of CP violation from an amplitude analysis of $B^+ \rightarrow$ $\pi^+\pi^+\pi^-$ decays, based on a data sample corresponding to an integrated luminosity of 3 fb⁻¹ of pp collisions recorded with the LHCb detector. A large CP asymmetry is observed in the decay amplitude involving the tensor $f_2(1270)$ resonance, and in addition significant CP violation is found in the $\pi^+\pi^-S$ wave at low invariant mass. The presence of CP violation related to interference between the $\pi^+\pi^-S$ wave and the P wave $B^+ \rightarrow \rho (770)^0 \pi^+$ amplitude is also established; this causes large local asymmetries but cancels when integrated over the phase space of the decay. The results provide both qualitative and quantitative new insights into CP -violation effects in hadronic B decays.

۲

CPV in $B^{\pm} \longrightarrow M^{\pm} (M^{+}M^{-})$

OLarge integrated CPV asymmetries 10%

 $\begin{array}{l} A_{CP}(B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}) = +0.011 \pm 0.002 \pm 0.003 \pm 0.003, \quad A_{CP}(B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003, \\ A_{CP}(B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003, \\ A_{CP}(B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}) = -0.114 \pm 0.007 \pm 0.003 \pm 0.003, \\ \end{array}$

CPV in $B^{\pm} \longrightarrow M^{\pm} (M^{+}M^{-})$

However, reproducing the full 3-body Dalitz plot needs many contributions and it is a difficult task. Analysis LHCb follows this analysis [5]...

CPV in $B^{\pm} \longrightarrow M^{\pm} (M^{+}M^{-})$

Simplest aproach [5]

1. One of the three final particles is considered as an **spectator**

2. Use CPT constrains at hadron level so that h and \overline{h} must have the same TOTAL decay widths. CPV can only occur in PARTIAL decay widths

$$\Gamma_{Total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \dots$$

$$\bar{\Gamma}_{Total} = \bar{\Gamma}_1 + \bar{\Gamma}_2 + \bar{\Gamma}_3 + \bar{\Gamma}_4 + \dots$$

 $\Delta \Gamma_{Total} = \Gamma_{Total} - \bar{\Gamma}_{Total} = 0$

Simplest aproach [5]

1. One of the three final particles is considered as an **spectator**

2. Use CPT constrains at hadron level so that h and \overline{h} must have the same TOTAL decay widths. CPV can only occur in PARTIAL decay widths

$$\Gamma_{Total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \dots$$

$$\bar{\Gamma}_{Total} = \bar{\Gamma}_1 + \bar{\Gamma}_2 + \bar{\Gamma}_3 + \bar{\Gamma}_4 + \dots$$

$$\Delta \Gamma_{Total} = \Gamma_{Total} - \overline{\Gamma}_{Total} = 0$$

3. Golden mode
$$\rightarrow$$
 Just two coupled channels
 $\Gamma_{Total} = \Gamma_{\pi\pi} + \Gamma_{KK}$
 $\bar{\Gamma}_{Total} = \bar{\Gamma}_{\pi\pi} + \bar{\Gamma}_{KK}$
Is this found anywhere?

 $B^{\pm} \longrightarrow K^{\pm}(K^{+}K^{-})$ and $B^{\pm} \longrightarrow K^{\pm}(\pi^{+}\pi^{-})$ in the 1-1.5 GeV region

Large asymmetries found in LHCb data when projected in the 1-1.5 GeV region, where only $\pi\pi$ and *KK* are relevant [5] (2.25 GeV²)

Standard FSI model in detail

Standard FSI model in detail If λ can couple to other channels λ' (FSI): Amplitude [3] M. Suzuki and L. Wolfenstein, Phys. without FSI Rev. D 60, 074019 (1999) (Over the right cut) $\bigcirc S$ to LO (LHCb) : Hadronic FSI $1 = \pi \pi$ $S_{\lambda\lambda'} = \delta_{\lambda\lambda'} + 2i\hat{f}_{\lambda\lambda'}$ $\mathcal{A}^{\pm} = A_{\lambda} + B_{\lambda}e^{\pm i\gamma}$ $A^{\pm} = A_{\lambda} + B_{\lambda}e^{\pm i\gamma}$ $\mathcal{A}^{\pm} = A_{\lambda}^{0} + B_{\lambda}^{0}e^{\pm i\gamma} + i\sum_{\lambda'}\hat{f}_{\lambda\lambda'}\left(A_{\lambda'}^{0} + B_{\lambda'}^{0}e^{\pm i\gamma}\right)$ interaction

 \bigcirc Asymmetry in the simplest regime with only $\pi\pi \longrightarrow KK$ FSI in the S0 -wave :

$$\Delta \Gamma_{\scriptscriptstyle \mathrm{KK}} \simeq \mathcal{O} |S_{\pi\pi\kappa\kappa}| \cos\left(\delta_{\pi\pi\kappa\kappa} + \Phi_{\scriptscriptstyle \mathrm{KK}}\right) F\left(M_{\scriptscriptstyle \mathrm{KK}}^2\right)$$

Unnecesary and crude estimates at the LHCb

S -matrix:

$$S_{\lambda\lambda'} = \begin{pmatrix} |S_{\pi\pi\pi\pi}| e^{2i\delta_{\pi\pi\pi\pi}} & i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & \cdots \\ i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & |S_{\kappa\kappa\kappa\kappa\kappa}| e^{2i\delta_{\kappa\kappa\kappa\kappa\kappa}} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \Delta\Gamma_{\kappa\kappa} \simeq \mathcal{C} |S_{\pi\pi\kappa\kappa}| \cos\left(\delta_{\pi\pi\kappa\kappa} + \Phi_{\kappa\kappa}\right) F\left(M_{\kappa\kappa}^{2}\right) \\ \end{bmatrix}$$

○ At the time this model was first implemented, only $\pi\pi \longrightarrow \pi\pi$ dispersive analysis existed

 \bigcirc In the two-coupled channels approximation $\longrightarrow \delta_{\pi\pi\kappa\kappa} = \delta_{\pi\pi\pi\pi} + \delta_{\kappa\kappa\kappa\kappa}$

1. $KK \longrightarrow KK$ is unknown \longrightarrow Very crude estimate $\delta_{\kappa\kappa\kappa\kappa} = \delta_{\pi\pi\pi\pi}$ $\delta_{\pi\pi\kappa\kappa} = 2\delta_{\pi\pi\pi\pi}$

2. Took η from old and imprecise $\pi\pi \longrightarrow \pi\pi$ parameterization

$$|S_{\pi\pi\kappa\kappa}| = \sqrt{1-\eta^2}$$

[5] Bediaga, Frederico, Lourenco, Phys. Rev. D 89 (2014) 094013 [7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

Unnecesary and crude estimates at the LHCb

S -matrix:

$$S_{\lambda\lambda'} = \begin{pmatrix} |S_{\pi\pi\pi\pi}| e^{2i\delta_{\pi\pi\pi\pi}} & i |S_{\pi\pi\kappa}| e^{i\delta_{\pi\pi\kappa}} & \cdots \\ i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & |S_{\kappa\kappa\kappa\kappa}| e^{2i\delta_{\kappa\kappa\kappa\kappa}} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \Delta\Gamma_{\kappa\kappa} \simeq \mathcal{C} |S_{\pi\pi\kappa\kappa}| \cos\left(\delta_{\pi\pi\kappa\kappa} + \Phi_{\kappa\kappa}\right) F\left(M_{\kappa\kappa}^{2}\right) \\ \end{bmatrix}$$

- At the time this model was first implemented, only $\pi\pi \longrightarrow \pi\pi$ dispersive analysis existed
- **O** In the two-coupled channels approximation $\longrightarrow \delta_{\pi\pi\kappa\kappa} = \delta_{\pi\pi\pi\pi} + \delta_{\kappa\kappa\kappa\kappa}$

and 2.

O The crude estimates do not describe de data

O They produce huge uncertainties

O They do not resolve resonance structures

[5] Bediaga, Frederico, Lourenco, Phys. Rev. D 89 (2014) 094013

[7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

But correct and precise $\pi\pi \longrightarrow KK$ parameterizations were implemented...

Crude estimates 1. and 2. FIXED

Describe the data much better

Significantly reduced uncertainties

Visible resonance \bigcirc structures

Using the current $\pi\pi \longrightarrow KK$ parameterization

[9] J. R. Peláez, A. Rodas, Eur. Phys. J. C 78 (2018) 11, 897 & Phys. Rept. 960 (2022) 1-126

Let's see the improvements

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

Using the dispersive $\pi\pi \longrightarrow KK$ parameterization

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

- **O** Resonant features resolved
- O Even beyond 1.5 GeV, still fairly reasonable

It makes sense to add subdominant contributions

Using the dispersive $\pi\pi \longrightarrow KK$ parameterization

Slightly modified model including a mimicked source term with a mild energy dependence apart from the rescattering [7] [7] Alvarenga, Bediaga, Frederico Phys. Rev. D

[7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

$$\Delta \Gamma_{\rm \scriptscriptstyle KK} \simeq \frac{\mathcal{C} \left| S_{\pi\pi\kappa\kappa} \right| \cos \left(\delta_{\pi\pi\kappa\kappa} + \Phi_{\rm \scriptscriptstyle KK} \right) F \left(M_{\rm \scriptscriptstyle KK}^2 \right)}{\left(1 + s/\Lambda_{\pi\pi}^2 \right) \left(1 + s/\Lambda_{\rm \scriptscriptstyle KK}^2 \right)} \xrightarrow{\Lambda_{\pi\pi} = 3 \text{ GeV}}{\Lambda_{\kappa\kappa} = 4 \text{ GeV}}$$

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

Kinematic factor correction at threshold so that the strange non-physical peak disappears

 $B \longrightarrow KKK$ data from the whole RUN1

[5] showed the predominant role of FSI in giant CPV of charmless B→3M decays in the 1 – 1.5 GeV range
 [5] Bediaga, Frederico, Lourenco, Phys. Rev. D 89 (2014) 094013

O Very crude estimates where widely used in the literature, particularly by LHCb

Recent proposal to amend these estimates in [8]

> [8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, 201901 (2023)

Confirmed that FSI providing the strong phase in CPV requires realistic and accurate $\pi\pi \longrightarrow KK$ amplitudes

Dramatic increase in precision and the unveiling of distinct meson-scale dynamics (resonant shapes) in the giant CPV observation

• The new precision paves the way for more rigorous studies of FSI

HOW CAN WE IMPROVE THIS?

Recalling...

"Complete-S matrix FSI model"

What we are doing :

 \bigcirc Work with the complete S matrix instead of expanding it to leading order

- O Explicit calculation of the square root of the matrix without Taylor series approximation
- Avoid unnecessary simplifications involving the parameters in the QCD amplitude A_{λ}^{0} , B_{λ}^{0}

Computing the square root of the S matrix

We start with the general $\,S\,$ matrix

$$S_{\lambda\lambda'} = \begin{pmatrix} |S_{\pi\pi\pi\pi}| e^{2i\delta_{\pi\pi\pi\pi}} & i | S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & \ddots & \ddots \\ i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & |S_{\kappa\kappa\kappa\kappa}| e^{2i\delta_{\kappa\kappa\kappa\kappa}} & \ddots & \ddots \\ \vdots & \ddots & \vdots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

$$\blacksquare \text{ We need to diagonalize the matrix } \longrightarrow \text{ Two coupled channels}$$

$$\blacksquare \text{ In terms of } |S_{\pi\pi\kappa\kappa}|, \delta_{\pi\pi\pi\pi} \text{ and } \delta_{\pi\pi\kappa\kappa}$$

$$\blacksquare \text{ Skip 1. and 2. crude estimates}$$

$$S_{\lambda\lambda'} = \begin{pmatrix} \sqrt{1 - |S_{\pi\pi\kappa\kappa}|^2} e^{2i\delta_{\pi\pi\kappa\kappa}} & i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} \\ i |S_{\pi\pi\kappa\kappa}| e^{i\delta_{\pi\pi\kappa\kappa}} & \sqrt{1 - |S_{\pi\pi\kappa\kappa}|^2} e^{2i(\delta_{\pi\pi\kappa\kappa} - \delta_{\pi\pi\pi\pi})} \end{pmatrix}$$

$$a_{\frac{1}{2}} = \frac{e^{2i(\delta_{\pi\pi\mathrm{KK}} - \delta_{\pi\pi\pi\pi})} + e^{2i\delta_{\pi\pi\pi\pi}}}{2} \cos \alpha \mp \sqrt{\left(\frac{e^{2i(\delta_{\pi\pi\mathrm{KK}} - \delta_{\pi\pi\pi\pi})} + e^{2i\delta_{\pi\pi\pi\pi}}}{2} \cos \alpha\right)^2} - e^{2i\delta_{\pi\pi\mathrm{KK}}}}$$
$$\longrightarrow |S_{\pi\pi\mathrm{KK}}| \equiv \sin \alpha , \sqrt{1 - |S_{\pi\pi\mathrm{KK}}|^2} \equiv \cos \alpha \qquad \blacksquare \text{ They are functions of } |S_{\pi\pi\mathrm{KK}}| , \delta_{\pi\pi\pi\pi}}$$
$$and \delta_{\pi\pi\mathrm{KK}}$$

The eigenvalues we obtain:

Computing the square root of the S matrix

"Complete-S matrix FSI model"

$$= S_{1} \qquad = S_{2}$$

$$S_{\lambda\lambda'}^{1/2} = \frac{\sqrt{a_{1}} - \sqrt{a_{2}}}{2\sqrt{\left(\frac{a_{1}+a_{2}}{2}\right)^{2} - e^{i\delta_{\pi\pi KK}}}} \left(\left(e^{2i(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi})\cos\alpha} - \frac{-ie^{i\delta_{\pi\pi KK}}\sin\alpha}{e^{2i\delta_{\pi\pi\pi\pi}}\cos\alpha} - \frac{\sqrt{a_{1}^{3}} - \sqrt{a_{2}^{3}}}{\sqrt{a_{1}} - \sqrt{a_{2}}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \right)$$

$$A = S^{1/2} A^{0} \quad \text{Amplitude without FSI}$$

Ampiliude Deyond LO.

$$\mathcal{A}_{\mathrm{KK}}^{\pm} = S_1 \left(\left(A_2^0 + B_2^0 e^{\pm i\gamma} \right) \left(e^{2i(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi})} \cos \alpha - S_2 \right) - \left(A_1^0 + B_1^0 e^{\pm i\gamma} \right) i e^{i\delta_{\pi\pi KK}} \sin \alpha \right)$$

"Complete-S matrix FSI model"

$$= S_{1} \qquad = S_{2}$$

$$S_{\lambda\lambda'}^{1/2} = \frac{\sqrt{a_{1}} - \sqrt{a_{2}}}{2\sqrt{\left(\frac{a_{1}+a_{2}}{2}\right)^{2} - e^{i\delta_{\pi\pi KK}}}} \left(\begin{pmatrix} e^{2i(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi})} \cos \alpha & -ie^{i\delta_{\pi\pi KK}} \sin \alpha \\ -ie^{i\delta_{\pi\pi KK}} \sin \alpha & e^{2i\delta_{\pi\pi\pi\pi}} \cos \alpha \end{pmatrix} - \frac{\sqrt{a_{1}^{3}} - \sqrt{a_{2}^{3}}}{\sqrt{a_{1}} - \sqrt{a_{2}}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

$$= \mathcal{A} = S^{1/2} \mathcal{A}^{0} \qquad \text{Amplitude without FSI}$$

O Decay width asymmetry:

$$\Delta\Gamma_{\rm KK} = |S_1|^2 \left(\mathcal{C}\sin\alpha \left(\operatorname{Re}\left[S_2 e^{-i(\delta_{\pi\pi KK} - \Phi_{KK})} \right] - \cos\left(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK} - \Phi_{KK} \right) \cos\alpha \right) + \mathcal{K} \left(\cos^2\alpha - \sin^2\alpha + 2\operatorname{Re}\left[S_2 e^{-2i(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi})} \right] + |S_2|^2 \right) \right) F(M_K^2)$$

Three functions describing the dispersion

 $C = 4|K| \sin \gamma$ $K = |K| e^{i\Phi_{KK}} = A_1^{0*} B_2^0 - A_2^0 B_1^{0*}$ $F(M_K^2) \longrightarrow \text{Dalitz plot kinematic factor}$

Three parameters

$$\mathrm{Im}\left[A_1^{0*}B_1^0\right] = \mathrm{Im}\left[A_2^{0*}B_2^0\right] = 0$$

CPT constraint

$$\sum_{\lambda,J} \operatorname{Im} \left[A_{\lambda,J}^{0*} B_{\lambda,J}^{0} \right] = 0$$

$$\mathcal{K} = 4 \sin \gamma \operatorname{Im} \left[A_{1}^{0*} B_{1}^{0} \right] = -4 \sin \gamma \operatorname{Im} \left[A_{2}^{0*} B_{2}^{0} \right]$$

PRELIMINARY First results using the "Complete-S matrix FSI model"

 \bigcirc We have fit the model only up to 1.47 GeV, 2.16 GeV²

- O Increase in the model uncertainty due to the inclusion of $\pi\pi \longrightarrow \pi\pi$, through $\delta_{\pi\pi\pi\pi}$ function. Still fairly reasonable
- **O** Keeps describing the experimental data

PRELIMINARY First results using the "Complete-S matrix FSI model"

Including the mimicked source in [7]: [7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

$$\begin{split} \Delta\Gamma_{\mathrm{KK}} &= |S_1|^2 \left(\mathcal{C}\sin\alpha \frac{\operatorname{Re} \left[S_2 e^{-i\left(\delta_{\pi\pi KK} - \Phi_{KK}\right)} \right] - \cos\left(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK} - \Phi_{KK}\right)\cos\alpha}{\left(1 + s/\Gamma_{\pi\pi}^2\right)\left(1 + s/\Gamma_{KK}\right)} + \right. \\ &\left. + \mathcal{K} \left(-\frac{\sin^2\alpha}{\left(1 + s/\Gamma_{\pi\pi}^2\right)^2} + \frac{\cos^2\alpha + 2\operatorname{Re} \left[S_2 e^{-2i\left(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi}\right)} \right] + |S_2|^2}{\left(1 + s/\Gamma_{KK}\right)^2} \right) \right) F(M_K^2) \end{split}$$

O Resonant features well resolved

PRELIMINARY Discussion: If strong phase only comes from FSI

O Decay width asymmetry:

$$\Delta\Gamma_{\rm KK} = |S_1|^2 \left(\mathcal{C}\sin\alpha \left(\operatorname{Re}\left[S_2 e^{-i(\delta_{\pi\pi KK} - \Phi_{KK})} \right] - \cos\left(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK} - \Phi_{KK} \right) \cos\alpha \right) + \mathcal{K} \left(\cos^2\alpha - \sin^2\alpha + 2\operatorname{Re}\left[S_2 e^{-2i(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi})} \right] + |S_2|^2 \right) \right) F(M_K^2)$$

Three functions describing the
dispersion $\mathcal{C} = 4|K| \sin \gamma$
 $K = |K|e^{i\Phi_{KK}} = A_1^{0*}B_2^0 - A_2^0B_1^{0*}$
Three parametersThree parameters $F(M_K^2) \longrightarrow$ Dalitz plot kinematic factor

PRELIMINARY Discussion: If strong phase only comes from FSI

O Decay width asymmetry:

$$\Delta \Gamma_{\rm KK} = |S_1|^2 \left(\mathcal{C} \sin \alpha \left(\operatorname{Re} \left[S_2 e^{-i(\delta_{\pi\pi KK}} \right] - \cos \left(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK} - \right) \cos \alpha \right) + \right) F(M_K^2)$$

Three functions describing the $\mathcal{C} = 4|K| \sin \gamma$ dispersion ONE parameter

 $F(M_K^2) \longrightarrow$ Dalitz plot kinematic factor

• The fitting is comparable since $\chi^2 = 1.348$ in this limit and $\chi^2 = 1.364$ with the complete model

O This hypothesis is still a good description of the data

PRELIMINARY Discussion: If strong phase only comes from FSI

Including the mimicked source in [7]: [7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

$$\Delta \Gamma_{\rm KK} = \left|S_1\right|^2 \, \mathcal{C} \sin \alpha \frac{\operatorname{Re} \left[S_2 e^{-i\delta_{\pi\pi KK}}\right] - \cos(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK}) \cos \alpha}{(1 + s/\Gamma_{\pi\pi}^2)(1 + s/\Gamma_{\rm KK})} F(M_K^2)$$

• The fitting is still comparable; $\chi^2 = 2.864$ now and $\chi^2 = 2.629$ before • Describes the data

What's the next stage?

LHCb is actually using a more complete model where not only the is added, butalso more waves[7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

Breit-Wigner resonances for $\rho(770)$ and $(f_0(980))$

Summary

[5] showed the predominant role of FSI in Giant CPV of charmless B→ 3M decays in the 1-1.5 GeV range
 [5] Bediaga, Frederico, Lourenco, Phys. Rev. D 89 (2014) 094013

O Very crude estimates in the literature, also at LHCb

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

O Recent proposal to amend these estimates in [8] through realistic and accurate $\pi\pi \longrightarrow KK$ amplitudes that dramatic increased the precision

BUT all of these results arise from a first-order expansion

Summary

[5] showed the predominant role of FSI in Giant CPV of charmless B→ 3M decays in the 1-1.5 GeV range
 [5] Bediaga, Frederico, Lourenco, Phys. Rev. D 89 (2014) 094013

O Very crude estimates in the literature, also at LHCb

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

O Recent proposal to amend these estimates in [8] through realistic and accurate $\pi\pi \longrightarrow KK$ amplitudes that dramatic increased the precision

BUT all of these results arise from a first-order expansion

O Implementing a formalism beyond-Leading Order is much more complicated

- We are developing a complete formalism that contains the information in the whole *S* matrix based on [3] [3] M. Suzuki and L. Wolfenstein, Phys. Rev. D 60, (1999) 074019
- The eigenvalues we obtain differ from the ones in the literature [10], since they inherit the crude estimates
 [10] H. Y. Cheng, C.K. Chua, Z.Q. Zhang Phys. Rev. D 94.9 (2016) 094015

• Our preliminary results still describe experimental data, confirming with a complete formalism the very relevant role of FSI in Giant CPV

O Similar good fits assuming the strong phase only comes from FSI

PRELIMINARY First results using the "Complete-S matrix FSI model"

• Comparing fitting only up to 1.47 GeV or fitting all the data $\chi^2 = 1.364 \iff \chi^2 = 1.009$

• The second curve (with all the data) also provides a good fitting up to 1.47 GeV with $\chi^2 = 1.394$

O Beyond 1.5 GeV other decay modes become relevant

PRELIMINARY First results using the "Complete-*S* matrix FSI model"

Including the mimicked source in [7]: [7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

$$\begin{split} \Delta\Gamma_{\rm KK} &= |S_1|^2 \left(\mathcal{C}\sin\alpha \frac{\operatorname{Re} \left[S_2 e^{-i\left(\delta_{\pi\pi KK} - \Phi_{KK}\right)} \right] - \cos\left(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK} - \Phi_{KK}\right)\cos\alpha}{\left(1 + s/\Gamma_{\pi\pi}^2\right)\left(1 + s/\Gamma_{KK}\right)} + \right. \\ &\left. + \mathcal{K} \left(-\frac{\sin^2\alpha}{\left(1 + s/\Gamma_{\pi\pi}^2\right)^2} + \frac{\cos^2\alpha + 2\operatorname{Re} \left[S_2 e^{-2i\left(\delta_{\pi\pi KK} - \delta_{\pi\pi\pi\pi}\right)} \right] + |S_2|^2}{\left(1 + s/\Gamma_{KK}\right)^2} \right) \right) F(M_K^2) \end{split}$$

PRELIMINARY Discussion: If strong phase only comes from FSI

• Comparing fitting only up to 1.47 GeV or fitting all the data $\chi^2 = 1.348 \iff \chi^2 = 1.298$

• The second curve (with all the data) also provides a good fitting up to 1.47 GeV with $\chi^2 = 1.382$

O Beyond 1.5 GeV other decay modes become relevant

PRELIMINARY Discussion: If strong phase only comes from FSI

Including the mimicked source in [7]: [7] Alvarenga, Bediaga, Frederico Phys. Rev. D 92 (2015) 0954010

$$\Delta \Gamma_{\rm KK} = |S_1|^2 \, \mathcal{C} \sin \alpha \frac{\operatorname{Re} \left[S_2 e^{-i\delta_{\pi\pi KK}} \right] - \cos(2\delta_{\pi\pi\pi\pi} - \delta_{\pi\pi KK}) \cos \alpha}{(1 + s/\Gamma_{\pi\pi}^2)(1 + s/\Gamma_{\rm KK})} \, F(M_K^2)$$

 $B \longrightarrow KKK$ data from the whole RUN1

1.8

Using the dispersive $\pi\pi \longrightarrow KK$ parameterization

The simplest improvement to make the model more realistic:

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

Replacing the naive $f_0(980)$ Breit-Wigner with realistic dispersive $\pi\pi \longrightarrow \pi\pi$ S-wave analysis400.400.-400.-400.-400.-400.-400.-400.-400.-400.-400.-400.-400.---400.---</

Using the dispersive $\pi\pi \longrightarrow KK$ parameterization

The simplest improvement to make the model more realistic:

[8] R. Álvarez Garrote, J. Cuervo, P. Magalhaes, J.R.Peláez Phys.Rev.Lett. 130, (2023) 201901

Replacing the naive $f_0(980)$ Breit-Wigner with realistic dispersive $\pi\pi \longrightarrow \pi\pi$ S-wave analysis $B \longrightarrow K\pi\pi$ data from the whole RUN1

 $\pi\pi$ $O f_0(500)/\sigma$ resonance is

present

O Spurious f₀(980) peak is removed

Not a bad behavior even beyond 1.5 GeV

FSI $\pi\pi \longrightarrow KK$ dominates CPV between 1 to 1.5 GeV

• The spectator does not interact at all, any complex phase is added

