Two-Baryon Spectroscopy From Lattice QCD

Robert J. Perry
University of Barcelona, Spain
perryrobertjames@gmail.com
for NPLQCD

OUTLINE

- Motivation
- Scattering Amplitudes from Lattice QCD
- Variational Analysis of NN
- Observation of resonant-like state at de ~ 0.07.
- Conclusions

Motivation

LQCD can provide important input for both understanding the SM and constraining BSM physics.

Nuclear matrix elements required for:

- double-beta decay,
- dark matter direct detection,
- neutrino-nucleus scattering
- Constrain nuclear EFTs

Introduction To LQCD

- Provides a non-perturbative definition of field
 theory
- Discretize space-time.
- Place in finite volume
- Regulates IR and UV divergences \rightarrow suitable for numerical evaluation

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{Z} \int D \phi \mathcal{O}[\phi] e^{-S[\phi]} \\
& =\frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left[\phi_{i}\right], \quad \phi \sim \frac{1}{Z} e^{-S[\phi]}
\end{aligned}
$$

Hadron Spectroscopy in LQCD

$$
C_{\chi \chi^{\prime}}(t)=\langle 0| \mathcal{O}_{\chi}(t) \mathcal{O}_{\chi^{\prime}}^{\dagger}(0)|0\rangle
$$

- Study time dependence of twopoint correlators
- \mathcal{O}_{χ} is operator with quantum numbers of state of interest
- Admits spectral decomposition: time dependence determined by energy eigenstates.

$$
C_{\chi \chi^{\prime}}(t)=\sum_{n=0}^{\infty} Z_{n \chi} Z_{n \chi^{\prime}}^{*} e^{-E_{n}}
$$

No-Go Theorem

- LSZ: Scattering amplitudes are residues of poles of n point correlation function
- LQCD: Formulated with Euclidean time
- Maiani-Testa:

S-matrix elements cannot be extracted from infinitevolume Euclidean-space Green functions except at kinematic thresholds

- Cannot isolate single particle states.

Volume Dependence

$$
C_{\chi \chi^{\prime}}(t)=\langle 0| \mathcal{O}_{\chi}(t) \mathcal{O}_{\chi^{\prime}}^{\dagger}(0)|0\rangle
$$

Bound state

$$
[E(L)-E(\infty)] \sim \frac{e^{-m L}}{L}
$$

$$
[E(L)-E(\infty)] \sim \frac{a}{M L^{3}}
$$

Lüscher: Relate volume dependence to phase shift

The NN Channel

- Smallest multi-nucleon system
- I=0 Deuteron: bound pn state $\left(E_{b} \sim 2 \mathrm{MeV}\right)$
- I=0, d*(2380) resonance
- $\mathrm{I}=1$ dineutron ($\mathrm{pp}, \mathrm{nn}, \mathrm{pn}$ equivalent in isospin limit)

To Bind or Not to Bind?

At m ~ 800 MeV ,

- HALQCD: unbound deuteron and dineutron

Aoki et al, Comput. Sci. Dis. 1 (2008)
HAL QCD, Nucl. Phys. A881 (2012)
Iritani et al, JHEP 1610 (2016)
Iritani et al, PRD 96 (2017)
HAL QCD, PRD 99 (2019)
HAL QCD, JHEP 1903 (2019)

- PACS: bound deuteron and dineutron

PACS-CS, PRD 81 (2010)

- NPLQCD: bound deuteron and dineutron

NPLQCD, PRD 87 (2013)
NPLQCD, PRD 87 (2017)
NPLQCD PRD 107 (2023)

- CalLatt: bound deuteron and dineturon

Berkowitz et al, Phys. Lett. B 285 (2017)

- Francis et al: unbound dineutron

Francis, et al, PRD 99 (2019)

Why are Nuclear Systems Difficult?

- Common to all lattice calculations:
- Light quarks are expensive
- Continuum limit requires multiple lattice ensembles
- BB: 6 quark system \rightarrow large cost computing quark contractions
- StN problem at large Euclidean time
- Small energy gap:

$$
\begin{aligned}
& C_{\chi \chi}(t)=\left|Z_{0 \chi}\right|^{2} e^{-t E_{0}}+\left|Z_{1 \chi}\right|^{2} e^{-t E_{1}}+\ldots \\
& \Delta E=E_{1}-E_{0} \sim \frac{1}{L^{2}}
\end{aligned}
$$

Variational Method

- Solve the generalized eigenvalue problem (GEVP):

$$
\sum_{\chi^{\prime}} C_{\chi \chi^{\prime}}(t) v_{n \chi^{\prime}}\left(t, t_{0}\right)=\lambda_{n}\left(t, t_{0}\right) \sum_{\chi^{\prime}} C_{\chi \chi^{\prime}}\left(t_{0}\right) v_{n \chi^{\prime}}\left(t, t_{0}\right)
$$

- $\lambda_{n}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{n}\left(t, t_{0}\right)}$ are eigenvalues, $v_{n \chi}\left(t, t_{0}\right)$ are eigenvevtors
- Construct optimized interpolating operators

$$
\mathcal{O}_{n}\left(t_{\mathrm{ref}}, t_{0}, t\right)=\sum_{\chi} v_{n \chi}\left(t_{\mathrm{ref}}, t_{0}\right) \mathcal{O}_{\chi}(t)
$$

- Compute resulting two-point correlators

$$
\hat{C}_{n}\left(t, t_{0}, t_{\mathrm{ref}}\right)=\sum_{n=0}^{\infty}\left|Z_{n}\left(t_{0}, t_{\mathrm{ref}}\right)\right|^{2} e^{-t E_{n}}>0
$$

InTERLACING THEOREM

Provides rigorous bounds on number of energy levels at or below effective mass*
Theorem (Eigenvalue Interlacing Theorem) Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric. Let $B \in R^{m \times m}$ with $m<n$ be a principal submatrix (obtained by deleting both i-th row and i-th column for some values of i). Suppose A has eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and B has eigenvalues $\beta_{1} \leq \cdots \leq \beta_{m}$. Then

$$
\lambda_{k} \leq \beta_{k} \leq \lambda_{k+n-m} \text { for } k=1, \ldots, m
$$

And if $m=n-1$,

$$
\lambda_{1} \leq \beta_{1} \leq \lambda_{2} \leq \beta_{2} \leq \cdots \leq \beta_{n-1} \leq \lambda_{n}
$$

$$
\lambda_{n}=e^{-E_{n}\left(t-t_{0}\right)} \quad \beta_{n}=e^{-E_{n}\left(t, t_{0}\right)\left(t-t_{0}\right)}
$$

TYPES OF OpERATORS

Local hexaquark operators

Six Gaussian smeared quarks at a point Novel basis of hexaquark operators which project onto two nucleons
Contains operators which cannot be factored into 3-quark color singlets

Dibaryon Operators

Two spatially-separated plane-wave baryons with relative momenta
Operators built products of positive and negative partity nucleon operators
Relative momentum: up to four units $\rightarrow 5$ operators

Quasi-local Operators

Two exponentially localized baryons

NN -EFT motivated deuteron-like structure

Operator Sets

Consider operator sets with

- Dibaryon only:
- 5D: positive parity, 5 different momenta
- 10D: positive \& negative parity, 5 different momenta
- 15D: positive \& negative parity, lower spin components, 5 different momenta
- Hexaquark only:
- 1H: Most important hexaquark
- 2H: Most important hexaquarks
- 16H: Full basis
- Union of these two sets:
- 5D+1H, 5D+2H, 5D+16H, 15D+16H

ANALYSIS

$\hat{C}_{n}\left(t, t_{0}, t_{\mathrm{ref}}\right)$

ANALYsis

$\hat{C}_{n}\left(t, t_{0}, t_{\mathrm{ref}}\right)$

$$
\begin{aligned}
E_{0} & \leq e_{0} \\
E_{1} & \leq e_{1}
\end{aligned}
$$

Dineutron ($\mathrm{I}=1$)

5D

1H

5D+1H

Dineutron ($\mathrm{I}=1$)

5D

1H

5D+1H

Dineutron ($\mathrm{I}=1$)

- 5D, 10D and 15D agree within 1 sigma
- $1 \mathrm{H}, 2 \mathrm{H}$ and 16 H poor variational bounds
- $5 \mathrm{D}+1 \mathrm{H}$ etc lead to union of two sets of variational bounds!
- Additional state not present in noninteracting theory

Deuteron ($\mathrm{I}=0$)

5D

1H

5D+1H

Deuteron ($\mathrm{I}=0$)

5D

1H

5D+1H

Deuteron $(\mathrm{I}=0)$

- 5D, 10D and 15D agree within 1 sigma
- $1 \mathrm{H}, 2 \mathrm{H}$ and 16 H poor variational bounds
- $5 \mathrm{D}+1 \mathrm{H}$ etc lead to union of two sets of variational bounds!
- Additional state not present in noninteracting theory

Volume Dependence

Additional State

- Lattice artifact?
- Symmetric spectra for dineutron and deuteron predicted in heavy quark limit. Natural to see approx. degenerate spectra at these quark masses.
- Lack of volume dependence consistent with resonance
- Difficult to interpret at heavy pion mass.

Conclusions

- LQCD can connect QCD to nuclear physics
- Challenge to control systematic uncertainties
- Variational Analysis of NN
- Resonant-like state at dE~0.07.
- Need to move towards physical point to interpret
- Currently underway!

H-Dibaryon

Two Volumes

Hexaquark Operators

$$
\mathcal{H}^{K}(x)=\mathcal{H}_{\Gamma_{1}, F_{1} ; \Gamma_{2}, F_{2} ; \Gamma_{3}, F_{3}}^{C_{1} C_{2} C_{3}}(x)=T_{a b c d e f}^{C_{1} C_{2} C_{3}} \mathcal{D}_{\Gamma_{1}, F_{1}}^{a b}(x) \mathcal{D}_{\Gamma_{2}, F_{2}}^{c d}(x) \mathcal{D}_{\Gamma_{3}, F_{3}}^{e f}(x)
$$

Many ways to construct color singlet operator.

$\mathbf{3} \otimes \mathbf{3}=\mathbf{6} \oplus \overline{\mathbf{3}}$

$(\mathbf{3} \otimes \mathbf{3}) \otimes(\mathbf{3} \otimes \mathbf{3}) \otimes(\mathbf{3} \otimes \mathbf{3})=(\mathbf{6} \oplus \overline{\mathbf{3}}) \otimes(\mathbf{6} \oplus \overline{\mathbf{3}}) \otimes(\mathbf{6} \oplus \overline{\mathbf{3}})$

Dibaryon Operators

$L^{3} \times T$	β	m_{q}	$\mathrm{a}[\mathrm{fm}]$	$\mathrm{L}[\mathrm{fm}]$	$\mathrm{T}[\mathrm{fm}]$	$m_{\pi} L$	$m_{\pi} T$	$N_{\text {cfg }}$	$N_{\text {src }}$
$24^{3} \times 48$	6.1	-0.2450	$0.1453(16)$	3.4	6.7	14.3	28.5	469	216

Hadron Spectroscopy in LQCD

$$
C_{\chi \chi^{\prime}}(t)=\langle 0| \mathcal{O}_{\chi}(t) \mathcal{O}_{\chi^{\prime}}^{\dagger}(0)|0\rangle
$$

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{Z} \int D \phi \mathcal{O}[\phi] e^{-S[\phi]} \\
& =\frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left[\phi_{i}\right], \quad \phi \sim \frac{1}{Z} e^{-S[\phi]}
\end{aligned}
$$

Types of Operators

Local hexaquark operators

Six Gaussian smeared quarks at a point

$$
\mathcal{H}^{K}(x)=T_{a b c d e f}^{C_{1} C_{2} C_{3}} \mathcal{D}_{\Gamma_{1}, F_{1}}^{a b}(x) \mathcal{D}_{\Gamma_{2}, F_{2}}^{c d}(x) \mathcal{D}_{\Gamma_{3}, F_{3}}^{e f}(x)
$$

Dibaryon Operators

Two spatially-separated plane-wave baryons with relative momenta

$$
D_{\rho}^{\Gamma}(\vec{n}, t)=\sum_{\vec{x}_{1}, \vec{x}_{2}} e^{i 2 \pi \vec{n} / L \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)} \sum_{\sigma, \sigma^{\prime}} v_{\rho}^{\sigma \sigma^{\prime}} N_{\sigma}^{\Gamma}\left(\vec{x}_{1}, t\right) N_{\sigma^{\prime}}^{\Gamma}\left(\vec{x}_{2}, t\right)
$$

Quasi-local Operators

Two exponentially localized baryons NN -EFT motivated deuteron-like structure

$$
Q_{\rho}^{\Gamma}(\kappa, t)=\sum_{\vec{R}} \sum_{\vec{x}_{1}, \vec{x}_{2}} e^{-\kappa\left|\vec{x}_{1}-\vec{R}\right|} e^{-\kappa\left|\vec{x}_{2}-\vec{R}\right|} \sum_{\sigma, \sigma^{\prime}} v_{\rho}^{\sigma \sigma^{\prime}} N_{\sigma}^{\Gamma}\left(\vec{x}_{2}, t\right) N_{\sigma^{\prime}}^{\Gamma}\left(\vec{x}_{1}, t\right),
$$

